NCV84090DR2G [ONSEMI]

Self Protected Very Low Iq High Side Driver with Analog Current Sense;
NCV84090DR2G
型号: NCV84090DR2G
厂家: ONSEMI    ONSEMI
描述:

Self Protected Very Low Iq High Side Driver with Analog Current Sense

文件: 总28页 (文件大小:547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
High Side Driver, Self  
Protected, Very Low Iq,  
with Analog Current Sense  
8
1
SOIC8  
CASE 751  
STYLE 11  
NCV84090  
The NCV84090 is a fully protected single channel high side driver  
that can be used to switch a wide variety of loads, such as bulbs,  
solenoids, and other actuators. The device incorporates advanced  
protection features such as active inrush current management,  
overtemperature shutdown with automatic restart and an overvoltage  
active clamp. A dedicated Current Sense pin provides precision analog  
current monitoring of the output as well as fault indication of short to  
MARKING DIAGRAM  
8
84090  
AYWWG  
G
1
84090 = Specific Device Code  
V , short circuit to ground and ON and OFF state open load detection.  
D
A
Y
WW  
G
= Assembly Location  
= Year  
= Work Week  
An active high Current Sense Enable pin allows all diagnostic and  
current sense features to be enabled.  
= PbFree Package  
Features  
(Note: Microdot may be in either location)  
Short Circuit Protection with Inrush Current Management  
CMOS (3 V / 5 V) Compatible Control Input  
Very Low Standby Current  
PIN CONNECTIONS  
Very Low Current Sense Leakage  
Proportional Load Current Sense  
Current Sense Enable  
1
VD  
IN  
CS_EN  
GND  
OUT  
OUT  
VD  
Off State Open Load Detection  
CS  
Output Short to V Detection  
D
(Top View)  
Overload and Short to Ground Indication  
Thermal Shutdown with Automatic Restart  
Undervoltage Shutdown  
ORDERING INFORMATION  
Integrated Clamp for Inductive Switching  
Device  
NCV84090DR2G  
Package  
Shipping  
Loss of Ground and Loss of V Protection  
D
SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
ESD Protection  
Reverse Battery Protection with External Components  
AECQ100 Grade 1 Qualified and PPAP Capable  
This is a PbFree Device  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Typical Applications  
Switch a Variety of Resistive, Inductive and Capacitive Loads  
Can Replace Electromechanical Relays and Discrete Circuits  
Automotive / Industrial  
FEATURE SUMMARY  
Max Supply Voltage  
V
V
41  
4 to 28  
90  
V
V
D
Operating Voltage Range  
D
R
(typical) T = 25°C  
R
mW  
A
DSon  
J
ON  
lim  
Output Current Limit (typical)  
I
24  
OFFstate Supply Current (max)  
I
0.5  
mA  
D(off)  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
December, 2021 Rev. 0  
NCV84090/D  
NCV84090  
Block Diagram & Pin Configuration  
VD  
Overvoltage  
Protection  
Undervoltage  
Protection  
IN  
Output  
Clamping  
Regulated  
Charge Pump  
CS_  
EN  
Current Limit  
Overtemperature  
and  
Power Protection  
OFF State Open  
Load Detection  
Analog Fault  
OUT  
Control  
Logic  
CS  
Current  
Sense  
GND  
Figure 1. Block Diagram  
Table 1. SO8 PACKAGE PIN DESCRIPTION  
Pin #  
Symbol  
IN  
Description  
Logic Level Input  
1
2
3
4
5
6
7
8
CS_EN  
GND  
CS  
Current Sense Enable  
Ground  
Analog Current Sense Output  
Supply Voltage  
Output  
V
D
OUT  
OUT  
Output  
V
D
Supply Voltage  
www.onsemi.com  
2
NCV84090  
ID  
VDS  
IIN  
VD  
IN  
IOUT  
OUT  
ICS  
CS  
IDEN  
VD  
CS_EN  
V
IN  
VOUT  
GND  
VCS  
VCS_EN  
IGND  
Figure 2. Voltage and Current Conventions  
Table 2. Connection suggestions for unused and or unconnected pins  
Connection  
Floating  
Input  
Output  
X
Current Sense  
Current Sense Enable  
X
X
Not Allowed  
To Ground  
Through 10 kΩ resistor  
Not Allowed  
Through 1 kΩ Resistor  
Through 10 kΩ resistor  
IN  
CS_EN  
GND  
CS  
1
2
8
7
VD  
OUT  
6
5
3
4
OUT  
VD  
Figure 3. Pin Configuration (top view)  
www.onsemi.com  
3
NCV84090  
ELECTRICAL SPECIFICATIONS  
Table 3. MAXIMUM RATINGS  
Value  
Min  
0.3  
Max  
41  
Rating  
Symbol  
Unit  
V
DC Supply Voltage  
V
D
Max Transient Supply Voltage (Note 1)  
Load Dump Suppresses  
V
PEAK  
45  
V
Input Voltage  
V
10  
5  
10  
V
mA  
mA  
A
IN  
Input Current  
I
IN  
5
200  
Reverse Ground Pin Current  
Output Current (Note 2)  
Reverse CS Current (Note 1)  
CS Voltage  
I
GND  
I
6  
Internally Limited  
200  
OUT  
I
mA  
V
CS  
V
CS  
V 41  
D
V
D
CS_EN Voltage  
V
10  
5  
10  
5
V
CS_EN  
CS_EN  
CS_EN Current  
I
mA  
W
Power Dissipation Tc = 25°C (Note 6)  
Electrostatic Discharge (Note 3)  
P
tot  
1.95  
V
DC  
ESD  
(HBM Model 100 pF / 1500 W)  
Input  
4
4
4
4
4
kV  
kV  
kV  
kV  
kV  
Current Sense  
Current Sense Enable  
Output  
V
D
Charge Device Model  
CDMAECQ100011  
750  
V
+Single Pulse Inductive Load Switching Energy  
E
AS  
81  
mJ  
(L = 5 mH, Vbat = 13.5 V; I = 4.8 A, T  
= 150°C (Note 4)  
L
Jstart  
Operating Junction Temperature  
Storage Temperature  
T
40  
55  
+150  
+150  
°C  
°C  
J
T
storage  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Load Dump Test B (with centralized load dump suppression) according to ISO167502 standard. Guaranteed by design. Not tested in  
production. Passed Class C (or A, B) according to ISO167501.  
2. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (JS0012017)  
Field Induced Charge Device Model ESD characterization is not performed on plastic molded packages with body sizes smaller than  
2 x 2 mm due to the inability of a small package body to acquire and retain enough charge to meet the minimum CDM discharge current  
waveform characteristic defined in JEDEC JS0022018  
4. Not subjected to production testing.  
Table 4. THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Max. Value  
Units  
Thermal Resistance  
°C / W  
JunctiontoLead (Note 5)  
JunctiontoAmbient (Note 5)  
JunctiontoAmbient (Note 6)  
R
R
R
27.3  
50  
64  
thJL  
thJA  
thJA  
2
5. 645 mm pad size, mounted on fourlayer 2s2p PCB FR4, 2 oz. Cu thickness for top layer and 1 oz. Cu thickness for inner layers (planes  
not electrically connected)  
2
6. 2 cm pad size, mounted on singlelayer 2s0p PCB FR4, 2 oz. Cu thickness (planes not electrically connected)  
www.onsemi.com  
4
 
