NXH50M65L4C2ESG [ONSEMI]

650V 50A Converter-Inverter-PFCs Module with Enhanced Substrate ;
NXH50M65L4C2ESG
型号: NXH50M65L4C2ESG
厂家: ONSEMI    ONSEMI
描述:

650V 50A Converter-Inverter-PFCs Module with Enhanced Substrate 

功率因数校正
文件: 总20页 (文件大小:896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
TMPIM 650 V 50 A  
Converter-Inverter-PFCs  
Module  
DIP27 73.2x40.2  
CASE 184AA  
Product Preview  
NXH50M65L4C2ESG  
MARKING DIAGRAM  
The NXH50M65L4C2ESG is a transfer−molded power module  
with advanced substrate containing a converter−inverter−PFC circuit  
consisting of single phase converter with four 75 A, 1600 V rectifiers,  
six 50 A, 600 V IGBTs with inverse diodes, 2−Channel interleaved  
PFC containing two 75 A, 650 V PFC IGBT with inverse diode, two  
50 A, 650 V PFC diode, and an NTC thermistor.  
Features  
2−Channel Interleaved PFC with Wide Switching Frequency  
18 kHz ~ 65 kHz  
XXX = Specific Device Code  
ZZZ = Assembly Lot Code  
AT = Assembly & Test Location  
Low Thermal Resistance Substrate for Low Thermal Resistance  
Y
= Year  
6 mm Clearance Distrance between Pin to Heatsink  
Compact 73 mm x 40 mm x 8 mm Package  
Solderable Pins  
WW = Work Week  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 18 of  
this data sheet.  
Thermistor  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
This document contains information on a product under  
development. onsemi reserves the right to change or  
discontinue this product without notice.  
Typical Applications  
Industrial Motor Drives  
Servo Drives  
D7  
DCP.1  
L2  
D8  
P1.1  
L1  
T3  
T5  
T7  
T1  
D1  
D3  
D9  
D11  
GWH  
D13  
GUH  
GVH  
V
L
D5  
GL1  
EL1  
N
U
W
T2  
T4  
T6  
T8  
D6  
GL2  
D2  
D4  
D10  
D12  
D14  
GUL  
GVL  
GWL  
EL2  
T1  
T2  
N1.1  
L2−  
U−  
V−  
W−  
L1−  
Figure 1. NXH50M65L4C2ESG Schematic Diagram  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
September, 2021 − Rev. P4  
NXH50M65L4C2E/D  
NXH50M65L4C2ESG  
PIN CONFIGURATION TABLE  
Pin  
1
Name  
N1.1  
L1−  
EL1  
GL1  
L2−  
EL2  
GL2  
U−  
2
3
4
5
6
7
8
Figure 2. Pin Configuration  
9
GuL  
V−  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
GvL  
W−  
GwL  
T1  
T2  
Gwh  
W
Gvh  
V
Guh  
U
DCP.1  
L2  
L1  
P1.1  
N
L
www.onsemi.com  
2
NXH50M65L4C2ESG  
MAXIMUM RATINGS  
Parameter  
Symbol  
Value  
Unit  
INVERTER IGBT (T3 − T8)  
Collector−Emitter Voltage  
Gate−Emitter Voltage  
V
650  
20  
V
V
A
A
CES  
V
GE  
Continuous Collector Current @ T = 80°C (Tv  
= 175°C)  
= 175°C)  
I
C
50  
c
Jmax  
Pulsed Collector Current  
I
150  
Cpulse  
INVERTER INVERSE DIODE (D9 − D14)  
Peak Repetitive Reverse Voltage  
V
RRM  
600  
30  
V
A
A
Continuous Forward Current @ T = 80°C (Tv  
I
F
c
Jmax  
Repetitive Peak Forward Current  
PFC IGBT (T1, T2)  
I
90  
FRM  
Collector−Emitter Voltage  
Gate−Emitter Voltage  
V
650  
20  
V
V
A
A
CES  
V
GE  
Continuous Collector Current @ T = 80°C (Tv  
= 175°C)  
= 175°C)  
= 175°C)  
= 150°C)  
I
C
75  
c
Jmax  
Pulsed Collector Current  
I
225  
Cpulse  
PFC INVERSE DIODE (D5, D6)  
Peak Repetitive Reverse Voltage  
Continuous Forward Current @ T = 80°C (Tv  
V
RRM  
650  
15  
V
A
A
I
F
c
Jmax  
Jmax  
Jmax  
Repetitive Peak Forward Current  
PFC DIODE (D7, D8)  
I
45  
FRM  
Peak Repetitive Reverse Voltage  
V
RRM  
650  
50  
V
A
A
Continuous Forward Current @ T = 80°C (Tv  
I
F
c
Repetitive Peak Forward Current  
CONVERTER DIODE (D1 − D4)  
Peak Repetitive Reverse Voltage  
I
150  
FRM  
V
RRM  
1600  
75  
