SAA8113HL [NXP]

Digital PC-camera signal processor; 数字PC的相机信号处理器
SAA8113HL
型号: SAA8113HL
厂家: NXP    NXP
描述:

Digital PC-camera signal processor
数字PC的相机信号处理器

PC
文件: 总44页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA8113HL  
Digital PC-camera signal processor  
Preliminary specification  
1999 Sep 27  
File under Integrated Circuits, IC22  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
CONTENTS  
1
2
3
4
5
6
7
8
FEATURES  
APPLICATIONS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
PINNING  
FUNCTIONAL DESCRIPTION  
8.1  
8.2  
8.3  
Black offset preprocessing  
Y, CR and CB separation  
RGB processing  
8.4  
Y processing  
8.5  
8.6  
RGB to UV conversion  
UV processing  
8.7  
Display function  
8.8  
8.9  
Analog output processing  
Measurement engine  
VH reference and window timing and control  
Pulse pattern generator  
Miscellaneous functions  
Mode control  
Microcontroller  
Audio amplifier  
I2C-bus interface  
8.10  
8.11  
8.12  
8.13  
8.14  
8.15  
8.16  
9
LIMITING VALUES  
10  
11  
12  
13  
14  
15  
15.1  
THERMAL CHARACTERISTICS  
OPERATING CHARACTERISTICS  
ELECTRICAL CHARACTERISTICS  
APPLICATION INFORMATION  
PACKAGE OUTLINE  
SOLDERING  
Introduction to soldering surface mount  
packages  
15.2  
15.3  
15.4  
15.5  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
16  
17  
18  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
1999 Sep 27  
2
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
1
FEATURES  
High precision digital processing with 10-bit input  
Medium resolution complementary mosaic CCD  
sensors PAL or NTSC (interlaced mode only)  
Internal PPG, dedicated to SHARP, TOSHIBA and  
PANASONIC sensors  
Integrated microcontroller (80C51) for control loops  
Auto Optical Black (AOB), Auto White Balance (AWB)  
and Auto Exposure (AE)  
3
GENERAL DESCRIPTION  
The SAA8113HL is a 2nd generation camera Digital  
Signal Processor (DSP) designed for low-cost DTV  
applications. It integrates the DSP core, the Pulse Pattern  
Generator (PPG), the 80C51 microcontroller and the  
VDAC in one IC. It is the successor of the SAA8110G,  
dedicated to analog output cameras.  
Black offset preprocessing  
RGB separation  
RGB processing (colour correction matrix,  
programmable knee and gamma)  
The SAA8113HL must be applied together with an analog  
front-end that includes a Correlated Double Sampling  
(CDS), an Automatic Gain Control (AGC) and an  
Analog-to-Digital Converter (ADC). This may be the  
TDA8786 or the TDA8784.  
Separate Y-processing (saturation concealment,  
programmable knee and gamma)  
RGB to UV conversion (including down-sampling filters)  
Noise reduction in Y and UV  
Display function for system evaluation  
The PPG generates the timing pulses to drive medium  
resolution PAL/NTSC complementary mosaic CCD  
sensors (512 × 492 NTSC and 512 × 582 PAL).  
Analog output processing, including PAL/NTSC encoder  
and 9-bit Video Digital-to-Analog Converter (VDAC)  
Measurement engine (prepared for AE and AWB  
features)  
The input of the DSP is 10 bits with a maximum pixel  
frequency equal to 9.66 MHz. The DSP core processes  
this sensor signal to a standard video output signal. The  
Miscellaneous functions, e.g. power management, 7-bit  
Control DAC (CDAC) serial interface with preprocessing SAA8113HL output is an analog CVBS video signal.  
VH reference and window timing for internal use  
Master I2C-bus interface for communication with an  
external EEPROM (containing the default settings)  
Slave I2C-bus interface for communication with an  
The microcontroller provides the settings for the IC  
registers from EEPROM at power-up or reset and controls  
the AWB, AE and AOB loops. It also provides a hardware  
I2C-bus interface, so the microcontroller can be used as an  
I2C-bus slave. The software code is embedded in an  
internal ROM but it is also possible to use a combined data  
and address bus, connected to an external program  
EPROM.  
external microcontroller  
Parallel interface for communication with an external  
EPROM (for ROM code debugging)  
Integrated audio amplifier.  
A built-in power management function allows the power  
dissipation to be optimized.  
2
APPLICATIONS  
Low-cost desktop video applications  
Videophone systems.  
4
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA8113HL  
LQFP100  
plastic low profile quad flat package; 100 leads;  
SOT407-1  
body 14 × 14 × 1.4 mm  
1999 Sep 27  
3
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
5
QUICK REFERENCE DATA  
Measured over full voltage and temperature range.  
SYMBOL  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
3.0  
TYP.  
3.3  
MAX.  
3.6  
UNIT  
VDDD  
VDDA  
IDD(tot)  
VI  
V
analog supply voltage  
total supply current  
input voltage  
3.0  
3.3  
60  
3.6  
V
VDDD = 3.3 V  
mA  
V
3.0 V < VDDD < 3.6 V low-voltage TTL compatible  
note 1 5 V tolerant, TTL compatible  
3.0 V < VDDD < 3.6 V low-voltage TTL compatible  
V
VO  
output voltage  
V
note 1  
5 V tolerant, TTL compatible  
V
fclk  
δ
clock frequency input  
duty factor of fclk  
38  
50  
200  
MHz  
%
Ptot  
Tstg  
Tamb  
Tj  
total power dissipation  
storage temperature  
ambient temperature  
junction temperature  
Tamb = 25 °C  
Tamb = 70 °C  
250  
+150  
70  
mW  
°C  
°C  
°C  
55  
0
25  
40  
+125  
Note  
1. This concerns pins SCL and SDA.  
1999 Sep 27  
4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  e
V
V
V
V
,
DDD1,  
DDA1 to DDA3  
MICIAB,  
AGND1 to AGND4,  
AGND7 to AGND11  
AGND5,  
AGND6  
to  
V
V
V
V
DDD2  
DDA5  
DDA9  
DGND1 to DGND3  
COMAB  
DDA4  
29  
55, 96  
13, 17, 23,  
40, 57, 64, 71, 83  
54, 56, 95  
3
12, 19, 20, 21,  
41, 60, 61, 72, 82  
24, 25  
26, 28  
2
8
9
2
2
27  
AUDIO BUFFER  
OUTAB  
Y
PROCESSING  
ANALOG  
OUTPUT  
Y
18  
22  
OFFSET  
PRE-  
PROCESSING  
CCD9  
to  
CCD0  
85 to 94  
10  
AND  
, C  
(PRE-  
PROCESSING)  
VDOBCVBS  
DECREF  
C
DISPLAY  
VDAC  
R
B
RGB  
TO  
UV  
RGB  
PROCESSING  
UV  
PROCESSING  
SEPARATION  
PAL/NTSC  
ENCODER  
49 to 42  
P0.7 to P0.0  
ALE  
1 to 3  
3
8
M2 to M0  
50  
MODE  
CONTROL  
AND  
CLOCK  
GENERATOR  
MEASUREMENT ENGINE  
VH  
32  
REFERENCE  
TIMING  
PSEN  
62  
P0  
XIN  
INTERNAL  
39 to 33  
7
XOSC  
63  
MICRO-  
CONTROLLER  
INTERFACE  
P3  
P4  
P2  
P1  
AD14 to AD8  
XOUT  
10  
11  
14  
15  
MICRO-  
CONTROLLER  
SCLE  
SDAE  
SCL  
59  
58  
CDACOUT  
MISCELLANEOUS  
FUNCTIONS  
PPG  
SENSOR/PREPROCESSOR TIMING AND CONTROL  
CDAC  
80C51  
RBIASCDAC  
SDA  
5, 6, 7, 8  
4
100, 99,  
KNOB3  
to  
KNOB0  
98, 97,  
84, 51,  
30, 31  
65, 66,  
67, 68,  
69, 70  
SAA8113HL  
8
6
3
4
2
79, 80,  
77, 78  
75,  
74, 76  
4
73  
81  
16, 53  
9
52  
FCE312  
T1,  
INT1  
RESET  
KNOB4 SDATA,  
SCLK,  
V1X,  
VH1X,  
V2X,  
FH1,  
FH2,  
FR  
OFDX  
BCP,  
DCP,  
FS,  
CLK1  
EA  
STROBE,  
STDBY,  
V3X,  
FCDS  
SMP,  
LED,  
VH3X,  
V4X  
OUTBVEN,  
OUTGAIN  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
7
PINNING  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
M2  
1
I
I
I
I
test mode control signal bit 2  