NCV84090  
ELECTRICAL CHARACTERISTICS (7 V 28 V; 40°C < T < 150°C unless otherwise specified)  
D
J
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
Table 5. POWER  
Value  
Min  
4
Typ  
Max  
28  
4
Rating  
Symbol  
Conditions  
Unit  
V
Operating Supply Voltage  
Undervoltage Shutdown  
V
D
V
3.5  
0.4  
V
UV  
UV_hyst  
Undervoltage Shutdown  
Hysteresis  
V
V
On Resistance  
R
I
= 2.5 A, T = 25°C  
90  
mW  
ON  
OUT  
J
I
= 2.5 A, T = 150°C  
180  
144  
0.5  
OUT  
J
I
= 2.5 A, V = 4.5 V, T = 25°C  
OUT  
D
J
Supply Current (Note 7)  
I
0.2  
mA  
mA  
OFFstate: VD = 13 V,  
= V = 0 V, T = 25°C  
D
V
IN  
OUT  
J
0.2  
0.5  
3
OFFstate: VD = 13 V,  
= V = 0 V, T = 85°C (Note 8)  
V
IN  
OUT  
J
mA  
OFFstate: VD = 13 V,  
= V = 0 V, T = 125°C  
V
IN  
OUT  
J
1.9  
3.5  
6
mA  
mA  
mA  
ONstate: VD = 13 V,  
= 5 V, I = 0 A  
V
IN  
OUT  
On State Ground Current  
Output Leakage Current  
I
V
= 13 V, V  
= 5 V  
GND(ON)  
D
CS_EN  
OUT  
V
IN  
= 5 V, I  
= 1 A  
I
V
= V  
= 0 V, V = 13 V, T = 25°C  
0.5  
3
L
IN  
OUT  
OUT  
D
J
V
= V  
= 0 V, V = 13 V, T = 125°C  
IN  
D
J
7. Includes PowerMOS leakage current.  
8. Not Subject to production testing.  
Table 6. LOGIC INPUTS (V = 13.5 V; 40°C T 150°C)  
D
J
Value  
Typ  
Min  
Max  
0.9  
Rating  
Input Voltage Low  
Input Current Low  
Input Voltage High  
Input Current High  
Input Hysteresis Voltage  
Input Clamp Voltage  
Symbol  
Conditions  
Unit  
V
V
in_low  
I
V
V
= 0.9 V  
= 2.1 V  
= 1 mA  
1
mA  
V
in_low  
in  
V
2.1  
in_high  
in_high  
I
10  
mA  
V
in  
V
in_hyst  
0.2  
13  
13  
V
in_cl  
I
in  
12  
14  
14  
12  
0.9  
V
I
in  
= 1 mA  
CS_EN Voltage Low  
CS_EN Current Low  
CS_EN Voltage High  
CS_EN Current High  
CS_EN Hysteresis Voltage  
CS_EN Clamp Voltage  
V
_
V
mA  
V
CSE low  
I
_
V
V
= 0.9 V  
= 2.1 V  
= 1 mA  
1
CSE low  
CS_EN  
CS_EN  
CS_EN  
V
_
2.1  
CSE high  
I
10  
mA  
V
CSE_high  
V
_
0.2  
13  
13  
CSE Hys  
V
_
I
12  
14  
14  
12  
V
CSE cl  
I
= 1 mA  
CS_EN  
www.onsemi.com  
5
 