V
A
A
Continuous Forward Current @ T = 80°C (Tv  
I
F
c
Repetitive Peak Forward Current  
I
225  
1200  
635  
FRM  
2
2
2
I t Value (10 ms Single Half−sine Wave) @ 150°C  
Surge Current (10 ms sin 180°) @ 25°C  
THERMAL PROPERTIES  
I t  
A s  
IFSM  
A
Storage Temperature Range  
INSULATION PROPERTIES  
Isolation Test Voltage, t = 1 s, 50 Hz  
Internal Isolation  
T
−40 to 125  
°C  
stg  
V
3000  
HPS  
6.0  
V
RMS  
is  
Creepage Distance  
mm  
mm  
Clearance Distance  
6.0  
Comperative Tracking Index  
CTI  
>400  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
www.onsemi.com  
3
NXH50M65L4C2ESG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Parameter  
INVERTER IGBT CHARACTERISTICS (T3 − T8)  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Collector−Emitter Cutoff Current  
V
V
V
V
V
= 0 V, V = 600 V  
I
CES  
1.6  
1.8  
4.7  
250  
2
mA  
GE  
GE  
GE  
GE  
GE  
CE  
Collector−Emitter Saturation Voltage  
= 15 V, I = 50 A, T = 25°C  
V
V
V
C
J
CE(sat)  
= 15 V, I = 50 A, T = 150°C  
C
J
Gate−Emitter Threshold Voltage  
Gate Leakage Current  
Turn−on Delay Time  
= V , I = 50 mA  
3.8  
5.7  
400  
V
CE  
C
GE(TH)  
= 20 V, V = 0 V  
I
nA  
ns  
CE  
GES  
T = 25°C  
t
41  
J
d(on)  
V
CE  
V
GE  
= 350 V, I = 21 A  
C
Rise Time  
t
r
24  
= +15 V / −8 V, R = 25 W  
G
Turn−off Delay Time  
t
184  
78  
d(off)  
Fall Time  
t
f
Turn−on Switching Loss per Pulse  
Turn off Switching Loss per Pulse  
Turn−on Delay Time  
E
270  
450  
52.8  
25.2  
232  
140.2  
390  
710  
2608  
77  
mJ  
on  
off  
E
T = 125 °C  
t
t
ns  
J
V
V
d(on)  
= 350 V, I = 21 A  
CE  
GE  
C
Rise Time  
t
r
= +15 V / −8 V, R = 25 W  
G
Turn−off Delay Time  
d(off)  
Fall Time  
t
f
Turn−on Switching Loss per Pulse  
Turn off Switching Loss per Pulse  
Input Capacitance  
E
on  
E
off  
mJ  
V
V
= 20 V. V = 0 V. f = 1 MHz  
C
pF  
CE  
GE  
ies  
oes  
Output Capacitance  
C
Reverse Transfer Capacitance  
Total Gate Charge  
C
21  
res  
= 480 V, I = 50 A, V = −15 V~+15 V  
Q
g
122  
nC  
°C  
CE  
C
GE  
Temperature under switching conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
R
0.41  
0.81  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3mil,  
l = 2.8 W/mK  
R
thJH  
INVERTER INVERSE DIODE CHARACTERISTICS (D9 − D14)  
Diode Forward Voltage  
I = 30 A, T = 25°C  
V
1.9  
1.6  
34  
2.7  
V
F
J
F
I = 30 A, T = 150°C  
F
J
Reverse Recovery Time  
T = 25 °C  
t
rr  
ns  
nC  
A
J
V
CE  
V
GE  
= 350 V, I = 21 A  
= +18 V / −8 V, R = 25 W  
C
Reverse Recovery Charge  
Q
210  
11  
rr  
G
Peak Reverse Recovery Current  
Reverse Recovery Energy  
I
I
RRM  
E
t
37  
mJ  
rr  
Reverse Recovery Time  
T = 125 °C  
46  
ns  
J
rr  
V
CE  
V
GE  
= 350 V, I = 21 A  
= +15 V / −8 V, R = 25 W  
C
Reverse Recovery Charge  
Q
472  
16  
nC  
A
rr  
RRM  
G
Peak Reverse Recovery Current  
Reverse Recovery Energy  
E
rr  
82  
mJ  
Temperature under Switching Conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
°C  
R
0.7  
1.0  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3 mil,  
l = 2.8 W/mK  
R
thJH  
www.onsemi.com  
4
NXH50M65L4C2ESG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
J
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
PFC IGBT CHARACTERISTICS (T1, T2)  
Collector−Emitter Cutoff Current  
Collector−Emitter Saturation Voltage  
V
V
V
V
V
= 0 V, V = 650 V  
I
CES  
1.4  
1.6  
4.5  
250  
2.2  
mA  
GE  
GE  
GE  
GE  
GE  
CE  
= 15 V, I = 75 A, T = 25°C  
V
V
V
C
J
CE(sat)  
= 15 V, I = 75 A, T = 150°C  