test mode control signal bit 1  
test mode control signal bit 0  
input connected to DSP core  
M1  
2
M0  
3
KNOB4  
KNOB3  
KNOB2  
KNOB1  
KNOB0  
RESET  
SCLE  
4
5
I/O I/O connected to internal 80C51  
I/O I/O connected to internal 80C51  
I/O I/O connected to internal 80C51  
I/O I/O connected to internal 80C51  
6
7
8
9
I
Power-on reset  
master I2C-bus clock output to control EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
O
SDAE  
I/O master I2C-bus data I/O to control EEPROM  
AGND1  
VDDA1  
I
I
I
analog ground 1 for output buffers  
analog supply voltage 1 for output buffers  
slave I2C-bus clock input  
SCL  
SDA  
I/O slave I2C-bus data I/O  
T1  
I
I
Timer 1 for internal 80C51  
VDDA2  
analog supply voltage 2 for DAC output buffer  
VDAC output buffer for CVBS signal  
analog ground 2 for DAC output buffer  
VDOBCVBS  
AGND2  
AGND3  
AGND4  
DECREF  
VDDA3  
O
I
I
analog ground 3 for analog DAC core and band gap (connected to substrate)  
analog ground 4 for analog DAC core and band gap (not connected to substrate)  
decoupled pin for reference voltage HIGH  
I
O
I
analog supply voltage 3 for analog DAC core and band gap  
microphone input audio buffer  
MICIAB  
VCOMAB  
AGND5  
OUTAB  
AGND6  
VDDA4  
I
I
common voltage for audio buffer  
I
analog ground 5 for audio buffer (not connected to substrate)  
output audio buffer  
O
I
analog ground 6 for audio buffer (connected to substrate)  
analog supply voltage 4 for audio buffer  
I
OUTBVEN  
OUTGAIN  
PSEN  
AD8  
O
O
O
O
O
O
O
O
O
O
I
output to enable the bias voltage of the microphone for the audio buffer  
output to control the gain factor of an external audio buffer  
program store enable; read strobe for external program memory (active LOW)  
address bit 8 for external program memory (PROM)  
address bit 9 for external program memory (PROM)  
address bit 10 for external program memory (PROM)  
address bit 11 for external program memory (PROM)  
address bit 12 for external program memory (PROM)  
address bit 13 for external program memory (PROM)  
address bit 14 for external program memory (PROM)  
analog supply voltage 5 for output buffers  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
VDDA5  
1999 Sep 27  
6
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
AGND7  
PIN  
I/O  
DESCRIPTION  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
I
analog ground 7 for output buffers  
P0.0  
I/O port 0 bidirectional bit 0 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 1 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 2 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 3 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 4 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 5 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 6 for external program memory data I/O (PROM)  
I/O port 0 bidirectional bit 7 for external program memory data I/O (PROM)  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
ALE  
O
O
I
address latch enable pulse for external latch  
output to drive LED  
LED  
EA  
external access select bit for internal 80C51 (active LOW)  
interrupt 1 for internal 80C51  
INT1  
I
DGND1  
VDDD1  
DGND2  
VDDA6  
RBIASCDAC  
CDACOUT  
AGND8  
AGND9  
XIN  
I
digital ground 1 for input buffers, predrivers and the digital core  
digital supply voltage 1 for input buffers, predrivers and the digital core  
digital ground 2 for input buffers, predrivers and the digital core  
analog supply voltage 6 for CDAC  
I
I
I
O
O
I
bias resistor for CDAC  
output CDAC  
analog ground 8 for CDAC  
I
analog ground 9 for 38 MHz (fundamental) crystal oscillator  
oscillator input  
I
XOUT  
VDDA7  
V1X  
O
I
oscillator output  
analog supply voltage 7 for 38 MHz (fundamental) crystal oscillator  
vertical CCD transfer pulse 1X  
O
O
O
O
O
O
I
VH1X  
V2X  
vertical CCD load pulse H1X  
vertical CCD transfer pulse 2X  
V3X  
vertical CCD transfer pulse 3X  
VH3X  
V4X  
vertical CCD load pulse H3X  
vertical CCD transfer pulse 4X  
VDDA8  
AGND10  
OFDX  
FH2  
analog supply voltage 8 for output buffers  
analog ground 10 for output buffers  
I
O
O
O
O
O
O
O
O
O
overflow drain pulse for shutter control  
horizontal CCD transfer pulse F2  
FH1  
horizontal CCD transfer pulse F1  
FR  
CCD output amplifier reset pulse (TDA8786 or TDA8784)  
CCD output level sample and hold pulse (TDA8786 or TDA8784)  
reference level sample and hold pulse (TDA8786 or TDA8784)  
black pixel clamp pulse (TDA8786 or TDA8784)  
dummy pixel clamp pulse (TDA8786 or TDA8784)  
pixel clock to preprocessor (TDA8786 or TDA8784)  
FS  
FCDS  
BCP  
DCP  
CLK1  
1999 Sep 27  
7
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
AGND11  
VDDA9  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
I
I
analog ground 11 for output buffers  
analog supply voltage 9 for output buffers  
SMP  
O
I
switch mode pulse for DC-to-DC power supply  
(preprocessed) AD-converted CCD signal bit 9  
(preprocessed) AD-converted CCD signal bit 8  
(preprocessed) AD-converted CCD signal bit 7  
(preprocessed) AD-converted CCD signal bit 6  
(preprocessed) AD-converted CCD signal bit 5  
(preprocessed) AD-converted CCD signal bit 4  
(preprocessed) AD-converted CCD signal bit 3  
(preprocessed) AD-converted CCD signal bit 2  
(preprocessed) AD-converted CCD signal bit 1  
(preprocessed) AD-converted CCD signal bit 0  
digital ground 3 for input buffers, predrivers and the digital core  
CCD9  
CCD8  
CCD7  
CCD6  
CCD5  
CCD4  
CCD3  
CCD2  
CCD1  
CCD0  
DGND3  
VDDD2  
STDBY  
STROBE  
SCLK  
I
I
I
I
I
I
I
I
I
I
I
digital supply voltage 2 for input buffers, predrivers and the digital core  
standby control output to TDA8786 or TDA8784  
strobe to TDA8786 or TDA8784  
O
O
O
O
serial clock to TDA8786 or TDA8784  
SDATA  
serial data to TDA8786 or TDA8784  
1999 Sep 27  
8
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
M2  
M1  
1
2
3
4
5
6
7
8
9
75 FH1  
74 FH2  
73 OFDX  
M0  
AGND10  
KNOB4  
KNOB3  
KNOB2  
KNOB1  
KNOB0  
RESET  
72  
71  
V
DDA8  
70 V4X  
69 VH3X  
68  
67  
V3X  
V2X  
SCLE 10  
66 VH1X  
65 V1X  
V
11  
12  
13  
SDAE  
AGND1  
64  
63  
DDA7  
XOUT  
SAA8113HL  
V
DDA1  
SCL 14  
SDA 15  
62 XIN  
AGND9  
61  
60  
59  
58  
57  
16  
17  
18  
AGND8  
T1  
V
CDACOUT  
RBIASCDAC  
DDA2  
VDOBCVBS  
V
AGND2 19  
AGND3 20  
AGND4 21  
DDA6  
56 DGND2  
V
55  
DDD1  
DECREF  
22  
23  
54 DGND1  
53 INT1  
V
DDA3  
MICIAB 24  
52  
51  
EA  
V
25  
LED  
COMAB  
FCE313  
Fig.2 Pin configuration.  
9
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8
FUNCTIONAL DESCRIPTION  
Black offset preprocessing  
advantage of the full code range. Otherwise, the black  
level is fixed by settings that are downloaded through the  
serial interface.  
8.1  
The CCD signal contains additional pixels outside the  
active window, which are used to measure the reference  
black level. These pixels are located in the optical black  
window, whose position can be set through the serial  
interface. The optical black level can be adjusted by the  
microcontroller in order to proceed rapidly. In this case, the  
microcontroller directly adjusts the analog preprocessing  
clamp included in the TDA8786 or TDA8784 and takes  
8.2  
Y, CR and CB separation  
For each pixel value, this block (see Fig.3) generates the  
three components: the luminance signal Y and the two  
colour signals CR (2R G) and CB (2B G). Two line  
memories are required for this function. This block also  
provides vertical contour and white clip information.  
LINE  
Y
MEMORY  
C
R
RGB  
COLOUR  
C
B
LINE  
MEMORY  
SEPARATION  
white clip  
Y
CCD inputs  
10  
vertical contour  
FCE314  
Fig.3 Y, CR and CB separation diagram.  
1999 Sep 27  
10  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8.3  
RGB processing  
Separate gain controls for R and B signals dedicated to  
white balance control. The colour temperature can be  
adjusted independently of the colour matrix.  
The RGB processing (see Fig.4) includes several features:  
Colour space matrix to handle different types of colour  
sensors. The result is an optimum colour reproduction  
through the minimization of colour errors. The default  
matrix coefficients (positive or negative) can be adjusted  
through an external interface.  
Knee function (compression factor and knee point are  
adjustable).  
Adjustable gamma function to compensate for the  
non-linearity of display devices.  
Separate and adjustable black offsets for  
R, G and B signals.  
The RGB path has a reduced bandwidth (less than  
1 MHz), which is required for CVBS output.  
R
R
black  
gain  
LPF  
LPF  
LPF  
KNEE  
KNEE  
KNEE  
GAMMA  
GAMMA  
Y
R
R
G
B
+
×
G
black  
COLOUR  
MATRIX  
C
+
B
B
black  
gain  
GAMMA  
C
+
×
B
FCE315  
Fig.4 RGB processing diagram.  
1999 Sep 27  
11  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8.4  
Y processing  
Black offset  
Pre-gain control to adjust the Y signal with respect to the  
gamma range  
The separate Y processing (see Fig.5) includes the  
following features:  
Knee function (compression factor and knee point are  
adjustable)  
Saturation concealment to reduce the typical saturation  
distortion  
Adjustable gamma function  
Gain control.  
Contour processing to improve picture sharpness  
Noise reduction  
CONTOUR PROCESSING  
AND  
NOISE REDUCTION  
Y
vertical contour  
Y
Y
Y
Y
gain  
black  
pre-gain  
SATURATION  
CONCEALMENT  
KNEE  
GAMMA  
Y
+
+
×
×
FCE316  
Fig.5 Y processing diagram.  
8.5  
RGB to UV conversion  
8.7  
Display function  
After R, G and B processing, the data path is converted to  
U and V signals (see Fig.1). As a result of the reduced  
bandwidth, the Y signal is only used as an input for control  
loop purposes (measurement engine).  
As an optional feature and for software debugging, it is  
possible to visualize:  
Eight display bars (assigned via the microcontroller)  
Several measurement engine inputs.  
8.6  
UV processing  
The chrominance processing consists of a noise reduction  
by coring and the UV gain control.  
1999 Sep 27  
12  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8.8  
Analog output processing  
twice the pixel clock and digitally prefiltered to keep the  
external analog filter simple. The block also contains an  
adjustable luminance clipper.  
The analog output processing (see Fig.6) contains a  
PAL/NTSC encoder to transform the YUV data path to the  
CVBS output. The YUV input signals are up-sampled to  
Y
C
Y
U
V
PAL/NTSC  
ENCODER  
VDOBCVBS  
VDAC  
MIX  
FCE317  
sync, blank, scaling, levels  
Fig.6 Analog output processing.  
8.9  
Measurement engine  
8.10 VH reference and window timing and control  
The measurement engine performs data measurements  
on a field basis to get inputs for the AE and AWB control  
loops of the microcontroller. Up to 16 programmable  
windows can be used for the measurement. There are two  
down-samplers to prepare the data for two separate  
accumulators. It is possible to proceed with eight different  
measurements per field (odd and even fields separately).  
An internal RAM workspace is used for data handling  
operation.  
This block generates internal control signals for different  
purposes:  
Vertical, horizontal and field references (VD, HD and FI)  
for PAL or NTSC sensors  
Specification of the active window and the optical black  
window  
Specification of the measurement window grid with  
respect to the active window  
Specification of the vertical position of the display bars,  
see Section 8.7.  
All these specifications can be controlled through the serial  
interface.  
1999 Sep 27  
13  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8.11 Pulse pattern generator  
The PPG is dedicated to the medium resolution sensors  
with complementary mosaic colour filters (512 × 492  
NTSC and 512 × 582 PAL) described in Table 1.  
Figs. 11 and 12 show the PPG outputs.  
The PPG generates timing pulses (Figs. 7 to 10) for  
driving the CCD sensor (including the vertical driver) and  
pulses for the preprocessor TDA8786 or TDA8784  
(correlated double sampling and black clamping).  
Table 1 Medium resolution CCD sensors driven by the internal PPG; note 1  
BRAND FORMAT  
TYPE  
SHARP  
PAL 1/4”  
LZ2423A  
NTSC 1/4”  
PAL 1/5”  
LZ2413A  
LZ2523  
NTSC 1/5”  
PAL 1/4”  
LZ2513  
TOSHIBA  
TCD5391AP  
TCD5381AP  
LZ2425  
NTSC 1/4”  
PAL 1/4”  
SHARP low voltage  
PANASONIC  
NTSC 1/4”  
PAL 1/4”  
LZ2415  
MN37210FP  
MN37201FP  
MN37110FP  
MN37101FP  
PAL 1/4”  
NTSC 1/4”  
NTSC 1/4”  
Note  
1. All sensors are used with the vertical driver: NEC µPD16510.  
The PPG includes special features:  
A charge reset is possible in every active line during the horizontal line blanking and multiple times during the vertical  
blanking  
A fast shutter interface is available.  
1999 Sep 27  
14  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
4 × f  
pixel  
XIN  
FH1  
FH2  
FCDS  
FS_narrow  
FS_wide  
FR_wide  
FR_narrow  
delay (typ. 7 ns)  
delay (typ. 7 ns)  
FR_narrow_delayed  
FR_wide_delayed  
FCE318  
Fig.7 High speed pulse timing (CCD sensor and preprocessor).  
15  
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
NTSC line 17  
PAL line 19  
NTSC line 18  
PAL line 20  
HD  
V1X  
V2X  
V3X  
V4X  
VH1X  
VH3X  
NTSC line 279  
PAL line 331  
NTSC line 280  
PAL line 332  
HD  
V1X  
V2X  
V3X  
V4X  
VH1X  
VH3X  
FCE319  
Fig.8 SHARP and TOSHIBA CCD sensors/vertical drivers.  
1999 Sep 27  
16  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
NTSC line 17  
PAL line 19  
NTSC line 18  
PAL line 20  
HD  
V1X  
V2X  
V3X  
V4X  
VH3X  
NTSC line 279  
PAL line 331  
NTSC line 280  
PAL line 332  
HD  
V1X  
V2X  
V3X  
V4X  
VH3X  
FCE320  
Fig.9 SHARP low-voltage CCD sensors/vertical drivers.  
1999 Sep 27  
17  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
NTSC line 17  
PAL line 19  
NTSC line 18  
PAL line 20  
HD  
V1X  
V2X  
V3X  
V4X  
VH1X  
VH3X  
OFDX  
NTSC line 279  
PAL line 331  
NTSC line 280  
PAL line 332  
HD  
V1X  
V2X  
V3X  
V4X  
VH1X  
VH3X  
OFDX  
FCE321  
Fig.10 PANASONIC CCD sensors/vertical drivers.  
18  
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
HD  
V1X  
V2X  
V3X  
V4X  
OFDX  
BCP  
DCP  
FCE322  
Fig.11 SHARP, all types, PPG output.  
HD  
V1X  
V2X  
V3X  
V4X  
OFDX  
BCP  
DCP  
FCE323  
Fig.12 PANASONIC PPG output.  
19  
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
8.12 Miscellaneous functions  
A 3-wire serial bus transfers the settings from the  
microcontroller to the preprocessor (TDA8786 or  
TDA8784).  
Power consumption: it is possible to switch the DSP off  
without switching off the microcontroller.  
Oscillator frequency: a 7-bit CDAC tunes the oscillator  
frequency according to the external quartz frequency to  
guarantee the typical value of 38 MHz.  
8.13 Mode control  
This block controls the operational modes of the  
SAA8113HL: application or test modes, see Table 2. For a  
smooth adaptability, it is possible to bypass the main  
modules.  
The control digital value is downloaded through the  
serial interface.  
Table 2 Mode control  
M2  
0
M1  
0
M0  
0
EA  
MODE  
EA; note 1 application mode  
0
0
1
0
application mode with bypassed PPG  
application mode with bypassed microcontroller  
application mode with bypassed PPG and microcontroller  
0
1
0
0
1
1
Note  
1. EA can be high or low, according to the application (high is for internal ROM access, low for external access).  
8.14 Microcontroller  
The microcontroller includes the following features:  
16 kbyte internal ROM  
The embedded microcontroller is basically an 80C654  
core (80C51 family) with four ports. Its functionality is  
standard, except that the core has no clock divided by 2  
and the ports are dedicated input, output or I/O ports.  
Ports P0 and P2 are available for connection to a  
debugger or to an external program EPROM. The  
microcontroller controls the AOB, the AE and the AWB  
loops and downloads the settings for the DSP registers  
from EEPROM at power-up or reset. Table 3 lists the  
80C51 Standard Function Registers.  
256 byte RAM  
Hardware I2C-bus interface for communication with  
external microcontroller: SDA and SCL  
Software I2C-bus interface for communication with  
external EEPROM containing DSP settings: SDAE and  
SCLE  
Four I/O pins which can be used as human interface  
(knobs): P1.0, P1.1, P1.2 and P1.3.  
1999 Sep 27  
20  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 3 80C51 Standard Function Registers  
SFR  
NAME  
SFR  
ADDRESS  
DATA DATA DATA DATA DATA DATA DATA DATA  
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
DESCRIPTION  
B
B register  
accumulator  
SIADR serial interface address  
F0H  
E0H  
DBH  
DAH  
D9H  
D8H  
D0H  
C7H  
B8H  
B0H  
A8H  
A0H  
90H  
8DH  
8CH  
8BH  
8AH  
89H  
88H  
87H  
83H  
82H  
81H  
80H  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ACC  
ACC7 ACC6 ACC5 ACC4 ACC3 ACC2 ACC1 ACC0  
SA6  
SD7  
ST7  
SA5  
SD6  
ST6  
SA4  
SD5  
ST5  
STA  
F0  
SA3  
SD4  
ST4  
STO  
RS1  
SA2  
SD3  
ST3  
SI  
SA1  
SD2  
0
SA0  
SD1  
0
GC  
SD0  
0
SIDAT  
SISTA  
serial interface data  
serial interface status  
SICON serial interface control  
CR2 ENS1  
AA  
CR1  
CR0  
P
PSW  
P4  
program status word  
port 4  
CY  
AC  
RS0  
OV  
STBY  
PX0  
CRST  
EX0  
AD8  
P1.0  
IP  
interrupt priority  
port 3  
IP6  
IP5  
T1  
IP4  
T0  
PT1  
INT1  
ET1  
PX1  
INT0  
EX1  
PT0  
FI  
P3  
RDN WRN  
EA IE6  
IE  
interrupt enable  
port 2  
IE5  
IE4  
ET0  
AD9  
P1.1  
P2  
AD15 AD14 AD13 AD12 AD11 AD10  
P1  
port 1  
SDA  
SCL SDAE SCLE P1.3  
P1.2  
TH1  
TH0  
TL1  
TL0  
timer HIGH 1  
timer HIGH 0  
timer LOW 1  
timer LOW 0  
TMOD timer mode  
TCON timer control  
PCON power control  
GATE  
TF1  
C/T  
TR1  
M1  
TF0  
M0  
TR0  
Gate  
IE1  
C/T  
IT1  
M1  
IE0  
PD  
M0  
IT0  
IDL  
DPH  
DPL  
SP  
data pointer HIGH  
data pointer LOW  
stack pointer  
port 0  
SP7  
AD7  
SP6  
AD6  
SP5  
AD5  
SP4  
AD4  
SP3  
AD3  
SP2  
AD2  
SP1  
AD1  
SP0  
AD0  
P0  
8.16 I2C-bus interface  
Table 4 gives the command list of the I2C-bus interface.  
8.15 Audio amplifier  
An analog audio amplifier is integrated in the SAA8113HL.  
Its gain can be adjusted between a high (45 dB typical)  
and a low (13 dB typical) value through the serial interface.  
1999 Sep 27  
21  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 4 Command list  
ADD  
NAME  
CONTROL0  
FUNCTION  
see Table 5 for explanation  
FORMAT  
RANGE  
0
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
6 bits  
6 bits  
4 bits  
4 bits  
byte  
4 bits  
4 bits  
6 bits  
2 bits  
byte  
n.a.  
1
CONTROL1  
see Table 7 for explanation  
n.a.  
2
CONTROL2  
see Table 8 for explanation  
n.a.  
3
OB_STARTL_F0  
OB_STARTL_F1  
OB_STARTP  
OB_PE_F0  
first line optical black window in field 0  
first line optical black window in field 1  
first pixel optical black window  
fixed optical black level for even pixel in field 0  
fixed optical black level for odd pixel in field 0  
fixed optical black level for even pixel in field 1  
fixed optical black level for odd pixel in field 1  
colour matrix coefficient p11  
colour matrix coefficient p12  
colour matrix coefficient p13  
colour matrix coefficient p21  
colour matrix coefficient p22  
colour matrix coefficient p23  
colour matrix coefficient p31  
colour matrix coefficient p32  
colour matrix coefficient p33  
fixed R-black level offset  
[0 to 255]  
4
256 + [0 to 255]  
[0 to 255]  
5
6
[0 to 127]  
7
OB_PO_F0  
[0 to 127]  
8
OB_PE_F1  
[0 to 127]  
9
OB_PO_F1  
[0 to 127]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
COL_MAT_P11  
COL_MAT_P12  
COL_MAT_P13  
COL_MAT_P21  
COL_MAT_P22  
COL_MAT_P23  
COL_MAT_P31  
COL_MAT_P32  
COL_MAT_P33  
R_BLACK  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]/16  
[128 to 127]  
[128 to 127]  
[128 to 127]  
[0 to 255]/128  
[0 to 255]/64  
[0 to 255]  
G_BLACK  
fixed G-black level offset  
B_BLACK  
fixed B-black level offset  
COL_MAT_RGAIN  
COL_MAT_BGAIN  
THR_LUM  
colour matrix R-gain factor  
colour matrix B-gain factor  
threshold luminance for fader  
threshold colour for fader  
THR_COLOR  
Y_BLACK  
[0 to 255]  
fixed Y-black level offset  
[128 to 127]  
[0 to 255]/128  
[0 to 255]  
K1  
gain correction for Y path  
RGB_KNEE_OFFSET  
Y_KNEE_OFFSET  
offset for RGB knee  
offset for Y knee  
[0 to 255]  
RGB_GAMMA_BALANCE gamma multiplication factor (for RGB data path)  
[0 to 63]/64  
[0 to 63]/64  
[0 to 7]/8  
Y_GAMMA_BALANCE  
KCOMB  
gamma multiplication factor (for Y data path)  
vertical contour comb filter coefficient (MS)  
vertical contour gain (LS)  
VCGAIN  
[0 to 15]/16  
[0 to 255]/2  
[0 to 15]/16  
[0 to 15]/16  
[0 to 63]  
33  
34  
CLDLEV  
contour level dependency level  
horizontal contour BPF low gain (LS)  
horizontal contour BPF high gain (MS)  
contour noise coring level  
HCLGAIN  
HCHGAIN  
CNCLEV  
35  
36  
37  
CONGAIN  
VU_VALUE 1  
contour gain factor; see Table 9  
length of VU_Bar 1  
[0 to 63]/16  
2 × [0 to 255]  
1999 Sep 27  
22  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
ADD  
NAME  
VU_VALUE 2  
FUNCTION  
FORMAT  
RANGE  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
length of VU_Bar 2  
length of VU_Bar 3  
length of VU_Bar 4  
length of VU_Bar 5  
length of VU_Bar 6  
length of VU_Bar 7  
length of VU_Bar 8  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
6 bits  
6 bits  
byte  
4 bits  
byte  
byte  
byte  
2 × [0 to 255]  
2 × [0 to 255]  
2 × [0 to 255]  
2 × [0 to 255]  
2 × [0 to 255]  
2 × [0 to 255]  
2 × [0 to 255]  
4 × [0 to 255]  
[0 to 255]/4  
[0 to 255]/4  
[0 to 255]/128  
[0 to 255]/128  
[0 to 255]/128  
[0 to 255]  
VU_VALUE 3  
VU_VALUE 4  
VU_VALUE 5  
VU_VALUE 6  
VU_VALUE 7  
VU_VALUE 8  
Y_DISPLAY_OFFSET  
UNCLEV  
display offset (to be used with D_Contour)  
U (chrominance) noise coring level  
V (chrominance) noise coring level  
Y (luminance) gain factor  
VNCLEV  
YGAIN  
UGAIN  
U (B-Y) gain factor  
VGAIN  
V (R-Y) gain factor  
CTR_UPD_LINE  
BURST_LEVEL  
A
number of line for DB-update control registers  
burst level colour burst  
[0 to 255]  
AWB_A (Measurement Engine)  
AWB_B (Measurement Engine)  
AWB_C (Measurement Engine)  
AWB_D (Measurement Engine)  
AWB_E (Measurement Engine)  
AWB_F (Measurement Engine)  
highlight threshold (Measurement Engine)  
ME sync + ME result scale (ME); see Table 10  
control bits for display function; see Table 11  
luminance display level in display function  
[128 to 127]/128  
[128 to 127]/128  
[128 to 127]/128  
[128 to 127]/128  
[0 to 63]  
B
C
D
E
F
[0 to 63]  
HIGHLIGHTTHR  
ME_RESSCALE  
DISP_CNTRL  
YDISPLEV  
DMWSEL  
[0 to 255]  
n.a.  
n.a.  
[0 to 255]  
display measurement window select;  
see Table 13  
n.a.  
64  
65  
66  
ANA_WHITECLIP  
PRE_SI_LSB  
white clip limiter level for analog outputs  
control data for analog processing  
byte  
byte  
256 + [0 to 255]  
[0 to 255]  
PRE_SI_MSB  
control data and address for analog processing;  
see Table 14  
5 bits  
[0 to 63]  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
SMP_CNTRL  
CDAC_DATA  
BLANKLEV  
control for switch mode power supply  
CDAC data (7-bit); see Table 15  
blanking level in analog output  
setup level in analog output  
control compensation delay w.r.t. preprocessing  
B clamp pulse start  
byte  
7 bits  
byte  
byte  
4 bits  
byte  
byte  
byte  
byte  
byte  
[0 to 255]  
[0 to 127]  
[0 to 255]  
[0 to 255]  
[0 to 15]  
BL-SETUP  
PRE_PROC_DEL  
BCP_START  
BCP_STOP  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
B clamp pulse stop  
DCP_START  
DCP_STOP  
D clamp pulse start  
D clamp pulse stop  
EE_CONTROL_LSB  
E Exposure LSB  
1999 Sep 27  
23  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
ADD  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
NAME  
EE_CONTROL_MSB  
MISC_CONTROL  
FPIX_ACT  
FUNCTION  
FORMAT  
RANGE  
[0 to 255]  
[0 to 31]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
n.a.  
E Exposure MSB  
byte  
5 bits  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
5 bits  
miscellaneous control bits; see Table 16  
number of first active pixel on a line  
number of last active pixel on a line  
number of first active line in field 0  
number of last active line in field 0  
number of first active line in field 1  
number of last active line in field 1  
MSBs of active line numbers; see Table 17  
LPIX_ACT_LSB  
FLINE_ACT_F0  
LLINE_ACT_F0  
FLINE_ACT_F1  
LLINE_ACT_F1  
ACT_LINES_MSB  
PPG_POL_SEL  
select polarity of the PPG output signals;  
see Table 18  
128 ME_DPCC_A0_H_F1  
129 ME_DPCC_A0_L_F1  
130 ME_DPCC_B0_H_F1  
131 ME_DPCC_B0_L_F1  
132 ME_DPCC_A1_H_F1  
133 ME_DPCC_A1_L_F1  
134 ME_DPCC_B1_H_F1  
135 ME_DPCC_B1_L_F1  
136 ME_DPCC_A2_H_F1  
137 ME_DPCC_A2_L_F1  
138 ME_DPCC_B2_H_F1  
139 ME_DPCC_B2_L_F1  
140 ME_DPCC_A3_H_F1  
141 ME_DPCC_A3_L_F1  
142 ME_DPCC_B3_H_F1  
143 ME_DPCC_B3_L_F1  
144 ME_DPCC_A0_H_F2  
145 ME_DPCC_A0_L_F2  
146 ME_DPCC_B0_H_F2  
147 ME_DPCC_B0_L_F2  
148 ME_DPCC_A1_H_F2  
149 ME_DPCC_A1_L_F2  
150 ME_DPCC_B1_H_F2  
151 ME_DPCC_B1_L_F2  
152 ME_DPCC_A2_H_F2  
153 ME_DPCC_A2_L_F2  
154 ME_DPCC_B2_H_F2  
155 ME_DPCC_B2_L_F2  
156 ME_DPCC_A3_H_F2  
157 ME_DPCC_A3_L_F2  
ME data path control code A 0_H field 1  
ME data path control code A 0_L field 1  
ME data path control code B 0_H field 1  
ME data path control code B 0_L field 1  
ME data path control code A 1_H field 1  
ME data path control code A 1_L field 1  
ME data path control code B 1_H field 1  
ME data path control code B 1_L field 1  
ME data path control code A 2_H field 1  
ME data path control code A 2_L field 1  
ME data path control code B 2_H field 1  
ME data path control code B 2_L field 1  
ME data path control code A 3_H field 1  
ME data path control code A 3_L field 1  
ME data path control code B 3_H field 1  
ME data path control code B 3_L field 1  
ME data path control code A 0_H field 2  
ME data path control code A 0_L field 2  
ME data path control code B 0_H field 2  
ME data path control code B 0_L field 2  
ME data path control code A 1_H field 2  
ME data path control code A 1_L field 2  
ME data path control code B 1_H field 2  
ME data path control code B 1_L field 2  
ME data path control code A 2_H field 2  
ME data path control code A 2_L field 2  
ME data path control code B 2_H field 2  
ME data path control code B 2_L field 2  
ME data path control code A 3_H field 2  
ME data path control code A 3_L field 2  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
1999 Sep 27  
24  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
ADD  
NAME  
FUNCTION  
FORMAT  
RANGE  
158 ME_DPCC_B3_H_F2  
159 ME_DPCC_B3_L_F2  
160 ME_RES_A0_H  
ME data path control code B 3_H field 2  
ME data path control code B 3_L field 2  
ME data path result accuA 0_H  
ME data path result accuA 0_L  
ME data path result accuB 0_H  
ME data path result accuB 0_L  
ME data path result accuA 1_H  
ME data path result accuA 1_L  
ME data path result accuB 1_H  
ME data path result accuB 1_L  
ME data path result accuA 2_H  
ME data path result accuA 2_L  
ME data path result accuB 2_H  
ME data path result accuB 2_L  
ME data path result accuA 3_H  
ME data path result accuA 3_L  
ME data path result accuB 3_H  
ME data path result accuB 3_L  
ME data path sub-result accuA 0_H  
ME data path sub-result accuA 0_L  
ME data path sub-result accuB 0_H  
ME data path sub-result accuB 0_L  
ME data path sub-result accuA 1_H  
ME data path sub-result accuA 1_L  
ME data path sub-result accuB 1_H  
ME data path sub-result accuB 1_L  
ME data path sub-result accuA 2_H  
ME data path sub-result accuA 2_L  
ME data path sub-result accuB 2_H  
ME data path sub-result accuB 2_L  
ME data path sub-result accuA 3_H  
ME data path sub-result accuA 3_L  
ME data path sub-result accuB 3_H  
ME data path sub-result accuB 3_L  
simple window 0 (Vstart, Hstart)  
simple window 0 (Vstop, Hstop)  
simple window 1 (Vstart, Hstart)  
simple window 1 (Vstop, Hstop)  
simple window 2 (Vstart, Hstart)  
simple window 2 (Vstop, Hstop)  
simple window 3 (Vstart, Hstart)  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 15]  
161 ME_RES_A0_L  
162 ME_RES_B0_H  
163 ME_RES_B0_L  
164 ME_RES_A1_H  
165 ME_RES_A1_L  
166 ME_RES_B1_H  
167 ME_RES_B1_L  
168 ME_RES_A2_H  
169 ME_RES_A2_L  
170 ME_RES_B2_H  
171 ME_RES_B2_L  
172 ME_RES_A3_H  
173 ME_RES_A3_L  
174 ME_RES_B3_H  
175 ME_RES_B3_L  
176 ME_SUBRES_A0_H  
177 ME_SUBRES_A0_L  
178 ME_SUBRES_B0_H  
179 ME_SUBRES_B0_L  
180 ME_SUBRES_A1_H  
181 ME_SUBRES_A1_L  
182 ME_SUBRES_B1_H  
183 ME_SUBRES_B1_L  
184 ME_SUBRES_A2_H  
185 ME_SUBRES_A2_L  
186 ME_SUBRES_B2_H  
187 ME_SUBRES_B2_L  
188 ME_SUBRES_A3_H  
189 ME_SUBRES_A3_L  
190 ME_SUBRES_B3_H  
191 ME_SUBRES_B3_L  
192 ME_WIN_START_0  
193 ME_WIN_STOP_0  
194 ME_WIN_START_1  
195 ME_WIN_STOP_1  
196 ME_WIN_START_2  
197 ME_WIN_STOP_2  
198 ME_WIN_START_3  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
1999 Sep 27  
25  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
ADD  
NAME  
FUNCTION  
FORMAT  
RANGE  
199 ME_WIN_STOP_3  
200 ME_WIN_START_4  
201 ME_WIN_STOP_4  
202 ME_WIN_START_5  
203 ME_WIN_STOP_5  
204 ME_WIN_START_6  
205 ME_WIN_STOP_6  
206 ME_WIN_START_7  
207 ME_WIN_STOP_7  
208 ME_WIN_START_8  
209 ME_WIN_STOP_8  
210 ME_WIN_START_9  
211 ME_WIN_STOP_9  
212 ME_WIN_START_10  
213 ME_WIN_STOP_10  
214 ME_WIN_START_11  
215 ME_WIN_STOP_11  
216 ME_WIN_START_12  
218 ME_WIN_STOP_12  
219 ME_WIN_START_13  
220 ME_WIN_STOP_13  
221 ME_WIN_START_14  
222 ME_WIN_STOP_14  
223 ME_RAM_DUMMY_H  
simple window 3 (Vstop, Hstop)  
simple window 4 (Vstart, Hstart)  
simple window 4 (Vstop, Hstop)  
simple window 5 (Vstart, Hstart)  
simple window 5 (Vstop, Hstop)  
simple window 6 (Vstart, Hstart)  
simple window 6 (Vstop, Hstop)  
simple window 7 (Vstart, Hstart)  
simple window 7 (Vstop, Hstop)  
simple window 8 (Vstart, Hstart)  
simple window 8 (Vstop, Hstop)  
simple window 9 (Vstart, Hstart)  
simple window 9 (Vstop, Hstop)  
simple window 10 (Vstart, Hstart)  
simple window 10 (Vstop, Hstop)  
simple window 11 (Vstart, Hstart)  
simple window 11 (Vstop, Hstop)  
simple window 12 (Vstart, Hstart)  
simple window 12 (Vstop, Hstop)  
simple window 13 (Vstart, Hstart)  
simple window 13 (Vstop, Hstop)  
simple window 14 (Vstart, Hstart)  
simple window 14 (Vstop, Hstop)  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
4 bits  
byte  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
[0 to 15]  
n.a.  
dummy read/write (additional RAM storage for  
80C51)  
224 ME_RAM_DUMMY_L  
dummy read/write (additional RAM storage for  
80C51)  
byte  
n.a.  
225 HIGHLIGHTCOUNT_H  
226 HIGHLIGHTCOUNT_L  
227 AWBCOUNT_H  
highlight counter H  
highlight counter L  
AWB counter H  
AWB counter L  
byte  
byte  
byte  
byte  
byte  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 255]  
[0 to 127]  
228 AWBCOUNT_L  
229 ME_OB_PO_F0  
measured optical black pixel odd field 0;  
see Table 19  
230 ME_OB_PE_F0  
231 ME_OB_PO_F1  
232 ME_OB_PE_F1  
measured optical black pixel even field 0;  
see Table 20  
byte  
byte  
byte  
[0 to 127]  
[0 to 127]  
[0 to 127]  
measured optical black pixel odd field 1;  
see Table 21  
measured optical black pixel even field 1;  
see Table 22  
254 DUMMY_READ  
255 DUMMY_WRITE  
dummy read  
dummy write  
byte  
byte  
[0 to 255]  
[0 to 255]  
1999 Sep 27  
26  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 5 Register details: address 0 CONTROL0  
BIT  
NAME  
FUNCTION  
CONTROL0.0  
CONTROL0.1  
CONTROL0.2  
CONTROL0.3  
CONTROL0.4  
CONTROL0.5  
CONTROL0.6  
CONTROL0.7  
not used  
RGB_KNEE_K  
RGB_KNEE_K  
PIX_PHASE  
compression factor for RGB_KNEE; see Table 6  
compression factor for RGB_KNEE; see Table 6  
toggle phase for pixel in colour separation  
toggle phase for line in colour separation  
toggle colour filter structure (interline)  
not used  
LINE_PHASE  
INTERLINE_PHASE  
not used  
Table 6 Truth table for bits CONTROL0.1 and CONTROL0.2  
BIT NUMBER  
COMPRESSION FACTOR  
2
1
0
0
1
1
0
1
0
1
1/8  
1/4  
3/8  
1/2  
Table 7 Register details: address 1 CONTROL1  
BIT  
NAME  
FR_WIDE  
FUNCTION  
CONTROL1.0  
CONTROL1.1  
CONTROL1.2  
CONTROL1.3  
CONTROL1.4  
CONTROL1.5  
CONTROL1.6  
CONTROL1.7  
FR wide/narrow  
FR_SHIFT  
FS_WIDE  
FR shifted/unshifted  
FS wide/narrow  
DUALPOWER  
SHARP  
SHARP dual power/other sensor select  
SHARP/PANASONIC sensor select  
choose between PAL/NTSC  
PAL_NTSC  
BCP_MODE  
CP_TOGGLE  
select BCP mode 1/0  
carrier phase toggle/not toggle  
Table 8 Register details: address 2 CONTROL2  
BIT  
NAME  
CATCH_CCD  
FUNCTION  
catch CCD data/normal operation  
high frequency enhancer bypass/active  
CONTROL2.0  
CONTROL2.1  
CONTROL2.2  
CONTROL2.3  
CONTROL2.4  
CONTROL2.5  
CONTROL2.6  
CONTROL2.7  
HFE_BYPASS  
Y_TEST  
select y_test from RGB2(Y)UV instead of Yon/off  
chrominance modulator bypass/active  
scale chrominance with factor 2 on/off  
select as luminance input (F0) Yae/yn  
switch vertical contour LPF on/off  
MOD_BYPASS  
DOUBLE_C  
Y_SEL  
VCONTOUR_LPF  
FADER IMPL  
select fader implementation n1/n2  
1999 Sep 27  
27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 9 Register details: address 36 CONGAIN  
NAME  
FUNCTION  
FUNCTION  
CONGAIN.0 to CONGAIN.5  
CONGAIN.6  
contour gain factor (0 to 63/16)  
contour gain fading off/on  
Table 10 Register details: address 60 ME_RESSCALE  
NAME  
ME_RESSCALE.0 to ME_RESSCALE.2 ME result scaler selection (0, 2, 4, 8 and 16)  
MECNTRL.3 ME synchronization (synchronize field/frame toggle of Measurement  
Engine)  
Table 11 Register details: address 61 DISP_CNTRL  
NAME  
FUNCTION  
DISP_CNTRL.0 and DISP_CNTRL.1  
DISP_CNTRL.2 and DISP_CNTRL.3  
DISP_CNTRL.4  
V display level  
U display level  
contrast reduction/level insertion  
DISP_CNTRL.5 to DISP_CNTRL.7  
display signal selection code; see Table 12  
Table 12 Truth table for bits DISP_CNTRL5 to DISP_CNTRL7]  
BIT NUMBER  
SELECT CODE  
7
6
5
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
X
no display  
D_VU  
D_WC  
D_AWBVAL  
D_HIGHLIGHT  
D_MWG  
D_CONTOUR  
Table 13 Register details: address 63 DMWSEL  
NAME  
FUNCTION  
display measurement window A for line 0  
display measurement window B for line 0  
DMWSEL.0  
DMWSEL.1  
DMWSEL.2  
DMWSEL.3  
DMWSEL.4  
DMWSEL.5  
DMWSEL.6  
DMWSEL.7  
display measurement window A for line 1  
display measurement window B for line 1  
display measurement window A for line 2  
display measurement window B for line 2  
display measurement window A for line 3  
display measurement window B for line 3  
1999 Sep 27  
28  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 14 Register details: address 66 PRE_SI_MSB  
NAME  
FUNCTION  
PRE_SI_MSB.0 and PRE_SI_MSB.1  
PRE_SI_MSB.2 to PRE_SI_MSB.4  
control data bits d8 and d9  
control address bits a0 to a2  
Table 15 Register details: address 68 CDAC_DATA  
NAME  
FUNCTION  
FUNCTION  
CDAC_DATA.0 to CDAC_DATA.6  
CDAC data bits 0 to 6  
Table 16 Register details: address 78 MISC_CONTROL  
NAME  
MISC_CONTROL.0  
LED off/on  
MISC_CONTROL.1  
audio on/off  
MISC_CONTROL.2  
audio gain low (13 dB), high (45 dB)  
select 1 kmode (output impedance)  
standby on/off  
MISC_CONTROL.3  
MISC_CONTROL.4  
MISC_CONTROL.5 to MISC_CONTROL.7  
reserved for miscellaneous additional functions  
Table 17 Register details: address 85 ACT_LINES_MSB  
NAME  
FUNCTION  
ACT_LINES_MSB.0 and ACT_LINES_MSB.1 bits 8 and 9 for last active pixel number on a line  
ACT_LINES_MSB.2 and ACT_LINES_MSB.3 bits 8 and 9 for last active line number in field 0  
ACT_LINES_MSB.4 and ACT_LINES_MSB.5 bits 8 and 9 for first active line number in field 1/frame  
ACT_LINES_MSB.6 and ACT_LINES_MSB.7 bits 8 and 9 for last active line number in field 1/frame  
Table 18 Register details: address 86 PPG_POL_SEL  
Name  
FUNCTION  
PPG_POL_SEL.0  
PPG_POL_SEL.1  
PPG_POL_SEL.2  
PPG_POL_SEL.3  
PPG_POL_SEL.4  
select polarity of PPG output FR as inverted/non-inverted  
select polarity of PPG output FS as inverted/non-inverted  
select polarity of PPG output FCDS as inverted/non-inverted  
select polarity of PPG output FH1 as inverted/non-inverted  
select polarity of PPG output FH2 as inverted/non-inverted  
Table 19 Register details: address 229 ME_OB_PO_F0  
FUNCTION  
CCD_CATCH = 0  
NAME BIT NO  
CCD_CATCH = 1  
CCD2 to CCD8  
CCD9  
ME_OB_PO_F0.0 to ME_OB_PO_F0.6  
ME_OB_PO_F0.7  
ME_OB_PO_F00 to ME_OB_PO_F06  
0
1999 Sep 27  
29  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
Table 20 Register details: address 230 ME_OB_PE_F0  
FUNCTION  
NAME BIT NO  
CCD_CATCH = 0  
CCD_CATCH = 1  
ME_OB_PE_F0.0 and ME_OB_PE_F0.1  
ME_OB_PE_F0.2 to ME_OB_PE_F0.6  
ME_OB_PE_F0.7  
ME_OB_PE_F00 and ME_OB_PE_F01  
ME_OB_PE_F02 to ME_OB_PE_F06  
KNOB4  
CCD0 and CCD1  
0
Table 21 Register details: address 231 ME_OB_PO_F1  
FUNCTION  
NAME BIT NO  
CCD_CATCH = 0  
CCD_CATCH = 1  
ME_OB_PO_F1.0 to ME_OB_PO_F1.6  
ME_OB_PO_F1.7  
ME_OB_PO_F16 to ME_OB_PO_F10  
0
‘undefined’  
Table 22 Register details: address 232 ME_OB_PE_F1  
FUNCTION  
CCD_CATCH = 01  
NAME BIT NO  
CCD_CATCH = 1  
ME_OB_PE_F1.0 to ME_OB_PE_F1.6  
ME_OB_PE_F1.7  
ME_OB_PE_F16 to ME_OB_PE_F10  
0
‘undefined’  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134); note 1 unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS MIN.  
MAX.  
+4.0  
UNIT  
VDDDn  
digital supply voltages 1 and 2 for input buffer and  
pre-drivers  
0.5  
V
VDDAn  
analog supply voltages 1, 5, 8 and 9 for output buffers  
analog supply voltage 2 for DAC output buffer  
analog supply voltage 3 for analog DAC core and band gap  
analog supply voltage 4 for audio buffer  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
V
V
V
V
V
V
V
V
V
V
VDDA2  
VDDA3  
VDDA4  
VDDA6  
analog supply voltage 6 for CDAC  
VDDA7  
analog supply voltage 7 for 38 MHz crystal oscillator  
digital grounds 1, 2, and 3 for input buffer and predrivers  
analog grounds 1, 7, 10 and 11 for output buffers  
analog ground 2 for DAC output buffer  
DGNDn  
AGNDn  
AGND2  
AGND3  
analog ground 3 for analog DAC core and band gap,  
connected to substrate  
AGND4  
analog ground 4 for analog DAC core and band gap, not  
connected to substrate  
0.5  
+4.0  
V
AGND6  
AGND5  
AGND8  
AGND9  
analog ground 6 for audio buffer connected to substrate  
analog ground 5 for audio buffer not connected to substrate  
analog ground 8 for CDAC  
0.5  
0.5  
0.5  
0.5  
+4.0  
+4.0  
+4.0  
+4.0  
V
V
V
V
analog ground 9 for 38 MHz crystal oscillator  
1999 Sep 27  
30  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
PARAMETER  
CONDITIONS MIN.  
MAX.  
UNIT  
VI, VO  
input or output voltage  
0.5  
VDD + 0.5 V  
note 2  
0.5  
55  
0
+5.5  
+150  
70  
V
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
°C  
°C  
°C  
40  
+125  
Notes  
1. Stress beyond these levels may cause permanent damage to the device.  
2. For 5 V-tolerant buffers.  
10 THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
56  
K/W  
11 OPERATING CHARACTERISTICS  
VDDD = VDDA = 3.3 V ±10%; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
General supplies  
VDDD  
VDDA  
DGND  
AGND  
IDDD  
digital supply voltage  
analog supply voltage  
3.0  
3.0  
3.3  
3.3  
0.0  
0.0  
45  
3.6  
V
3.6  
+0.3  
+0.3  
V
digital ground  
0.3  
0.3  
V
analog ground  
V
digital supply current  
analog supply current  
ambient temperature  
Tamb = 25 °C  
Tamb = 25 °C  
mA  
mA  
°C  
IDDA  
15  
Tamb  
0
25  
70  
Data and control inputs or I/Os (CCD9 to CCD0, M2 to M0, KNOB4 to KNOB0, RESET, EA, T1, INT1 and  
P0.7 to P0.0)  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
0.2VDDD  
V
V
0.8VDDD  
Data and control outputs or I/Os (SMP, LED, OUTBVEN, OUTGAIN, SDATA, SCLK, SDAE, SCLE, STROBE,  
STNDBY, FR, OFDX, AD14 to AD8 and P0.7 to P0.0)  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
0
0.4  
V
V
0.85VDDD  
VDDD  
Control outputs (FH1, FH2, FS, FCDS and CLK1)  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
note 1  
note1  
0.8  
V
V
2.2  
Control outputs (V1X, V2X, V3X, V4X, VH1X and VH3X)  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
notes 2 and 3  
notes 2 and 3  
0.8  
V
V
2.6  
1999 Sep 27  
31  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Control outputs (BCP and DCP)  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
0.6  
V
2.2  
V
Switch Mode Pulse for DC-to-DC power supply (SMP)  
IO output current  
Output to drive the LED (LED)  
3
5
mA  
mA  
IO  
output current  
Notes  
1. Connected to HCT (lab resources) with VIH(min) = 2.0 V and VIL(max) = 0.8 V.  
2. Connected to NEC µPD16510 with VIH(min) = 0.8VDD and VIL(max) = 0.3VDD  
.
3. Connected to ACT/HCT (lab resources) with VIH(min) = 2.0 V and VIL(max) = 0.8 V.  
12 ELECTRICAL CHARACTERISTICS  
VDDD = VDDA = 3.3 V ±10%; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
PARAMETERS  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
CDAC specifications  
LOAD  
RL  
CL  
load resistance  
load capacitance  
10  
kΩ  
100  
pF  
TRANSFER FUNCTION  
VO  
DC output voltage  
DC output voltage  
at code ‘0’  
0.00  
0.05  
V
at code ‘127’  
V
DDD 0.2 VDDD 0.12 VDDD  
V
RES  
DNL  
INL  
CR  
BA  
resolution  
7
bit  
differential non-linearity  
integral non-linearity  
conversion rate  
1/2  
1
LSB  
LSB  
Hz  
Hz  
60  
60  
analog bandwidth  
output resistance  
Ro  
13  
SWITCHING CHARACTERISTICS ON RISING FULL-SCALE STEP  
tPD  
tst1  
propagation delay time  
settling time  
to 50% value  
75  
ns  
ns  
10% to 90%  
full-scale  
120  
tst2  
settling time  
to ±1 LSB  
156  
ns  
1999 Sep 27  
32  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
PARAMETERS  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDAC specifications  
LOAD  
RL  
load resistance  
with high  
0.8  
1
kΩ  
impedance  
(1 kmode)  
CL  
load capacitance  
with high  
5
pF  
impedance  
(1 kmode)  
TRANSFER FUNCTION  
Vo(0)  
DC output voltage at code ‘0’  
DC output voltage at code ‘436’  
0.15  
1.45  
1.15  
0.212  
1.55  
0.30  
1.75  
1.6  
V
V
V
Vo(436)  
VRL(p-p)  
output voltage (436 to 0)  
(peak-to-peak value)  
note 1  
1.288  
RES  
DNL  
INL  
CR  
resolution  
9
bit  
1
differential non-linearity  
integral non-linearity  
conversion rate  
LSB  
LSB  
MHz  
MHz  
MHz  
dB  
2
1
19  
19  
6.5  
46  
50  
2
fCLK  
BA  
clock frequency  
analog bandwidth  
signal-to-noise ratio  
total harmonic distortion  
output resistance  
S/N  
THD  
Ro  
dynamic  
43  
42  
3
dB  
SWITCHING CHARACTERISTICS ON RISING FULL-SCALE STEP  
tPD  
tst1  
propagation delay time  
settling time  
to 50% value  
13  
15  
ns  
ns  
10% to 90%  
full-scale  
tst2  
settling time  
to ±1 LSB  
50  
ns  
Audio amplifier specifications  
LOAD  
RL  
CL  
load resistance  
5
kΩ  
load capacitance  
5
pF  
TRANSFER FUNCTION  
Vi(p-p)  
A1  
nominal input level (peak-to-peak value)  
5.6  
mV  
dB  
amplification at high level  
43  
141.2  
11  
3.5  
44.8  
173.7  
12.5  
4.2  
47  
223.8  
14  
5.0  
A2  
amplification at low level  
dB  
V
VOH(p-p)  
nominal output level at high level  
(peak-to-peak value)  
0.97  
1999 Sep 27  
33  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
PARAMETERS  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VOL(rms)  
nominal output level at high level  
(RMS value)  
0.34  
23.5  
8.3  
V
Vo2(p-p)  
Vo2(rms)  
nominal output level at low level  
(peak-to-peak value)  
mV  
mV  
nominal output level at low level  
(RMS value)  
Vo(max)(p-p) maximum output level (peak-to-peak value)  
2
V
S/N  
THD  
Zi  
signal-to-noise ratio  
40  
dB  
dB  
kΩ  
total harmonic distortion at high level  
input impedance  
60  
50  
5
Zo  
output impedance  
100  
20  
B-3 dB  
frequency range (3 dB)  
0.1  
kHz  
BIASSING  
Iref  
reference current  
25  
µA  
Data input/output timing; (see Fig.13)  
DATA INPUTS RELATED TO XIN (CCD9 TO CCD0 AND KNOB4)  
tsu(i)(D)  
th(i)(D)  
data input setup time  
data input hold time  
note 2  
note 2  
9.5  
ns  
ns  
10.5  
DATA OUTPUTS RELATED TO XIN (OUTBVEN, OUTGAIN, SMP, LED, SDATA, SCLK, STROBE AND STNDBY)  
th(o)(D)  
td(o)(D)  
data output delay time  
data output hold time  
note 2  
note 2  
5
3
7
ns  
ns  
5.5  
PPG high speed pulse timing; CL = 10 pF (see Fig.14)  
td1  
FH2 fall time delay w.r.t. the rising edge of  
FH1  
3  
3  
0
0
+3  
+3  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td2  
FH2 rise time delay w.r.t. the falling edge of  
FH1  
0
td3  
FR fall time delay w.r.t. the rising edge of  
FH1  
1
td3_delayed  
td4_wide  
td4_narrow  
td5  
FR_delayed fall time delay w.r.t. the rising  
edge of FH1  
7
8
10  
3
FCDS fall time delay w.r.t. the rising edge of  
FR_wide  
1
2
FCDS fall time delay w.r.t. the rising edge of  
FR_narrow  
14  
0
15  
1
16  
2
FH1 fall time delay w.r.t. the rising edge of  
FCDS  
td6_wide  
td6_narrow  
td7  
FH1 rise time delay w.r.t. the rising edge of  
FS_wide  
0
1
2
FH1 rise time delay w.r.t. the rising edge of  
FS_narrow  
14  
0
15  
1
16  
2
CLK1 fall time delay w.r.t. the rising edge of  
FH1  
1999 Sep 27  
34  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
SYMBOL  
td8  
PARAMETERS  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
CLK1 rise time delay w.r.t. the falling edge of  
FH1  
0
1
2
ns  
twFH1  
trFH1  
FH1 pulse width  
FH1 rise time  
53  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tfFH1  
FH1 fall time  
4
twFH2  
trFH2  
FH2 pulse width  
FH2 rise time  
53  
4
tfFH2  
FH2 fall time  
4
twFR_wide  
FR_wide pulse width  
26  
13  
4
twFR_narrow FR_narrow pulse width  
trFR  
FR rise time  
tfFR  
FR fall time  
4
twFCDS  
trFCDS  
tfFCDS  
twFS_wide  
twFS_narrow  
trFS  
FCDS pulse width  
FCDS rise time  
FCDS fall time  
FS_wide pulse width  
FS_narrow pulse width  
FS rise time  
26  
4
4
40  
26  
4
tfFS  
FS fall time  
4
twCLK1  
CLK1 pulse width  
53  
Notes  
1. Full code swing of colour bar with maximum headroom of 16.4%. Above code ‘436’, the DAC works but the settling  
time will decrease gradually.  
2. The internal clock signal used in the DSP core is derived from XIN: XIN divided by 4.  
1999 Sep 27  
35  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
t
t
r
f
90%  
90%  
XIN  
50%  
10%  
10%  
t
t
h(i)(D)  
su(i)(D)  
data input  
t
t
d(o)(D)  
h(o)(D)  
90%  
10%  
90%  
10%  
data output  
FCE324  
Fig.13 Data input/output timing.  
1999 Sep 27  
36  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
t
wFH1  
50%  
d1  
50%  
50%  
FH1  
FH2  
t
t
d2  
50%  
50%  
t
wFH2  
50%  
FCDS  
t
t
wFS  
t
t
d6_wide  
wFCDS  
d5  
FS_wide  
FS_narrow  
t
d6_narrow  
t
d3  
t
t
wFR  
d4_wide  
50%  
t
FR_wide  
d4_narrow  
50%  
FR_narrow  
t
d3_delayed  
50%  
FR_wide_delayed  
FR_narrow_delayed  
CLK1  
50%  
t
t
d7  
d8  
50%  
50%  
t
wCLK1  
FCE325  
Fig.14 PPG high speed pulse timing diagram.  
37  
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
13 APPLICATION INFORMATION  
SAA8113HL  
analog  
preprocessing  
optics  
CCD sensor  
CDS,  
AGC  
AND  
ADC  
PAL/NTSC  
(medium  
resolution)  
DIGITAL  
SIGNAL  
PROCESSING  
analog  
(CVBS)  
LPF  
VDAC  
PREPROCESSING,  
parallel  
interface  
TIMING AND  
CONTROL  
program  
PROM  
DRIVERS  
SENSOR,  
TIMING AND  
CONTROL  
serial  
interface  
settings  
EEPROM  
MODE CONTROL  
AND  
CLOCK GENERATOR  
MICRO-  
CONTROLLER  
2
I C-bus  
interface  
80C51  
CDAC  
HUMAN INTERFACE  
AUDIO AMPLIFIER  
FCE326  
Fig.15 Application block diagram.  
38  
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
14 PACKAGE OUTLINE  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
L
pin 1 index  
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.20 1.5  
0.05 1.3  
0.28 0.18 14.1 14.1  
0.16 0.12 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT407-1  
1999 Sep 27  
39  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
15 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
15.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
15.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
15.4 Manual soldering  
15.3 Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Sep 27  
40  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
15.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Sep 27  
41  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
16 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
17 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1999 Sep 27  
42  
Philips Semiconductors  
Preliminary specification  
Digital PC-camera signal processor  
SAA8113HL  
NOTES  
1999 Sep 27  
43  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545006/25/01/pp44  
Date of release: 1999 Sep 27  
Document order number: 9397 750 04816  

相关型号:

SAA8113HL/C101

IC SPECIALTY CONSUMER CIRCUIT, PQFP100, PLASTIC, SOT-407, QFP-100, Consumer IC:Other
NXP

SAA8115HL

Digital camera USB interface
NXP

SAA8116

Digital PC-camera signal processor including microcontroller and USB interface
NXP

SAA8116ET

Digital PC-camera signal processor including microcontroller and USB interface
NXP

SAA8116HL

Digital PC-camera signal processor, microcontroller andUSB interface
NXP

SAA8117HL

Digital camera USB interface IC
NXP

SAA8122

Digital Still Camera
NXP

SAA8122A

Digital Still Camera Processor ImagIC family
NXP

SAA8122AEL

Digital Still Camera Processor ImagIC family
NXP

SAA8122E

Digital Still Camera
NXP

SAA8122E/C1

Digital Still Camera
NXP

SAA8200HL

Ensation Base integrated wireless audio baseband
NXP