NCV84090  
Table 7. SWITCHING CHARACTERISTICS (Note 11) (V = 13. V, 40°C < T < 150°C)  
D
J
Value  
Typ  
70  
Min  
Max  
Rating  
Symbol  
Conditions  
high to 20% Vout, V = 13 V,  
Unit  
TurnOn Delay Time  
t
V
in  
5
120  
ms  
d_on  
D
R = 6.5 W, T = 25°C  
L
J
TurnOff Delay Time  
Slew Rate On  
t
V
low to 80% Vout, V = 13 V, R = 6.5 W,  
5
0.1  
0.1  
40  
0.27  
0.35  
0.15  
0.15  
100  
0.7  
ms  
V / ms  
V / ms  
mJ  
d_off  
in  
D
L
T = 25°C  
J
dV /dt  
out on  
20% to 80% Vout, V = 13 V, R = 6.5 W,  
D L  
T = 25°C  
J
Slew Rate Off  
dV /dt  
out off  
80% to 20% Vout, V = 13 V, R = 6.5 W,  
0.7  
D
L
T = 25°C  
J
TurnOn Switching Loss  
(Note 9)  
E
V
D
V
D
V
D
= 13 V, R = 6.5 W  
0.22  
0.22  
50  
on  
off  
L
TurnOff Switching Loss  
(Note 9)  
E
= 13 V, R = 6.5 W  
mJ  
L
Differential Pulse Skew, (t  
t
= 13 V, R = 6.5 W  
50  
ms  
OFF  
skew  
L
t
) see Figure 4  
ON  
9. Not subjected to production testing.  
Table 8. OUTPUT DIODE CHARACTERISTICS  
Value  
Typ  
Min  
Max  
Rating  
Forward Voltage  
Symbol  
Conditions  
Unit  
V
F
I
= 1 A, V = V  
VD, T = 150°C  
0.7  
V
out  
F
OUT  
J
Table 9. PROTECTION FUNCTIONS (Note 10) (7 V 18 V, 40°C < T < 150°C)  
D
J
Value  
Typ  
Min  
Max  
Rating  
Symbol  
Conditions  
Unit  
Temperature Shutdown  
(Note 11)  
T
SD  
150  
175  
200  
°C  
Temperature Shutdown  
Hysteresis (Note 11)  
T
7
°C  
SD_hyst  
Reset Temperature (Note 11)  
T
T
+1  
T
+7  
°C  
°C  
R
RS  
RS  
Thermal Reset of Status  
(Note 11)  
T
RS  
135  
Delta T Temperature Limit  
(Note 11)  
T
T = 40°C, V = 13 V  
60  
°C  
DELTA  
J
D
DC Output Current Limit  
I
V
= 13 V  
16  
24  
32  
32  
A
A
A
limH  
D
4 V < V < 18 V  
D
Short Circuit Current Limit dur-  
ing Thermal Cycling (Note 11)  
I
V
D
= 13 V  
8
limTCycling  
T
< Tj < T  
R
TSD  
Switch Off Output Clamp Voltage  
Overvoltage Protection  
V
I
= 0.5 A, V = 0 V, L = 20 mH  
V
D
41  
V
D
46  
V 52  
D
V
V
out_clamp  
out  
in  
V
OV  
V
in  
= 0 V, I = 20 mA  
41  
46  
20  
52  
D
Output Voltage Drop Limitation  
V
I
= 0.2 A, T = 40°C to 150°C  
mV  
DS_ON  
out  
J
10.To ensure long term reliability during overload or short circuit conditions, protection and related diagnostic signals must be used together  
with a fitting hardware & software strategy. If the device operates under abnormal conditions, this hardware & software solution must limit  
the duration and number of activation cycles.  
11. Not subjected to production testing.  
www.onsemi.com  
6
 