C
J
Gate−Emitter Threshold Voltage  
Gate Leakage Current  
Turn−on Delay Time  
= V , I = 75 mA  
3.8  
5.7  
400  
V
CE  
C
GE(TH)  
= 20 V, V = 0 V  
I
nA  
ns  
CE  
GES  
T = 25°C  
t
47  
J
d(on)  
V
CE  
V
GE  
= 400 V, I = 24 A  
C
Rise Time  
t
r
12  
= +15 V / −8 V, R = 10 W  
G
Turn−off Delay Time  
t
190  
8
d(off)  
Fall Time  
t
f
Turn−on Switching Loss per Pulse  
Turn off Switching Loss per Pulse  
Turn−on Delay Time  
E
240  
250  
45  
mJ  
on  
off  
E
T = 125 °C  
t
t
ns  
J
V
V
d(on)  
= 400 V, I = 24 A  
CE  
GE  
C
Rise Time  
t
14  
r
= +15 V / −8 V, R = 10 W  
G
Turn−off Delay Time  
218  
25  
d(off)  
Fall Time  
t
f
Turn−on Switching Loss per Pulse  
Turn off Switching Loss per Pulse  
Input Capacitance  
E
E
390  
350  
4877  
77  
mJ  
on  
off  
V
V
= 20 V, V = 0 V, f = 10 kHz  
C
pF  
CE  
GE  
ies  
oes  
Output Capacitance  
C
Reverse Transfer Capacitance  
Total Gate Charge  
C
21  
res  
= 480 V, I = 75 A, V = 0 V~+15 V  
Q
g
151  
nC  
°C  
CE  
C
GE  
Temperature under Switching Conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
R
0.46  
0.81  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3 mil,  
l = 2.8 W/mK  
R
thJH  
PFC IGBT INVERSE DIODE CHARACTERISTICS (D5, D6)  
Rectifier Forward Voltage  
I = 15 A, T = 25°C  
V
F
1.9  
1.8  
2.4  
V
F
J
I = 15 A, T = 150°C  
F
J
Temperature under Switching Conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
°C  
R
2.04  
2.4  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3 mil,  
l = 2.8 W/mK  
R
thJH  
PFC DIODE CHARACTERISTICS (D7, D8)  
Rectifier Reverse Leakage Current  
Rectifier Forward Voltage  
V
= 650 V  
I
200  
2.8  
mA  
R
R
I = 50 A, T = 25°C  
F
V
2.1  
1.7  
24  
V
J
F
I = 50 A, T = 150°C  
F
J
Reverse Recovery Time  
T = 25 °C  
t
ns  
nC  
A
J
rr  
V
CE  
V
GE  
= 400 V, I = 24 A  
= +15 V / −8 V, R = 10 W  
C
Reverse Recovery Charge  
Peak Reverse Recovery Current  
Reverse Recovery Energy  
Q
456  
32  
rr  
G
I
RRM  
E
109  
μJ  
rr  
www.onsemi.com  
5
NXH50M65L4C2ESG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
J
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
PFC DIODE CHARACTERISTICS (D7, D8)  
Reverse Recovery Time  
T = 125 °C  
t
36  
902  
42  
ns  
nC  
J
V
V
rr  
= 400 V, I = 24 A  
CE  
GE  
C
Reverse Recovery Charge  
Q
rr  
= +15 V / −8 V, R = 10 W  
G
Peak Reverse Recovery Current  
Reverse Recovery Energy  
I
A
RRM  
E
209  
mJ  
rr  
Temperature under Switching Conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
°C  
R
0.58  
0.87  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3 mil,  
l = 2.8 W/mK  
R
thJH  
CONVERTER DIODE CHARACTERISTICS (D1−D4)  
Rectifier Reverse Leakage Current  
Rectifier Forward Voltage  
V
= 1600 V  
I
200  
1.7  
mA  
R
R
I = 75 A, T = 25°C  
F
V
F
1.3  
1.4  
V
J
I = 75 A, T = 150°C  
F
J
Temperature under Switching Conditions  
Thermal Resistance − Chip−to−Case  
Thermal Resistance − Chip−to−Heatsink  
Tvj op  
−40  
150  
°C  
R
0.36  
0.64  
°C/W  
°C/W  
thJC  
Thermal grease, Thickness 3 mil,  
l = 2.8 W/mK  
R
thJH  
THERMISTOR CHARACTERISTICS  
Nominal Resistance  
Nominal Resistance  
Deviation of R25  
T = 25°C  
R
5
493.3  
5
kW  
W
25  
T = 100°C  
R
100  
DR/R  
−5  
%
Power Dissipation  
Power Dissipation Constant  
B−value  
P
20  
mW  
mW/K  
K
D
1.4  
B (25/50), tolerance 2%  
B (25/100), tolerance 2%  
3375  
3455  
B−value  
K
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
NXH50M65L4C2ESG  
