RF1K49211 [RENESAS]

7A, 12V, 0.02ohm, N-CHANNEL, Si, POWER, MOSFET, MS-012AA;
RF1K49211
型号: RF1K49211
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

7A, 12V, 0.02ohm, N-CHANNEL, Si, POWER, MOSFET, MS-012AA

开关 光电二极管 晶体管
文件: 总7页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49211  
Data Sheet  
August 1999  
File Number 4303.1  
7A, 12V, 0.020 Ohm, Logic Level, Single  
N-Channel LittleFET™ Power MOSFET  
Features  
• 7A, 12V  
• r = 0.020Ω  
The RF1K49211 Single N-Channel power MOSFET is  
manufactured using an advanced MegaFET process. This  
process, which uses feature sizes approaching those of LSI  
integrated circuits, gives optimum utilization of silicon,  
resulting in outstanding performance. It was designed for  
use in applications such as switching regulators, switching  
converters, motor drivers, relay drivers, and low-voltage bus  
switches. This product achieves full-rated conduction at a  
gate bias in the 3V - 5V range, thereby facilitating true on-off  
power control directly from logic level (5V) integrated circuits.  
DS(ON)  
®
Temperature Compensating PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA49211.  
Ordering Information  
NC(1)  
DRAIN(8)  
DRAIN(7)  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49211  
RF1K49211  
MS-012AA  
SOURCE(2)  
NOTE: When ordering, use the entire part number. For ordering in  
tape and reel, add the suffix 96 to the part number, i.e., RF1K4921196.  
SOURCE(3)  
GATE(4)  
DRAIN(6)  
DRAIN(5)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
8-129  
RF1K49211  
o
Absolute Maximum Ratings T = 25 C Unless Otherwise Specified  
A
RF1K49211  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
12  
12  
V
V
V
DSS  
Drain to Gate Voltage (Rgs = 20KΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
±10  
GS  
Continuous (Pulse Width = 1s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
7
A
D
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Refer to UIS Curve  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
W
W/ C  
D
o
o
0.016  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, (Figure 13)  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
12  
1
-
-
-
-
2
DSS  
D
GS  
V
V
= V , I = 250µA, (Figure 12)  
V
GS(TH)  
GS  
DS D  
o
I
V
V
= 12V,  
= 0V  
T
T
= 25 C  
-
1
µA  
µA  
nA  
DSS  
DS  
GS  
A
A
o
= 150 C  
-
-
50  
100  
0.020  
250  
-
Gate to Source Leakage Current  
Drain to Source On Resistance  
Turn-On Time  
I
V
= ±10V  
-
-
GSS  
GS  
r
I
= 7A, V  
= 5V, (Figures 9, 11)  
7A,  
D
-
-
DS(ON)  
D
GS  
t
V
R
R
= 6V, I  
-
-
ns  
ON  
DD  
= 0.86, V  
= 5V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
50  
150  
120  
160  
-
ns  
d(ON)  
= 25Ω  
GS  
t
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
350  
75  
45  
2.5  
ns  
OFF  
Total Gate Charge  
Gate Charge at 5V  
Threshold Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
DD  
= 9.6V,  
7A,  
-
60  
35  
2
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Q
-
g(5)  
R
= 1.37Ω  
L
I
= 1.0mA  
Q
g(REF)  
(Figure15)  
-
g(TH)  
Input Capacitance  
C
V
= 12V, V  
GS  
= 0V,  
-
-
-
-
1850  
1600  
600  
-
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
DS  
f = 1MHz  
(Figure 14)  
Output Capacitance  
C
C
-
-
Reverse Transfer Capacitance  
Thermal Resistance Junction to Ambient  
o
R
Pulse Width = 1s  
62.5  
C/W  
θJA  
Device mounted on FR-4 material  
Source to Drain Diode Specifications  
PARAMETERS  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
95  
UNITS  
V
V
I
I
= 7A  
-
-
-
-
SD  
SD  
t
= 7A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
8-130  
RF1K49211  
Typical Performance Curves  
1.2  
1.0  
0.8  
8
6
4
0.6  
0.4  
2
0
0.2  
0
75  
100  
125  