NCV84090  
Table 10. OPENLOAD DETECTION (7 V 18 V, 40°C < T < 150°C)  
D
J
Value  
Typ  
Min  
Max  
Rating  
Symbol  
Conditions  
Unit  
Openload Off State Detection  
V
OL  
V
in  
= 0 V, V = 5 V  
CS_EN  
2
4
V
Threshold  
Openload Detection Delay at  
Turn Off  
t
100  
350  
850  
ms  
d_OL_off  
Off State Output Current  
I
V
= 0 V, V  
= V  
OL  
3  
3
mA  
ms  
OLOFF1  
in  
OUT  
Output rising edge to CS rising  
edge during open load  
t
V
= 4 V, V = 0 V  
5
30  
d_OL  
OUT  
in  
V
CS  
= 90% of V  
CS_High  
www.onsemi.com  
7
NCV84090  
Table 11. CURRENT SENSE CHARACTERISTICS (7 V 18 V, 40°C < T < 150°C)  
D
J
Value  
typ  
min  
435  
400  
20  
max  
1250  
1200  
15  
Rating  
Current Sense Ratio  
Current Sense Ratio  
Symbol  
Conditions  
= 0.01 A, V = 0.5 V, V  
Unit  
K
I
= 5 V  
= 5 V  
0
1
out  
CS  
CS_EN  
K
I
= 0.025 A, V = 0.5 V, V  
800  
out  
CS  
CS_EN  
Current Sense Ratio Drift  
(Note 13)  
DK / K  
I
= 0.025 A, V = 5 V  
CS_EN  
%
%
%
%
1
1
2
3
4
5
out  
Current Sense Ratio  
K
I
= 0.35 A, V = 4V, V = 5 V  
CS_EN  
450  
750  
1000  
15  
2
out  
CS  
Current Sense Ratio Drift  
(Note 13)  
DK / K  
I
= 0.35 A, V = 5 V  
CS_EN  
15  
2
out  
Current Sense Ratio  
K
3
I
= 0.5 A, V = 4 V, V = 5 V  
CS_EN  
530  
750  
950  
10  
out  
CS  
Current Sense Ratio Drift  
(Note 13)  
DK / K  
I
= 0.5 A, V = 5 V  
CS_EN  
15  
3
out  
Current Sense Ratio  
K
4
I
I
= 1 A, V = 4 V, V  
CS_EN  
= 5 V  
= 5 V  
625  
750  
835  
10  
out  
out  
CS  
Current Sense Ratio Drift  
(Note 13)  
DK / K  
I
= 1 A, V = 5 V  
CS_EN  
10  
4
out  
Current Sense Ratio  
K
5
= 3 A, V = 4 V, V  
690  
750  
775  
5
CS  
CS_EN  
Current Sense Ratio Drift  
(Note 13)  
DK / K  
I
= 3 A, V = 5 V  
CS_EN  
5  
%
5
out  
Current Sense Leakage Current  
CS  
I
= 0 A, V = 0 V  
5
7
3
1
2
mA  
Ilkg  
out  
CS  
V
V
= 5 V, V = 0 V  
CS_EN  
IN  
I
= 0 A, V = 0 V  
CS  
out  
CS_EN  
= 5 V, V = 5 V  
IN  
I
= 2 A, V = 0 V  
0.5  
7
out  
CS  
V
= 0 V, V = 5 V,  
CS_EN  
IN  
CS Max Voltage  
CS  
V
= 7 V, V = 5 V, R = 15 kW,  
OUT  
V
V
Max  
D
IN  
CS  
CS_EN  
I
= 2 A, V  
= 5 V  
Current Sense Voltage in Fault  
Condition (Note 12)  
V
V
= 13 V, V = 0 V, R = 1 kW,  
OUT  
10  
20  
CS_fault  
CS_fault  
OUT_sat  
D
IN  
CS  
CS_EN  
V
= 4 V, V  
= 5 V  
Current Sense Current in Fault  
Condition (Note 12)  
I
V
= 13 V, V = 5 V, V = 0 V,  
OUT  
30  
mA  
A
D
CS  
= 4 V, V  
IN  
= 5 V  
V
CS_EN  
Output Saturation Current  
(Note 13)  
I
V = 7 V, V = 4 V, V = 5 V,  
D CS IN  
T = 150°C, V  
= 5 V  
J
CS_EN  
CS_EN High to CS High Delay  
Time  
t
V
= 5 V, V = 0 to 5 V,  
CS_EN  
100  
25  
250  
250  
100  
ms  
ms  
ms  
ms  
ms  
CS_High1  
IN  
IN  
IN  
IN  
R
= 1 kW, R = 6.5 W  
CS  
L
CS_EN Low to CS Low Delay  
Time  
t
V
V
V
= 5 V, V  
= 5 to 0 V,  
5
CS_Low1  
CS_High2  
CS_EN  
R
= 1 kW, R = 6.5 W  
CS  
L
V
High to CS High Delay  
t
= 0 to 5 V, V  
= 5 V,  
100  
50  
in  
CS_EN  
Time  
R
= 1 kW, R = 6.5 W  
CS L  
V
in  
Low to CS Low Delay Time  
t
= 5 to 0 V, V  
= 5 V,  
CS_Low2  
CS_EN  
R
= 1 kW, R = 6.5 W  
CS  
L
Delay Time I Rising Edge to  
Dt  
V
= 5 V, V  
= 5 V  
D
CS_High2  
IN  
CS_EN  
Rising Edge of CS  
R
= 1 kW, I = 90% of I Max  
CS CS CS  
12.The following fault conditions are: Overtemperature, Power Limitation, and OFF State OpenLoad Detection.  
13.Not subjected to production testing. For more information, refer to the AND9733D Applications Note.  
www.onsemi.com  
8
 