TYPICAL CHARACTERISTICS − T3 − T8 INVERTER IGBT & D9−D14 INVERSE DIODE  
Figure 3. IGBT Typical Output Characteristics  
Figure 4. IGBT Typical Output Characteristics  
150  
150  
120  
90  
60  
30  
0
120  
90  
60  
30  
0
0
1
2
3
4
0
3
6
9
12  
15  
V , FORWARD VOLTAGE (V)  
F
V
GE  
, GATE−EMITTER VOLTAGE (V)  
Figure 5. Typical Transfer Characteristics  
Figure 6. Diode Typical Forward Characteristics  
1.8  
1.6  
1.4  
1.2  
1
1
25°C  
125°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
V
V
= +15 V, −8 V  
= 350 V  
GE  
CE  
CE  
I
C
Rg = 25 W  
25°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
IC (A)  
R (W)  
g
Figure 7. Typical Turn ON Loss vs. IC  
Figure 8. Typical Turn ON Loss vs. RG  
www.onsemi.com  
7
NXH50M65L4C2ESG  
2
1.8  
1.6  
1.4  
1.2  
1
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
V
= +15 V, −8 V  
= 350 V  
GE  
CE  
Rg = 25 W  
25°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
V
V
I
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
25°C  
125°C  
0.2  
0.1  
0
CE  
C
0
10  
20  
30  
40  
IC (A)  
50  
60  
70  
0
25  
50  
75  
100  
125  
R (W)  
g
Figure 9. Typical Turn OFF Loss vs. IC  
Figure 10. Typical Turn OFF Loss vs. RG  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
120  
80  
V
= +15 V, −8 V  
= 350 V  
25°C  
GE  
V
CE  
125°C  
Rg = 25 W  
25°C  
125°C  
40  
V
V
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
CE  
I
C
0
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
R (W)  
g
IC (A)  
Figure 11. Typical Reverse Recovery Energy Loss  
vs. IC  
Figure 12. Typical Reverse Recovery Energy Loss  
vs. RG  
500  
500  
V
V
I
= +15 V, −8 V  
= 350 V  
= 21 A  
V
V
= +15 V, −8 V  
= 350 V  
25°C  
GE  
25°C  
GE  
125°C  
125°C  
CE  
CE  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Rg = 25 W  
C
T
d(off)  
T
d(off)  
tf  
tf  
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
R , GATE RESISTOR (W)  
g
IC, COLLECTOR CURRENT (A)  
Figure 13. Typical Turn−Off Switching Time vs. IC  
Figure 14. Typical Turn−Off Switching Time vs. Rg  
www.onsemi.com  
8
NXH50M65L4C2ESG  
120  
200  
160  
120  
80  
V
= +15 V, −8 V  
= 350 V  
= 21 A  
V
V
= +15 V, −8 V  
= 350 V  
GE  
GE  
25°C  
100  
80  
60  
40  
20  
0
V
I
CE  
125°C  
CE  
Td(on)  
Rg = 25 W  
C
T
d(on)  
tr  
40  
25°C  
125°C  
tr  
0
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
IC, COLLECTOR CURRENT (A)  
R , GATE RESISTOR (W)  
g
Figure 15. Typical Turn−On Switching Time vs. IC  
Figure 16. Typical Turn−Off Switching Time vs. Rg  
75  
80  
70  
60  
50  
40  
30  
V
V
= +15 V, −8 V  
= 350 V  
GE  
65  
55  
45  
35  
25  
15  
CE  
I
C
= 21 A  
V
V
= +15 V, −8 V  
= 350 V  
20  
10  
0
GE  
25°C  
125°C  
CE  
25°C  
125°C  
Rg = 25 W  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
60  
70  
I , COLLECTOR CURRENT (A)  
C
R , GATE RESISTOR (W)  
g
Figure 17. Typical Reverse Recovery Time vs. IC  
Figure 18. Typical Reverse Recovery Time vs. RG  
800  
800  
V
V
= +15 V, −8 V  
= 350 V  
GE  
25°C  
125°C  
V
V
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
700  
600  
500  
400  
300  
200  
100  
0
CE  
CE  
600  
400  
200  
0
Rg = 25 W  
I
C
25°C  
125°C  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
60  
70  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 19. Typical Reverse Recovery Charge vs. IC  
Figure 20. Typical Reverse Recovery Charge vs. Rg  
www.onsemi.com  
9
NXH50M65L4C2ESG  
18  
16  
14  
12  
10  
8
20  
16  
12  
8
V
V
= +15 V, −8 V  
= 350 V  
GE  
V
V