150  
50  
0
25  
50  
75  
100  
125  
150  
25  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
0.01  
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
SINGLE PULSE  
0.001  
DM  
JA  
θ
θ
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
10  
0
1
2
3
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
1
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
100  
10  
300  
T
= MAX RATED  
o
J
FOR TEMPERATURES  
= 25 C  
T
A
o
o
T
= 25 C  
ABOVE 25 C DERATE PEAK  
A
CURRENT AS FOLLOWS:  
100  
150 - T  
A
I = I  
25  
5ms  
10ms  
V
= 5V  
125  
GS  
1
0.1  
100ms  
10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
1s  
OPERATION IN THIS  
AREA MAY BE  
DC  
V
= 12V  
LIMITED BY r  
DSS(MAX)  
DS(ON)  
0.01  
1
10  
-5  
-4  
-3  
-2  
-1  
10  
0
1
0.1  
1
10  
50  
10  
10  
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
t, PULSE WIDTH (s)  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
8-131  
RF1K49211  
Typical Performance Curves (Continued)  
50  
40  
30  
20  
10  
50  
PULSE DURATION = 80µs  
V
= 10V  
= 5V  
GS  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
V
A
GS  
V
= 4V  
GS  
o
STARTING T = 25 C  
J
10  
V
= 3V  
GS  
o
STARTING T = 150 C  
J
If R = 0  
= (L)(I )/(1.3*RATED BV  
V
= 2.5V  
GS  
t
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
t
- V ) +1]  
DD  
AV  
AS  
0.1  
DSS  
0
1
0
1
2
3
4
5
0.01  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
AV  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 7. SATURATION CHARACTERISTICS  
50  
200  
150  
100  
50  
V
= 10V  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DD  
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
25 C  
I
I
I
I
= 15A  
V
= 10V  
D
D
D
D
DD  
40  
30  
20  
10  
0
= 7.0A  
= 3.5A  
= 1.75A  
o
-55 C  
o
150 C  
0
2
2.5  
3
3.5  
4
4.5  
5
0
1
2
3
4
5
V
, GATE TO SOURCE VOLTAGE (V)  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
350  
300  
250  
200  
150  
100  
50  
2.0  
V
= 6V, I = 7A, R = 0.86Ω  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DD  
D
L
t
f
V
= 5V, I = 7A  
GS  
D
t
r
1.5  
1.0  
0.5  
0.0  
t
d(OFF)  
t
d(ON)  
0
0
10  
20  
30  
40  
50  
-80  
-40  
0
40  
80  
120  
160  
o
R
, GATE TO SOURCE RESISTANCE ()  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 10. SWITCHING TIME vs GATE TO SOURCE  
RESISTANCE  
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
8-132  
RF1K49211  
Typical Performance Curves (Continued)  
1.2  
1.2  
1.1  
1.0  
0.9  
0.8  
V
= V , I = 250µA  
I = 250µA  
D
GS  
DS  
D
1.0  
0.8  
0.6  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
12  
9
5.00  
3.75  
2.50  
3500  
V
= 0V, f = 1MHz  
GS  
ISS  
C
OSS  
C
C
C
= C  
+ C  
GS  
= C  
GD  
V
= BV  
DSS  
V
= BV  
DSS  
DD  
DD  
3000  
2500  
2000  
1500  
1000  
500  
RSS  
OSS  
GD  
= C  
+ C  
GD  
DS  
C
ISS  
R
= 1.71Ω  
L
I
= 0.75mA  
G(REF)  
6
V
= 5V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
1.25  
0
3
V
V
V
V
= BV  
C
DD  
DD  
DD  
DD  
DSS  
RSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
0
I
I
0
G(REF)  
G(REF)  
0
2
4
6
8
10  
12  
t, TIME (µs)  
---------------------  
---------------------  
20  
80  
I
I
G(ACT)  
G(ACT)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR  
CONSTANT GATE CURRENT  
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS  
8-133  
RF1K49211  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
d(OFF)  
V
DS  
t
d(ON)  
t
t
f
r
V
DS  
R
L
90%  
V
90%  
GS  
+
V
DD  
10%  
10%  
-
0
0
DUT  
R
GS  
90%  
50%  
V
GS  
50%  
V
GS  
PULSE WIDTH  
10%  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
V
DS  
V
Q
R
DD  
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
GS  
Q
+
-
g(5)  
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