NCV84090  
Table 12. TRUTH TABLE  
Conditions  
Input  
Output  
CS (V  
= 5V) (Note 14)  
CS_EN  
Normal Operation  
L
H
L
H
0
I
= I  
/K  
CS  
OUT NOMINAL  
Overtemperature  
Undervoltage  
L
L
L
0
H
V
CS_High  
L
H
L
L
0
0
Overload  
H
H
H (no active current mgmt)  
Cycling (active current mgmt)  
I
= I  
/K  
CS_High  
CS  
OUT NOMINAL  
V
Short circuit to Ground  
OFF State Open Load  
L
L
L
0
H
V
CS_High  
L
H
V
CS_High  
14.If V  
is low, the Current Sense output is at a high impedance, its potential depends on leakage currents and external circuitry.  
CS_EN  
www.onsemi.com  
9
 
NCV84090  
WAVEFORMS AND GRAPHS  
Resistive Switching Characteristics  
VOUT  
80%  
80%  
dVOUT/dt(off)  
20%  
dVOUT/dt(on)  
20%  
td(on)  
td(off)  
VIN  
t(on)  
t(off)  
Figure 4. Switching Characteristics  
Normal Operation  
VIN  
t
t
t
t
IOUT  
tON  
tOFF  
tON  
VCS_EN  
ntCS_High2  
tCS_High1  
tCS_Low1  
VCS  
tCS_High2  
Figure 5. Normal Operation with Current Sense Timing Characteristics  
www.onsemi.com  
10  
NCV84090  
VIN  
DtCS_High2  
t
IOUT  
IOUTMAX  
90% IOUTMAX  
t
ICS  
ICSMAX  
90% ICSMAX  
t
Figure 6. Delay Response from rising edge of IOUT and rising edge of CS (for CS_EN = 5V)  
OffState OpenLoad Delay Timing  
VIN  
t
VOUT  
VOL  
t
VCS  
VCS_FAULT  
t
td_OL_off  
Figure 7. OFFState OpenLoad Flag Delay Timing  
www.onsemi.com  
11  
NCV84090  
VIN  
VOUT  
VOL  
IOUT  
VCS  
VCS_Fault  
tCS_Low1  
td_OL_off  
VCS_EN  
Figure 8. OffState OpenLoad with added external components  
VD VOUT  
TJ = 150°C  
TJ = 25°C  
TJ = 40°C  
VDS_ON  
IOUT  
VDS_ON/RDSON(T)  
Figure 9. Voltage Drop Limitation for VDS_ON  
www.onsemi.com  
12  
NCV84090  
1400  
1300  
1200  
1100  
1000  
900  
A. Max, -40°C ≤ TJ ≤ 150°C  
800  
700  
B. Typ, -40°C ≤ TJ ≤ 150°C  
C. Min, -40°C ≤ TJ≤ 150°C  
600  
500  
400  
300  
200  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
3.25  
IOUT (A)  
Figure 10. IOUT/ICS vs. IOUT  
30  
25  
20  
15  
10  
5
A. Max, -40°C ≤ TJ ≤ 150°C  
0
-5  
-10  
-15  
-20  
-25  
-30  
B. Min, -40°C ≤ TJ ≤ 150°C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
IOUT (A)  
Figure 11. Current Sense Ratio Drift vs. Load Current  
www.onsemi.com  
13  
NCV84090  
VIN  
IOUT  
IlimH  
IlimTCycling  
VCS  
VCS_fault  
VCS_EN  
Figure 12. Short to GND or Overload  
VIN  
t
t
IOUT  
ILIMH  
Overload  
Current Limit during  
thermal cycling  
DC Output Current Limit  
ILIMTCycling  
TJ  
TTSD  
TR  
TRS  
nT  
J
nT  
J_RST  
TJ_Start  
t
Figure 13. How TJ progresses during Short to GND or Overload  
www.onsemi.com  
14  
NCV84090  
VIN  
IOUT  
IlimH  
Overload  
INOMINAL  
IlimTCycling  
ICS  
ICS_Fault  
INOM/K  
VCS_EN  
Figure 14. Discontinuous Overload or Short to GND  
Resistive short  
Short from OUT  
from OUT to VD  
to VD  
VOUT  
VOL  
IOUT  
VCS  
VCS_Fault  
td_OL_off  
td_OL_off  
VCS_EN  
Figure 15. Short Circuit from OUT to VD  
www.onsemi.com  
15  
NCV84090  
TYPICAL CHARACTERISTICS  
7.5  
7.0  
6.5  
6
5
4
3
2
V
IN  
V
OUT  
= 0 V  
= 0 V  
V
= 5.0 V  
IN  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
T = 150°C  
J
V
D
= 13 V  
T = 125°C  
J
T = 25°C  
V
V
= 0.9 V  
= 2.1 V  
J
IN  
1
0
T = 40°C  
J
IN  
2.5  
2.0  
40 20  
0
5
10  
15  
20  
(V)  
25  
30  
35  
0
20  
40  
60  
80 100 120 140  
V
D
TEMPERATURE (°C)  
Figure 16. Output Leakage Current vs. VD  
Figure 17. Input Current vs. Temperature  
14.0  
13.5  
11.5  
12.0  
12.5  
13.0  
13.0  
12.5  
I
IN  
= 1 mA  
I
IN  
= 1 mA  
13.5  
14.0  
12.0  
11.5  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Input Clamp Voltage (Positive) vs.  
Temperature  
Figure 19. Input Clamp Voltage (Negative) vs.  
Temperature  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.7  
1.6  
V
D
= 13 V  
V
D
= 13 V  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. VIN Threshold High vs. Temperature  