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
4
0
CE  
6
25°C  
125°C  
25°C  
125°C  
CE  
Rg = 25 W  
I
C
4
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
I , COLLECTOR CURRENT (A)  
C
R , GATE RESISTOR (W)  
g
Figure 21. Typical Reverse Recovery Peak Current  
vs. IC  
Figure 22. Typical Reverse Recovery Peak Current  
vs. RG  
800  
600  
400  
200  
1000  
800  
600  
400  
V
V
= +15 V, −8 V  
= 350 V  
GE  
V
V
= +15 V, −8 V  
= 350 V  
= 21 A  
GE  
200  
0
CE  
25°C  
25°C  
125°C  
CE  
Rg = 25 W  
125°C  
I
C
0
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
60  
70  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 23. Typical di/dt Current Slope vs. IC  
Figure 24. Typical di/dt Current Slope vs. RG  
1
single pulse  
0.1  
0.01  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 25. IGBT Junction−to−Case Transient Thermal Impedance  
www.onsemi.com  
10  
NXH50M65L4C2ESG  
1
0.1  
single pulse  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.01  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 26. Diode Junction−to−Case Transient Thermal Impedance  
120  
1000  
100  
100  
10  
1
50 ms  
80  
1 ms  
dc operation  
60  
40  
20  
0
100 ms  
Single Non−repetitive  
Pulse T = 25°C  
C
V
= +15 V, −8 V  
GE  
Curves must be derated  
linearly with increase  
in temperature  
T = T  
− 25°C  
J
Jmax  
R
= 25 W  
Goff  
0.1  
1
10  
100  
1000  
10000  
0
200  
400  
600  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 27. IGBT FBSOA  
Figure 28. IGBT RBSOA  
100000  
15  
12  
9
V
CE  
= 480 V  
10000  
1000  
100  
10  
Ciss  
6
Coss  
3
f = 1 MHz  
= 0 V  
0
V
GE  
−3  
−6  
−9  
−12  
−15  
Crss  
1
0.1  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
0.1  
1
10  
100  
CHARGE (nC)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 29. IGBT Gate Voltage vs. Gate Charge  
Figure 30. IGBT Capacitance vs. Collector−Emitter  
Voltage  
www.onsemi.com  
11  
NXH50M65L4C2ESG  
TYPICAL CHARACTERISTICS − T1 − T2 PFC IGBT & D5 − D6 INVERSE DIODE  
225  
180  
135  
90  
225  
T = 150°C  
T = 25°C  
J
J
VGE=12V  
VGE=12V  
VGE=14V  
VGE=15V  
VGE=16V  
VGE=17V  
VGE=18V  
VGE=20V  
180  
135  
90  
45  
0
VGE=14V  
VGE=15V  
VGE=16V  
VGE=18V  
VGE=20V  
45  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
45  
0
0.5  
1
1.5  
2
2.5  
V
, COLLECTOR−EMITTER VOLTAGE (V)  
V
, COLLECTOR−EMITTER VOLTAGE (V)  
CE  
CE  
Figure 31. IGBT Typical Output Characteristic  
Figure 32. IGBT Typical Output Characteristic  
225  
45  
25°C  
150°C  
25°C  
125°C  
180  
135  
90  
45  
0
30  
15  
0
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
5
6
7
8
V
GE  
, GATE−EMITTER VOLTAGE (V)  
V , FORWARD VOLTAGE (V)  
F
Figure 33. IGBT Typical Transfer Characteristic  
Figure 34. Diode Typical Forward Characteristic  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
V
V
= +15 V, −8 V  
= 400 V  
Rg = 10 W  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
GE  
25°C  
125°C  
GE  
1
0.8  
0.6  
0.4  
0.2  
0
CE  
CE  
I
C
25°C  
125°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
5
10  
15  
20  
25  
30  
35  
40  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 35. Typical Turn ON Loss vs. IC  
Figure 36. Typical Turn ON Loss vs. Rg  
www.onsemi.com  
12  
NXH50M65L4C2ESG  
1.2  
1
0.7  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
V
V
= +15 V, −8 V  
= 400 V  
GE  
25°C  
GE  
25°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CE  
125°C  
125°C  
CE  
I
C