G(REF)  
Q
g(TH)  
I
G(REF)  
0
FIGURE 20. GATE CHARGE TEST CIRCUIT  
FIGURE 21. GATE CHARGE WAVEFORMS  
Soldering Precautions  
o
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which  
the devices are subjected.  
3. Themaximumtemperaturegradientshouldbelessthan5 C  
per second when changing from preheating to soldering.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced cool-  
ing will increase the temperature gradient and may result  
in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. Thedeltatemperaturebetweenthepreheatandsoldering  
o
should always be less than 100 C. Failure to preheat the  
device can result in excessive thermal stress which can  
damage the device.  
7. During cooling, mechanical stress or shock should be  
avoided.  
8-134  
RF1K49211  
PSPICE Electrical Model  
SUBCKT RF1K49211 2 1 3 ;  
rev 6/26/96  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
CA 12 8 2.11e-9  
CB 15 14 2.99e-9  
CIN 6 8 1.30e-9  
RLDRAIN  
RSLC1  
51  
DBREAK  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
+
RSLC2  
5
51  
ESLC  
11  
-
50  
EBREAK 11 7 17 18 15.81  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
IT 8 17 1  
6
-
18  
22  
MMED  
9
20  
LDRAIN 2 5 1e-9  
LGATE 1 9 1.04e-9  
LSOURCE 3 7 2.37e-10  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 3.50e-3  
RGATE 9 20 1.57  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
-
RLDRAIN 2 5 10  
RLGATE 1 9 10.4  
RLSOURCE 3 7 2.37  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 11.42e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),3))}  
.MODEL DBODYMOD D (IS = 1.36e-12 RS = 1.65e-2 TRS1 = 3.88e-3 TRS2 = -5.45e-6 CJO = 2.95e-9 TT = 2.70e-8 M = 0.43)  
.MODEL DBREAKMOD D (RS = 2.75e-3 TRS1 = -5.01e-4 TRS2 = -1.60e-4)  
.MODEL DPLCAPMOD D (CJO = 2.40e-9 IS = 1e-30 N = 10 M = 0.55)  
.MODEL MMEDMOD NMOS (VTO = 1.62 KP = 1.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.57)  
.MODEL MSTROMOD NMOS (VTO = 2.08 KP = 98.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.402 KP = 0.067 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.7 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 8.51e-4 TC2 = 7.88e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.55e-2 TC2 = 5.78e-5)  
.MODEL RSLCMOD RES (TC1 =1.02e-4 TC2 = 1.07e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.20e-3 TC2 = -7.29e-6)  
.MODEL RVTEMPMOD RES (TC1 = -5.10e-4 TC2 = 8.07e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.1 VOFF = -1.1)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.1 VOFF = -4.1)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF = 2.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.5 VOFF = -0.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
8-135  

相关型号:

RF1K4921196

TRANSISTOR | MOSFET | N-CHANNEL | 12V V(BR)DSS | 7A I(D) | SO
FAIRCHILD

RF1K49221

2.5A, 60V, 0.130 Ohm, ESD Rated, Dual N-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922196

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 60V V(BR)DSS | 2.5A I(D) | SO
ETC

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922396

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K4922396

2.5A, 30V, 0.36ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, MS-012AA
RENESAS

RF1K49224

3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922496

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
ETC

RF1S0CA137KFT

Fixed Resistor, Metal Film, 1W, 137000ohm, 350V, 1% +/-Tol, 100ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA16R5F

Fixed Resistor, Metal Film, 1W, 16.5ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA1R10JT

Fixed Resistor, Metal Film, 1W, 1.1ohm, 350V, 5% +/-Tol, 200ppm/Cel, Surface Mount, 3916, CHIP
OHMITE