Figure 21. VIN Threshold Low vs. Temperature  
www.onsemi.com  
16  
NCV84090  
TYPICAL CHARACTERISTICS  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
160  
V
I
= 13.5 V  
= 2.5 A  
D
140  
120  
100  
80  
OUT  
60  
40  
20  
0.05  
0
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Hysteresis Input Voltage vs.  
Temperature  
Figure 23. RON vs. Temperature  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
3.50  
I
= 2.5 A  
OUT  
3.45  
3.40  
3.35  
3.30  
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
3.25  
3.20  
T = 40°C  
60  
40  
J
3
7
11  
15  
19  
23  
27  
40 20  
0
20  
40  
60  
80 100 120 140  
V
D
(V)  
TEMPERATURE (°C)  
Figure 24. RON vs. VD Voltage  
Figure 25. Undervoltage Shutdown vs.  
Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.7  
0.6  
0.5  
0.4  
V
R
= 13 V  
V = 13 V  
D
D
= 6.5 W  
R
= 6.5 W  
LOAD  
LOAD  
0.3  
0.2  
0.1  
0
0.1  
0
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Slew Rate ON vs. Temperature  
Figure 27. Slew Rate OFF vs. Temperature  
www.onsemi.com  
17  
NCV84090  
TYPICAL CHARACTERISTICS  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
2.2  
V
= 13 V  
D
V
= 13 V  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
D
18  
17  
16  
1.3  
1.2  
40 20  
40 20  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Current Limit vs. Temperature  
Figure 29. CS_EN Threshold High vs.  
Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
14.0  
13.5  
13.0  
12.5  
12.0  
V
= 13 V  
D
I
= 1 mA  
CS_EN  
11.5  
11.0  
0.9  
0.8  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. CS_EN Threshold Low vs.  
Temperature  
Figure 31. CS_EN Clamp Voltage (Positive) vs.  
Temperature  
11.0  
11.5  
12.0  
12.5  
13.0  
I
= 1 mA  
CS_EN  
13.5  
14.0  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
Figure 32. CS_EN Clamp Voltage (Negative)  
vs. Temperature  
www.onsemi.com  
18  
NCV84090  
Table 13. ISO 76372: 2011(E) PULSE TEST RESULTS  
Test Severity Levels  
ISO 76372:2011  
Test Pulse  
III  
IV  
Delays and Impedance  
2 ms, 10 W  
# of Pulses or Test Time  
Pulse / Burst Rep. Time  
1
112  
55  
150  
112  
500 pulses  
500 pulses  
1 h  
0.5 s  
0.5 s  
2a  
3a  
3b  
0.05 ms, 2 W  
165  
112  
220  
150  
0.1 ms, 50 W  
100 ms  
100 ms  
0.1 ms, 50 W  
1 h  
Test Results  
ISO 76372:2011  
Test Pulse  
III  
IV  
A
C
A
A
1
2a  
3a  
3b  
Class  
Functional Status  
A
All functions of a device perform as designed during and after exposure to disturbance.  
All functions of a device perform as designed during exposure. However, one or more of them can go beyond  
specified tolerance. All functions return automatically to within normal limits after exposure is removed. Memo-  
ry functions shall remain class A.  
B
C
D
E
One or more functions of a device do not perform as designed during exposure but return automatically to  
normal operation after exposure is removed.  
One or more functions of a device do not perform as designed during exposure and do not return to normal  
operation until exposure is removed and the device is reset by simple “operator/use” action.  
One or more functions of a device do not perform as designed during and after exposure and cannot be re-  
turned to proper operation without replacing the device.  
www.onsemi.com  
19  
NCV84090  
+5V  
VD  
RμC  
RμC  
RμC  
ZCS  
CS  
IN  
Output  
Clamping  
Dld  
ZVD  
Micro  
Controller  
VBAT  
Control  
Logic  
CS_EN  
ZBody  
OUT  
Cexternal  
RCS  
Z ESD  
GND  
ZL  
RGND  
Figure 33. Application Schematic  
www.onsemi.com  
20  
NCV84090  
Protection Features  
In application, the device can be subject to stressful  
conditions which are outside of normal operating range. To  
prevent damage and destruction of the device from these  
fault conditions, several protection functions are integrated  