Rg = 10 W  
0.8  
0.6  
0.4  
0.2  
0
5
10  
15  
20  
25  
R (W)  
30  
35  
40  
45  
0
10  
20  
30  
40  
IC (A)  
50  
60  
70  
80  
80  
80  
g
Figure 37. Typical Turn OFF Loss vs. IC  
Figure 38. Typical Turn OFF Loss vs. RG  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= +15 V, −8 V  
= 400 V  
GE  
25°C  
125°C  
CE  
Rg = 10 W  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
GE  
25°C  
CE  
125°C  
I
C
0
0
0
10  
20  
30  
40  
IC (A)  
50  
60  
70  
5
10  
15  
20  
25  
R (W)  
30  
35  
40  
45  
g
Figure 39. Typical Reverse Recovery Energy Loss  
vs. IC  
Figure 40. Typical Reverse Recovery Energy Loss  
vs. RG  
450  
500  
V
V
I
= +15 V, −8 V  
= 400 V  
= 24 A  
V
V
= +15 V, −8 V  
= 400 V  
GE  
GE  
25°C  
400  
350  
300  
250  
200  
150  
100  
50  
25°C  
125°C  
125°C  
CE  
CE  
400  
300  
200  
Rg = 10 W  
C
T
d(off)  
T
d(off)  
100  
0
tf  
t f  
0
0
10  
20  
30  
40  
50  
60  
70  
5
10  
15  
20  
25  
30  
35  
40  
45  
R , GATE RESISTOR (W)  
g
IC, COLLECTOR CURRENT (A)  
Figure 41. Typical Turn−Off Switching Time vs. IC  
Figure 42. Typical Turn−Off Switching Time vs. Rg  
www.onsemi.com  
13  
NXH50M65L4C2ESG  
100  
80  
60  
40  
20  
0
90  
V
V
I
= +15 V, −8 V  
= 400 V  
= 24 A  
V
V
= +15 V, −8 V  
= 400 V  
GE  
GE  
25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
CE  
T
d(on)  
CE  
Rg = 10 W  
C
T
d(on)  
25°C  
125°C  
tr  
tr  
0
10  
20  
30  
40  
50  
60  
70  
80  
5
10  
15  
20  
25  
30  
35  
40  
45  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 43. Typical Turn−On Switching Time vs. IC  
Figure 44. Typical Turn−Off Switching Time vs. Rg  
50  
40  
30  
20  
60  
40  
20  
V
V
= +15 V, −8 V  
= 400 V  
GE  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
GE  
10  
0
CE  
25°C  
125°C  
25°C  
125°C  
CE  
Rg = 10 W  
I
C
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
10  
20  
30  
40  
50  
60  
70  
80  
I , COLLECTOR CURRENT (A)  
C
R , GATE RESISTOR (W)  
g
Figure 45. Typical Reverse Recovery Time vs. IC  
Figure 46. Typical Reverse Recovery Time vs. RG  
1500  
1200  
900  
600  
300  
0
1000  
900  
800  
700  
600  
500  
400  
300  
V
V
= +15 V, −8 V  
= 400 V  
GE  
CE  
Rg = 10 W  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
200  
100  
0
GE  
25°C  
25°C  
CE  
125°C  
125°C  
I
C
5
10  
15  
20  
25  
30  
35  
40  
45  
0
10  
20  
30  
40  
50  
60  
70  
80  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 47. Typical Reverse Recovery Charge vs. IC  
Figure 48. Typical Reverse Recovery Charge vs. Rg  
www.onsemi.com  
14  
NXH50M65L4C2ESG  
45  
40  
35  
30  
25  
20  
15  
80  
60  
40  
20  
0
V
V
= +15 V, −8 V  
= 400 V  
GE  
25°C  
125°C  
CE  
Rg = 10 W  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
GE  
25°C  
125°C  
CE  
10  
5
I
C
0
10  
20  
30  
40  
50  
60  
70  
80  
5
10  
15  
20  
25  
30  
35  
40  
45  
I , COLLECTOR CURRENT (A)  
C
R , GATE RESISTOR (W)  
g
Figure 49. Typical Reverse Recovery Peak Current  
vs. IC  
Figure 50. Typical Reverse Recovery Peak Current  
vs. RG  
3000  
2500  
2000  
1500  
1000  
2000  
1600  
1200  
800  
V
V
= +15 V, −8 V  
= 400 V  
GE  
25°C  
V
V
= +15 V, −8 V  
= 400 V  
= 24 A  
GE  
400  
0
500  
0
125°C  
25°C  
CE  
CE  
Rg = 10 W  
125°C  
I
C
0
10  
20  
30  
40  
50  
60  
70  
80  
5
10  
15  
20  
25  
30  
35  
40  
45  
R , GATE RESISTOR (W)  
g
I , COLLECTOR CURRENT (A)  
C
Figure 51. Typical di/dt Current Slope vs. IC  
Figure 52. Typical di/dt Current Slope vs. RG  
1
single pulse  
0.1  
0.01  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 53. IGBT Junction−to−Case Transient Thermal Impedance  
www.onsemi.com  
15  
NXH50M65L4C2ESG  
10  
1
single pulse  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.1  
0.01  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 54. Diode Junction−to−Case Transient Thermal Impedance  
200  
1000  
160  
50 ms  
100  
10  
1
1 ms  
100 ms  
120  
80  
40  
0
dc operation  
Single Non−repetitive  
V
GE  
= +15 V, −8 V  
Pulse T = 25°C  
C
Curves must be derated  
linearly with increase  
in temperature  
T = T  
− 25°C  
J
Jmax  
R
= 25 W  
Goff  
0.1  
1
10  
100  
1000  
0
200  
400  
600  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 55. IGBT FBSOA  
Figure 56. IGBT RBSOA  
10000  
1000  
100  
10  
15  
12  
9
Ciss  
Coss  
6
Crss  
f = 10 kHz  
= 0 V  
V
GE  
3
1
0
0.1  
0.1  
0
20  
40  
60  
80  
100 120 140 160  
1
10  
, COLLECTOR−EMITTER VOLTAGE (V)  
CE  
100  
Q , GATE CHARGE (nC)  
V
G
Figure 57. IGBT Gate Voltage vs. Gate Charge  
Figure 58. IGBT Capacitance vs. Collector−Emitter  
Voltage  
www.onsemi.com  
16  
NXH50M65L4C2ESG  
TYPICAL CHARACTERISTICS − D7, D8 PFC DIODE & D1 − D4 CONVERTER DIODE  
150  
100  
50  
225  
25°C  
25°C  
180  
135  
90  
45  
0
125°C  
125°C  
0
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
V , FORWARD VOLTAGE (V)  
F
V , FORWARD VOLTAGE (V)  
F
Figure 59. PFC Diode Forward Characteristics  
Figure 60. Converter Diode Forward  
Characteristics  
1
single pulse  
0.1  
0.01  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 61. PFC Diode Junction−to−Case Transient Thermal Impedance  
1
single pulse  
0.1  
@1% duty cycle  
@2% duty cycle  
@5% duty cycle  
@10% duty cycle  
@20% duty cycle  
@50% duty cycle  
0.01  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
PULSE ON TIME [s]  
Figure 62. Converter Diode Junction−to−Case Transient Thermal Impedance  
www.onsemi.com  
17  
NXH50M65L4C2ESG  
ORDERING INFORMATION  
Device Order Number  
Specific Device Marking  
NXH50M65L4C2ESG  
Package Type  
Shipping  
NXH50M65L4C2ESG  
6 Units / Tube  
DIP27 73.2x40.2  
(Pb−Free)  
www.onsemi.com  
18  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DIP27 73.2x40.2  
CASE 184AA  
ISSUE B  
DATE 15 JUL 2021  
MILLIMETERS  
DIM  
MIN  
NOM  
16.00  
MAX  
16.50  
8.20  
15.50  
7.80  
A
SEATING PLANE  
8.00  
A2  
A3  
b
SIDE VIEW  
C
6.00 REF  
1.20  
1.10  
0.70  
1.30  
0.90  
A
0.80  
c
72.70  
67.30  
73.20  
73.70  
68.30  
D
67.80  
D1  
D2  
E
B
15  
1
57.30 REF  
40.20  
39.70  
46.70  
40.70  
47.70  
47.20  
E1  
E2  
e
33.87 REF  
2.54 BSC  
4.20  
4.00  
4.40  
F
8.00 REF  
4.00  
L
3.50  
4.50  
L1  
M
4°  
5°  
6°  
16  
27  
END VIEW  
NOTES:  
TOP VIEW  
1.Dimensioning and tolerancing as per ASME Y14.5M, 2009  
2.Controlling Dimension: Millimeters  
3.Dimensions are exclusive of Burrs, Mold Flash, and Tiebar extrusions  
4.Dimensions ”b” and ”c” apply to plated leads  
SIDE VIEW  
5.Position of the leads is determine at the root of the lead where it exits  
the package body  
16  
27  
GENERIC  
MARKING DIAGRAM*  
XXXXXXXXXXXXXXXXX  
ZZZATYWW  
15  
1
PIN 1 Identifier  
BOTTOM VIEW  
XXX = Specific Device Code  
ZZZ = Assembly Lot Code  
A
T
Y
= Assembly Site  
= Test Site  
= Year  
WW = Work Week  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON23070H  
DIP27 73.2x40.2  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NXH50M65L4C2SG

650V 50A Converter-Inverter-PFCs Module
ONSEMI

NXH50M65L4Q1PTG

IGBT Module, H6.5 Topology, 650 V, 50 A IGBT, 650 V, 50 A Diode
ONSEMI

NXH50M65L4Q1SG

IGBT Module, H6.5 Topology, 650 V, 50 A IGBT, 650 V, 50 A Diode
ONSEMI

NXH600B100H4Q2F2PG

Si/SiC Hybrid Modules, 3 Channel Symmetric Boost 1000 V, 200 A IGBT, 1200 V, 60 A SiC Diode
ONSEMI

NXH600B100H4Q2F2S1G

Si/SiC Hybrid Modules, 3 Channel Flying Capacitor Boost 1000 V, 200 A IGBT, 1200 V, 60 A SiC Diode
ONSEMI

NXH600B100H4Q2F2SG

Si/SiC Hybrid Modules, 3 Channel Symmetric Boost 1000 V, 200 A IGBT, 1200 V, 60 A SiC Diode
ONSEMI

NXH600N65L4Q2F2PG

Power Integrated Module (PIM), I-Type NPC 650 V, 600 A IGBT, 650 V, 300 A Diode
ONSEMI

NXH600N65L4Q2F2SG

Power Integrated Module (PIM), I-Type NPC 650 V, 600 A IGBT, 650 V, 300 A Diode
ONSEMI

NXH75M65L4Q1PTG

IGBT Module, H6.5 Topology, 650 V, 75 A IGBT, 650 V, 50 A Diode
ONSEMI

NXH75M65L4Q1SG

IGBT Module, H6.5 Topology, 650 V, 75 A IGBT, 650 V, 50 A Diode
ONSEMI

NXH800A100L4Q2F2P1G

IGBT Module, A-Type NPC 1000 V, 800 A IGBT
ONSEMI

NXH800A100L4Q2F2P2G

IGBT Module, A-Type NPC 1000 V, 800 A IGBT
ONSEMI