MMBF0201NLT3 [ONSEMI]

300mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB, PLASTIC, CASE 318-08, 3 PIN;
MMBF0201NLT3
型号: MMBF0201NLT3
厂家: ONSEMI    ONSEMI
描述:

300mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB, PLASTIC, CASE 318-08, 3 PIN

文件: 总6页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBF0201NLT1/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
N–CHANNEL  
ENHANCEMENT–MODE  
TMOS MOSFET  
Part of the GreenLine Portfolio of devices with energy–con-  
serving traits.  
r
= 1.0 OHM  
DS(on)  
These miniature surface mount MOSFETs utilize Motorola’s High  
Cell Density, HDTMOS process. Low r  
assures minimal  
DS(on)  
power loss and conserves energy, making this device ideal for use  
in small power management circuitry. Typical applications are  
dc–dc converters, power management in portable and battery–  
powered products such as computers, printers, PCMCIA cards,  
cellular and cordless telephones.  
3
3 DRAIN  
1
2
CASE 318–08, Style 21  
SOT–23 (TO–236AB)  
Low r  
Provides Higher Efficiency and Extends Battery Life  
Miniature SOT–23 Surface Mount Package Saves Board Space  
DS(on)  
1
GATE  
2 SOURCE  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
Drain–to–Source Voltage  
Symbol  
V
Value  
20  
Unit  
Vdc  
Vdc  
DSS  
Gate–to–Source Voltage — Continuous  
V
GS  
± 20  
Drain Current — Continuous @ T = 25°C  
I
I
300  
240  
750  
mAdc  
A
D
D
Drain Current — Continuous @ T = 70°C  
A
Drain Current — Pulsed Drain Current (t 10 µs)  
I
p
DM  
(1)  
Total Power Dissipation @ T = 25°C  
P
225  
– 55 to 150  
556  
mW  
°C  
A
D
Operating and Storage Temperature Range  
Thermal Resistance — Junction–to–Ambient  
T , T  
J
stg  
R
°C/W  
°C  
θJA  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
260  
L
DEVICE MARKING  
N1  
(1) Mounted on G10/FR4 glass epoxy board using minimum recommended footprint.  
ORDERING INFORMATION  
Device  
Reel Size  
Tape Width  
Quantity  
3000  
MMBF0201NLT1  
MMBF0201NLT3  
7″  
12 mm embossed tape  
12 mm embossed tape  
13″  
10,000  
GreenLine is a trademark of Motorola, Inc.  
HDTMOS is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Thermal Clad is a registered trademark of the Berquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1997
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
V
20  
Vdc  
(BR)DSS  
(V  
GS  
= 0 Vdc, I = 10 µA)  
D
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
(V  
DS  
(V  
DS  
= 16 Vdc, V  
= 16 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 125°C)  
1.0  
10  
GS  
GS  
J
Gate–Body Leakage Current (V  
GS  
= ± 20 Vdc, V  
= 0)  
I
±100  
nAdc  
DS  
GSS  
(1)  
ON CHARACTERISTICS  
Gate Threshold Voltage  
V
1.0  
1.7  
2.4  
Vdc  
GS(th)  
(V  
DS  
= V , I = 250 µAdc)  
GS  
D
Static Drain–to–Source On–Resistance  
r
Ohms  
DS(on)  
(V  
GS  
(V  
GS  
= 10 Vdc, I = 300 mAdc)  
0.75  
1.0  
1.0  
1.4  
D
= 4.5 Vdc, I = 100 mAdc)  
D
Forward Transconductance (V  
= 10 Vdc, I = 200 mAdc)  
g
FS  
450  
mMhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
(V  
DS  
(V  
DS  
DG  
= 5.0 V)  
= 5.0 V)  
= 5.0 V)  
C
45  
25  
iss  
Output Capacitance  
C
oss  
Transfer Capacitance  
(V  
C
5.0  
rss  
(2)  
SWITCHING CHARACTERISTICS  
Turn–On Delay Time  
t
2.5  
2.5  
ns  
d(on)  
Rise Time  
t
r
(V  
DD  
= 15 Vdc, I = 300 mAdc,  
D
R
= 50 )  
L
Turn–Off Delay Time  
Fall Time  
t
15  
d(off)  
t
f
0.8  
Gate Charge (See Figure 5)  
Q
1400  
pC  
A
T
SOURCE–DRAIN DIODE CHARACTERISTICS  
Continuous Current  
I
S
0.3  
0.75  
Pulsed Current  
I
SM  
(2)  
Forward Voltage  
V
0.85  
V
SD  
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
0.4  
V
= 5 V  
GS  
V
= 4 V  
GS  
V
= 10, 9, 8, 7, 6 V  
GS  
125°C  
55°C  
0.2  
0
25°  
C
V
= 3 V  
GS  
0
0
1
2
3
4
5
6
0
0.3  
V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
0.6  
0.9  
1.2  
1.4  
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. Transfer Characteristics  
Figure 2. On–Region Characteristics  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2.4  
2.0  
1.5  
1.0  
0.5  
V
= 4.5 V  
GS  
V
= 10 V  
GS  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
5
10  
15  
20  
I
, DRAIN CURRENT (AMPS)  
V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
D
Figure 3. On–Resistance versus Drain Current  
Figure 4. On–Resistance versus  
Gate–to–Source Voltage  
16  
14  
12  
10  
8
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
I
= 250 µA  
D
V
= 16 V  
DS  
= 300 mA  
I
D
6
4
2
0
–25  
0
25  
50  
75  
100  
125  
150  
0
160  
450  
2000  
3400  
Q , TOTAL GATE CHARGE (pC)  
g
TEMPERATURE (°C)  
Figure 5. Gate Charge  
Figure 6. Threshold Voltage Variance  
Over Temperature  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
100  
V
= 10 V @ 300 mA  
GS  
80  
60  
40  
20  
0
V
= 4.5 V @ 100 mA  
GS  
C
iss  
C
oss  
C
rss  
0.6  
–50  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
0
5
10  
15  
20  
T , JUNCTION TEMPERATURE (  
°
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
J
DS  
Figure 7. On–Resistance versus  
Junction Temperature  
Figure 8. Capacitance  
10  
1.0  
0.1  
125°C  
25°C  
55°C  
0.01  
0.001  
0
0.3  
0.6  
0.9  
1.2  
1.4  
SOURCE–TO–DRAIN FORWARD VOLTAGE (VOLTS)  
Figure 9. Source–to–Drain Forward Voltage  
versus Continuous Current (I )  
S
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
drain pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
case is 225 milliwatts.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 21:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
This device has a class 1 ESD rating.  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBF0201NLT1/D  

相关型号:

MMBF0202PLT1

Power MOSFET 300 mAmps, 20 Volts
ONSEMI

MMBF0202PLT1

P-CHANNEL ENHANCEMENT-MODE TMOS MOSFET
MOTOROLA

MMBF0202PLT1G

300mA, 20V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236, LEAD FREE, CASE 318-08, 3 PIN
ONSEMI

MMBF0202PLT3

300mA, 20V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
MOTOROLA

MMBF102

N-Channel RF Amplifier
FAIRCHILD

MMBF112L

Transistor
MOTOROLA

MMBF1374T1

50mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, SC-70, 3 PIN
ONSEMI

MMBF1374T1

50mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, SC-70, 3 PIN
ROCHESTER

MMBF170

N 沟道增强型场效应晶体管
ONSEMI

MMBF170

N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR
DIODES

MMBF170

N-Channel Enhancement Mode Field Effect Transistor
FAIRCHILD

MMBF170

0.5A, 60V N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR
UTC