in device design. It is important to diagnose and remove any  
fault condition that may exist since the protection functions  
cannot prevent damage for continuous and repetitive faulty  
operation.  
OFF. In loss of ground state, the output stage is held OFF  
independent of the state of the input. Input resistors are  
recommended between the device and microcontroller.  
Undervoltage Protection  
The device has two undervoltage threshold levels,  
V
D_MIN  
and V . Switching function (ON/OFF) requires  
UV  
supply voltage to be at least V  
. The device features a  
D_MIN  
lower supply threshold V , above which the output can  
UV  
remain in ON state. While all protection functions are  
guaranteed when the switch is ON, diagnostic functions are  
Loss of Ground Protection  
When device or ECU ground connection is lost and load  
is still connected to ground, the device will turn the output  
operational only within nominal supply voltage range V  
D.  
VOUT  
VUV  
VD _ MIN  
VD  
Figure 34. Undervoltage Behavior  
Overvoltage Protection:  
The NCV84090 has two Zener diodes Z  
which provide integrated overvoltage protection. Z  
current flowing through Z and out of the CS pin into the  
microcontroller I/O pin. With RGND, the GND pin voltage  
CS  
and Z  
,
VD  
CS  
is elevated to V – V  
when the supply voltage V rises  
VD  
D
ZVD  
D
protects the logic block by clamping the voltage between  
supply pin V and ground pin GND to V . Z limits  
above V  
. ESD diodes Z  
pull up the voltage at logic  
ZVD  
ESD  
pins IN, CS_EN close to the GND pin voltage V – V  
External resistors R , and R  
.
D
ZVD CS  
D
ZVD  
voltage at current sense pin CS to V – V . The output  
are required to limit the  
D
ZCS  
IN  
CS_EN  
power MOSFET’s output clamping diodes provide  
protection by clamping the voltage across the MOSFET  
current flowing out of the logic pins into the  
microcontroller I/O pins. During overvoltage exposure, the  
device transitions into a selfprotection state, with  
automatic recovery after the supply voltage comes back to  
the normal operating range. The specified parameters as  
well as short circuit robustness and energy capability cannot  
be guaranteed during overvoltage exposure.  
(between V pin and OUT pin) to V  
. During  
CLAMP  
D
overvoltage protection, current flowing through Z , Z  
VD CS  
and the output clamp must be limited. Load impedance Z  
L
limits the current in the body diode Z . In order to limit  
Body  
the current in Z a resistor, R  
the GND path. External resistors R and R  
(150 Ω), is required in  
VD  
GND  
limit the  
CS  
SENSE  
www.onsemi.com  
21  
NCV84090  
Reverse Battery Protection  
Since this resistor can be used amongst multiple  
HighSide devices, please take note the sum of the  
maximum active GND currents (I ) for each  
device when sizing the resistor. Please note that if the  
microprocessor GND is not shared by the device GND, then  
Solution 1: Resistor in the GND line only  
(no parallel Diode)  
The following calculations are true for any type of load.  
In the case for no diode in parallel with R  
calculations below explain how to size the resistor.  
Consider the following parameters:  
GND(On)max  
, the  
GND  
R
GND  
produces a shift of (I  
× R  
) in the input  
GND(On)max  
GND  
thresholds and CS output values. If the calculated power  
dissipation leads to too large of a resistor size or several  
devices have to share the same resistor, please look at the  
second solution for Reverse Battery Protection. Refer to  
–I  
Maximum = 200 mA for up to V = 32 V.  
GND  
D
Where –I  
is the DC reverse current through the GND  
GND  
pin and –V is the DC reverse battery voltage.  
D
Figure 35 for selecting the proper R  
.
GND  
* VD  
RGND  
* IGND  
+
(eq. 1)  
Figure 35. Reverse Battery RGND Considerations  
www.onsemi.com  
22  
 
NCV84090  
Overload Protection  
MOSFET will automatically be reactivated after a  
minimum OFF time or when the junction temperature  
returns to a safe level.  
Current limitation as well as overtemperature shutdown  
mechanisms are integrated into NCV84090 to provide  
protection from overload conditions such as bulb inrush or  
short to ground.  
Output Clamping with Inductive Load Switch Off:  
The output voltage V  
drops below GND potential  
OUT  
Current Limitation  
when switching off inductive loads. This is because the  
inductance develops a negative voltage across the load in  
response to a decaying current. The integrated clamp of the  
device clamps the negative output voltage to a certain level  
In case of overload, NCV84090 limits the current in the  
output power MOSFET to a safe value. Due to high power  
dissipation during current limitation, the device’s junction  
temperature increases rapidly. In order to protect the device,  
the output driver is shut down by one of the two  
overtemperature protection mechanisms. The output current  
limit is dependent on the device temperature, and will fold  
back once the die reaches thermal shutdown. If the input  
remains active during the shutdown, the output power  
relative to the supply voltage V . During output clamping  
BAT  
with inductive load switch off, the energy stored in the  
inductance rapidly dissipated in the device resulting in high  
power dissipation. This is a stressful condition for the device  
and the maximum energy allowed for a given load  
inductance should not be exceeded in any application.  
VIN  
t
t
IOUT  
VOUT  
VBAT  
t
VCLAMP  
VBAT VCLAMP  
Figure 36. Inductive Load Switching  
20  
10  
V
= 13.5 V  
D
R = 0 W  
L
T
Jstart  
= 150°C, Single Pulse  
1
1
10  
100  
L (mH)  
Figure 37. Maximum SwitchOff Current vs. Load Inductance, VD = 13.5 V; RL = 0 W  
www.onsemi.com  
23  
NCV84090  
Inverse Current:  
When the output voltage V  
(I ), the current sense output current is reduced to a very  
OL  
rises above the supply  
low value (I ). This mechanism helps to overcome a high  
OUT  
OL  
voltage V , the output power MOSFET’s integral body  
absolute tolerance of the current sense signal at very low  
load current and to implement an accurate underload  
detection threshold.  
D
diode will be forward biased causing a current flow from the  
OUT pin to the V pin. The device does not provide any  
D
protection function such as current limitation or  
overtemperature shutdown.  
Open Load Detection in OFF State  
Open load diagnosis in OFF state can be performed by  
activating an external resistive pullup path (R ) to V  
Underload Detection in ON State  
.
PU  
BAT  
An underload condition in ON state is indicated by  
reducing the sense output current to a very minimal current.  
In order to detect an underload condition, NCV84090  
performs a realtime monitoring of the load current. In case  
the output current falls below a specified threshold level  
To calculate the pullup resistance, external leakage  
currents (designed pulldown resistance, humidityinduced  
leakage etc) as well as the open load threshold voltage  
V
have to be taken into account.  
OL_OFF  
VBAT  
VD  
VOL_OFF  
IN  
ZBody  
RPU  
ICS_FAULT  
OUT  
CS  
GND  
RGND  
RPD  
RLEAK  
ZL  
RCS  
Figure 38. Open Load Detection in Off State  
Current Sense in PWM Mode  
a typical delay (tCS_High2) before the current sense  
responds. Once this timing delay has passed, the rise time of  
the current sense output (DtCS_High2) also needs to be  
considered. When VIN switches from high to low a delay  
time (tCS_Low1) needs to be considered. As long as these  
timing delays are allowed, the current sense pin can be  
operated in PWM mode.  
When operating in PWM mode, the current sense  
functionality can be used, but the timing of the input signal  
and the response time of the current sense need to be  
considered. When operating in PWM mode, the following  
performance is to be expected. The CS_EN pin should be  
left high to eliminate any unnecessary delay time to the  
circuit. When VIN switches from low to high, there will be  
www.onsemi.com  
24  
NCV84090  
PACKAGE AND PCB THERMAL DATA  
100  
10  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.1  
2
NCV84090, 8SOIC, PCB Copper Area 645 mm ,  
PCB:80x80x1.6 mm FR4, fourlayer 2s2p  
Single Pulse  
0.01  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t, PULSE TIME (s)  
Figure 39. JunctiontoAmbient Transient Thermal Impedance (645 mm2 Cu Area)  
100  
10  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
2
NCV84090, 8SOIC, PCB Copper Area 2 cm ,  
PCB:80x80x1.6 mm FR4, fourlayer 2s0p  
0.1  
Single Pulse  
0.000001 0.00001  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t, PULSE TIME (s)  
Figure 40. JunctiontoAmbient Transient Thermal Impedance (2 cm2 Cu Area)  
www.onsemi.com  
25  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV8411DTRKG

具有浪涌电流管理功能的自保护低压侧驱动器
ONSEMI

NCV8412

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV84120DR2G

Self Protected Very Low Iq High Side Driver with Analog Current Sense
ONSEMI

NCV8412ADDR2G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8412ASTT1G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8412ASTT3G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8413DTRKG

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV84140DR2G

Self Protected Very Low Iq High Side Driver with Analog Current Sense
ONSEMI

NCV8415

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415DTRKG

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415STT1G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415STT3G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI