RT5771B [RICHTEK]

暂无描述;
RT5771B
型号: RT5771B
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总13页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT5771B  
3A, 1MHz, Synchronous Step-Down Converter  
General Description  
Features  
High Efficiency : Up to 95%  
The RT5771B is a high efficiency synchronous, step-down  
DC-DC converter. Its input voltage ranges from 2.7V to  
5.5V that provides an adjustable regulated output voltage  
from 0.6V to VIN while delivering up to 3A of output current.  
The internal synchronous low on-resistance power  
switches increase efficiency and eliminate the need for  
an external Schottky diode. The switching frequency is  
fixed internally at 1MHz. The 100% duty cycle provides  
low dropout operation, hence extending battery life in  
portable systems. Current mode operation with internal  
compensation allows the transient response to be  
optimized over a wide range of loads and output capacitors.  
The RT5771B is available in a WDFN-10L 3x3 package.  
High Efficiency at Light Load  
Low RDS(ON) Power Switches : 69mΩ/49mΩ  
Fixed Frequency : 1MHz  
No Schottky Diode Required  
Internal Compensation  
0.6V Reference Allows Low Output Voltage  
Low Dropout Operation : 100% Duty Cycle  
OCP, UVP, OTP  
Applications  
Portable Instruments  
Battery Powered Equipment  
Notebook Computers  
Distributed Power Systems  
IP Phones  
Ordering Information  
RT5771B  
Package Type  
QW : WDFN-10L 3x3 (W-Type)  
Digital Cameras  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Pin Configuration  
(TOP VIEW)  
Note :  
1
2
3
4
5
10  
9
EN  
PGOOD  
NC  
SW  
FB  
VCC  
VIN  
GND  
GND  
Richtek products are :  
8
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Suitable for use in SnPb or Pb-free soldering processes.  
7
11  
6
SW  
WDFN-10L 3x3  
Marking Information  
M3= : Product Code  
YMDNN : Date Code  
M3=YM  
DNN  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
1
RT5771B  
Typical Application Circuit  
L
RT5771B  
1.5µH  
6, 7  
3
2
V
V
OUT  
1.05V  
VIN  
IN  
SW  
C
C
10µF  
OUT  
IN  
VCC  
22µF x 2  
C
FF  
560pF  
R1  
6.2k  
C1  
1µF  
R3  
100k  
1
FB  
9
R2  
8.2k  
PGOOD  
EN  
PGOOD  
Chip Enable  
4, 5,  
10  
GND  
11 (Exposed Pad)  
Table 1. Recommended Component Selection  
R1 (k)  
37  
R2 (k)  
8.2  
L (H)  
2
VOUT (V)  
3.3  
CFF (pF)  
430  
COUT (F)  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
2.5  
26  
8.2  
430  
2
1.8  
16.5  
12.3  
8.2  
8.2  
510  
1.5  
1.5  
1.5  
1.5  
1.5  
8.2  
560  
1.2  
8.2  
620  
1
5.6  
8.2  
680  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Feedback input. This pin receives the feedback voltage from a resistive  
voltage divider connected across the output.  
1
FB  
2
3
VCC  
VIN  
Supply voltage input. Decouple this pin to GND with at least 1F ceramic cap.  
Power input. Decouple this pin to GND with at least 10F ceramic cap.  
4, 5,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
GND  
11 (Exposed Pad)  
6, 7  
8
SW  
NC  
Switch node. Connect this pin to the inductor.  
No internal connection.  
Power good indicator. This pin is an open drain logic output. The PGOOD will  
be pulled to ground when the output voltage is less than 90% of the target  
output voltage.  
9
PGOOD  
EN  
10  
Enable control input. Pull high the EN pin to turn on the converter.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS5771B-01 June 2019  
RT5771B  
Functional Block Diagram  
EN  
EN  
VIN  
ISEN  
PGOOD  
PGOOD  
Slope  
Com  
OSC  
V
REF  
0.6V  
Output  
Clamp  
OC  
Limit  
EA  
FB  
Driver  
Int-SS  
SW  
Control  
Logic  
0.54V  
NISEN  
PGOOD  
GND  
Current Limit  
OTP  
0.2V  
POR  
VCC  
UV  
Operation  
The RT5771B is a synchronous low voltage Buck Converter  
that can support the input voltage range from 2.7V to 5.5V  
and the output current can be up to 3A. The RT5771B  
uses a constant frequency, current mode architecture. In  
normal operation, the high-side P-MOSFET is turned on  
when the Switch Controller is set by the oscillator (OSC)  
and is turned off when the current comparator resets the  
switch controller. High-side MOSFET peak current is  
measured by internal RSENSE. The Current Signal is where  
Slope Compensator works together with sensing voltage  
of RSENSE. The error amplifier EA adjusts COMP voltage  
by comparing the feedback signal (VFB) from the output  
voltage with the internal 0.6V reference. When the load  
current increases, it causes a drop in the feedback voltage  
relative to the reference, the COMP voltage then rises to  
allow higher inductor current to match the load current.  
Oscillator (OSC)  
The internal oscillator runs at nominal frequency 1MHz.  
PGOOD Comparator  
When the feedback voltage (VFB) is higher than threshold  
voltage 0.54V, the PGOODopen drain output will be high  
impedance.  
Enable  
There is an internal pull down 500kΩ resistor at EN pin.  
When the ENpin is higher than 1.6V, the converter will be  
turned on. The ENpin can be connected to VINthrough a  
100kΩ resistor for automatic startup.  
Soft-Start (SS)  
An internal current source charges an internal capacitor  
to build the soft-start ramp voltage. The VFB voltage will  
track the internal ramp voltage during soft-start interval.  
The typical soft-start time is 700μs.  
UV Comparator  
If the feedback voltage (VFB) is lower than threshold voltage  
0.2V, the UV Comparator's output will go high and the  
Switch Controller will turn off the high-side MOSFET.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
3
RT5771B  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage, VIN, VCC -------------------------------------------------------------------------------- 0.3V to 6.5V  
SW to GND  
DC---------------------------------------------------------------------------------------------------------------------- 0.3V to (VIN + 0.3V)  
< 100ns --------------------------------------------------------------------------------------------------------------- 2.5V to 9V  
Other Pins------------------------------------------------------------------------------------------------------------ 0.3V to 6.5V  
Power Dissipation, PD @ TA = 25°C  
WDFN-10L 3x3 ------------------------------------------------------------------------------------------------------ 1.429W  
Package Thermal Resistance (Note 2)  
WDFN-10L 3x3, θJA ------------------------------------------------------------------------------------------------ 70°C/W  
WDFN-10L 3x3, θJC ------------------------------------------------------------------------------------------------ 8.2°C/W  
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------ 260°C  
Junction Temperature ---------------------------------------------------------------------------------------------- 150°C  
Storage Temperature Range ------------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)--------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage, VIN, VCC -------------------------------------------------------------------------------- 2.7V to 5.5V  
Junction Temperature Range------------------------------------------------------------------------------------- 10°C to 105°C  
Electrical Characteristics  
(VIN = 5.5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
VREF  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
Feedback Reference Voltage  
Feedback Leakage Current  
0.594  
--  
0.6  
0.1  
110  
--  
0.606  
0.4  
170  
1
IFB  
A  
Active , VFB = 0.7V, not switching  
Shutdown  
--  
DC Bias Current  
A  
--  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Switch Leakage Current  
VIN = 2.7V to 5.5V, IOUT = 0A  
(Note 5)  
--  
0.3  
--  
--  
%/V  
%
1  
--  
1
--  
1
A  
Switching Frequency  
0.8  
--  
1
1.2  
--  
MHz  
RDS(ON)_P  
RDS(ON)_N  
ILIM  
High-Side  
Low-Side  
69  
49  
Switch  
On-Resistance  
m  
--  
--  
P-MOSFET Current Limit  
4.8  
2.2  
2
--  
2.4  
2.2  
--  
--  
2.6  
2.4  
--  
A
V
VCC rising  
VCC falling  
Under-Voltage Lockout  
Threshold  
VUVLO  
Logic-High VIH  
1.6  
--  
EN Input Voltage  
V
Logic-Low  
VIL  
--  
0.4  
--  
EN Pull Low Resistance  
--  
500  
150  
k  
C  
Over-Temperature Protection  
TSD  
--  
--  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS5771B-01 June 2019  
RT5771B  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Over-Temperature Protection  
Hysteresis  
--  
20  
--  
C  
Soft-Start Time  
tSS  
--  
--  
700  
100  
--  
--  
s  
VOUT Discharge Resistance  
VOUT Under-Voltage Protection  
(Latch-Off)  
--  
33  
40  
%
Measures FB, with respect to  
VREF  
Power Good  
85  
--  
90  
5
--  
--  
%
%
Power Good Hysteresis  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured under natural convection (still air) at TA = 25°C with the component mounted on a high effective-  
thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θJC is measured at the  
exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guaranteed by design.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
5
RT5771B  
Typical Operating Characteristics  
Output Voltage vs. Output Current  
Efficiency vs. Output Current  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
100  
90  
80  
70  
VIN = 5V, VOUT = 3.3V  
VIN = 3.3V, VOUT = 1.05V  
VIN = 5V, VOUT = 1.05V  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 3.3V  
IOUT = 0A to 3A  
10  
VOUT = 1.05V, IOUT = 0A to 3A  
0
0.5  
1
1.5  
2
2.5  
3
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
Output Voltage vs. Output Current  
Switching Frequency vs. Temperature  
3.34  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
VIN = 3.3V  
VIN = 5V  
VIN = 5V, VOUT = 3.3V, IOUT = 0A to 3A  
VOUT = 1.05V, IOUT = 0.6A  
0
0.5  
1
1.5  
2
2.5  
3
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Output Current (A)  
Switching Frequency vs. Temperature  
Reference Voltage vs. Temperature  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
VIN = 5V, VOUT = 3.3V, IOUT = 0.6A  
IOUT = 0.6A  
75 100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
Temperature (°C)  
Temperature (°C)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS5771B-01 June 2019  
RT5771B  
UVLO Threshold vs. Temperature  
EN Threshold Voltage vs. Temperature  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
Rising  
Falling  
Rising  
Falling  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Load Transient Response  
Load Transient Response  
VOUT  
(50mV/Div)  
VOUT  
(100mV/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 5V, VOUT = 3.3V, IOUT = 1A to 4A  
VIN = 5V, VOUT = 1.05V, IOUT = 1A to 4A  
Time (100μs/Div)  
Time (100μs/Div)  
Output Ripple Voltage  
Output Ripple Voltage  
VOUT  
(10mV/Div)  
VOUT  
(10mV/Div)  
VSW  
(5V/Div)  
VSW  
(5V/Div)  
VIN = 5V, VOUT = 3.3V, IOUT = 4A  
Time (500ns/Div)  
VIN = 5V, VOUT = 1.05V, IOUT = 4A  
Time (500ns/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
7
RT5771B  
Power On from VIN  
Power Off from VIN  
VIN  
(5V/Div)  
VIN  
(5V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
VPGOOD  
(10V/Div)  
VPGOOD  
(10V/Div)  
IOUT  
(5A/Div)  
IOUT  
(5A/Div)  
VIN = 5V, VOUT = 1.05V, IOUT = 4A  
Time (2.5ms/Div)  
VIN = 5V, VOUT = 1.05V, IOUT = 4A  
Time (5ms/Div)  
Power On from VIN  
Power Off from VIN  
VIN  
(5V/Div)  
VIN  
(5V/Div)  
VOUT  
(5V/Div)  
VOUT  
(5V/Div)  
VPGOOD  
(10V/Div)  
VPGOOD  
(10V/Div)  
IOUT  
(5A/Div)  
IOUT  
(5A/Div)  
VIN = 5V, VOUT = 3.3V, IOUT = 4A  
Time (2.5ms/Div)  
VIN = 5V, VOUT = 3.3V, IOUT = 4A  
Time (5ms/Div)  
Power On from EN  
Power Off from EN  
VEN  
(5V/Div)  
VEN  
(5V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
VPGOOD  
(5V/Div)  
VPGOOD  
(5V/Div)  
IOUT  
(5A/Div)  
IOUT  
(5A/Div)  
VIN = 5V, VOUT = 1.05V, IOUT = 4A  
VIN = 5V, VOUT = 1.05V, IOUT = 4A  
Time (500μs/Div)  
Time (500μs/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS5771B-01 June 2019  
RT5771B  
Power Off from EN  
Power On from EN  
VEN  
(5V/Div)  
VEN  
(5V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
VPGOOD  
(5V/Div)  
VPGOOD  
(5V/Div)  
IOUT  
(5A/Div)  
IOUT  
(5A/Div)  
VIN = 5V, VOUT = 3.3V, IOUT = 4A  
VIN = 5V, VOUT = 3.3V, IOUT = 4A  
Time (500μs/Div)  
Time (500μs/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
9
RT5771B  
Application Information  
reduce the output surge current. The internal 0.6V  
reference takes over the loop control once the internal  
ramping-up voltage becomes higher than 0.6V.  
The RT5771B is a single-phase step-down converter. It  
provides single feedback loop, current mode control with  
fast transient response. An internal 0.6V reference allows  
the output voltage to be precisely regulated for low output  
voltage applications. Afixed switching frequency (1MHz)  
oscillator and internal compensation are integrated to  
minimize external component count. Protection features  
include over-current protection, under-voltage protection  
and over-temperature protection.  
UVLO Protection  
The RT5771B has input under-voltage lockout protection  
(UVLO). If the input voltage exceeds the UVLO rising  
threshold voltage (2.4V typ.), the converter resets and  
prepares the PWM for operation. If the input voltage falls  
below the UVLO falling threshold voltage during normal  
operation, the device will stop switching. The UVLO rising  
and falling threshold voltage has a hysteresis to prevent  
noise-caused reset. The power sequence of the VCC and  
VINneed to be considered if they are powered separately.  
The driver voltage of high-side MOSET comes from VIN  
input and internal control circuit is powered by VCC. The  
VCC has to be powered earlier than the VIN to ensure  
that the high-side MOSFET has never turned on before  
the internal control circuit is ready.At power off, the voltage  
at the VINhas to be removed before the VCC goes below  
the threshold of UVLO.  
Output Voltage Setting  
Connect a resistive voltage divider at the FB between VOUT  
andGNDto adjust the output voltage. The output voltage  
is set according to the following equation :  
R1  
R2  
VOUT = VREF 1  
where VREF is the feedback reference voltage 0.6V (typ.).  
V
OUT  
R1  
FB  
R2  
Inductor Selection  
GND  
The switching frequency (on-time) and operating point (%  
ripple or LIR) determine the inductor value as shown below:  
Figure 1. Setting VOUT with a Voltage Divider  
V
V V  
IN OUT  
OUT  
L =  
Chip Enable and Disable  
f
LIR I  
V  
SW  
LOAD(MAX) IN  
The EN pin allows for power sequencing between the  
controller bias voltage and another voltage rail. The  
RT5771B remains in shutdown if the ENpin is lower than  
400mV. When the EN pin rises above the VEN trip point,  
the RT5771B begins a new initialization and soft-start  
cycle.  
where LIR is the ratio of the peak-to-peak ripple current to  
the average inductor current.  
Find a low loss inductor having the lowest possible DC  
resistance that fits in the allotted dimensions. Ferrite cores  
are often the best choice, although powdered iron is  
inexpensive and can work well at 200kHz. The core must  
be large enough not to saturate at the peak inductor current  
(IPEAK) :  
Internal Soft-Start  
The RT5771B provides an internal soft-start function to  
prevent large inrush current and output voltage overshoot  
when the converter starts up. The soft-start (SS)  
automatically begins once the chip is enabled.During soft-  
start, the internal soft-start capacitor becomes charged  
and generates a linear ramping up voltage across the  
capacitor. This voltage clamps the voltage at the FB pin,  
causing PWM pulse width to increase slowly and in turn  
LIR  
2
IPEAK = ILOAD(MAX)  
+
ILOAD(MAX)  
The calculation above serves as a general reference. To  
further improve transient response, the output inductor  
can be further reduced. This relation should be considered  
along with the selection of the output capacitor.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS5771B-01 June 2019  
RT5771B  
Input Capacitor Selection  
For a given output voltage sag specification, the ESR value  
can be determined.  
High quality ceramic input decoupling capacitor, such as  
X5R or X7R, with values greater than 10μF are  
recommended for the input capacitor. The X5R and X7R  
ceramic capacitors are usually selected for power regulator  
capacitors because the dielectric material has less  
capacitance variation and more temperature stability.  
Another parameter that has influence on the output voltage  
sag is the equivalent series inductance (ESL). The rapid  
change in load current results in di/dt during transient.  
Therefore, the ESL contributes to part of the voltage sag.  
Using a capacitor with low ESL can obtain better transient  
performance. Generally, using several capacitors  
connected in parallel can have better transient performance  
than using a single capacitor for the same total ESR.  
Voltage rating and current rating are the key parameters  
when selecting an input capacitor. Generally, selecting an  
input capacitor with voltage rating 1.5 times greater than  
the maximum input voltage is a conservatively safe design.  
Unlike the electrolytic capacitor, the ceramic capacitor has  
relatively low ESR and can reduce the voltage deviation  
during load transient. However, the ceramic capacitor can  
only provide low capacitance value. Therefore, use a mixed  
combination of electrolytic capacitor and ceramic capacitor  
to obtain better transient performance.  
The input capacitor is used to supply the input RMS  
current, which can be approximately calculated using the  
following equation :  
V
V
V
OUT  
V
IN  
OUT  
I
= I  
1  
IN_RMS  
LOAD  
IN  
Power Good Output (PGOOD)  
The next step is selecting a proper capacitor for RMS  
current rating. One good design is using more than one  
capacitor with low equivalent series resistance (ESR) in  
parallel to form a capacitor bank.  
PGOODis an open-drain type output and requires a pull-  
up resistor. PGOOD is actively held low in soft-start,  
standby, and shutdown. It is released when the output  
voltage rises above 90% of nominal regulation point. The  
PGOOD signal goes low if the output is turned off or is  
10% below its nominal regulation point.  
The input capacitance value determines the input ripple  
voltage of the regulator. The input voltage ripple can be  
approximately calculated using the following equation :  
Under-Voltage Protection (UVP)  
IOUT(MAX) 0.25  
V  
=
IN  
The output voltage can be continuously monitored for under  
voltage. When under-voltage protection is enabled, both  
UGATE and LGATE gate drivers will be forced low if the  
output is less than 33% of its set voltage threshold. The  
UVP will be ignored for at least 3ms (typ.) after start up or  
a rising edge on the ENthreshold. Toggle ENthreshold or  
cycle VIN to reset the UVP fault latch and restart the  
controller.  
CIN fSW  
Output Capacitor Selection  
The output capacitor and the inductor form a low pass  
filter in the Buck topology. In steady state condition, the  
ripple current flowing into/out of the capacitor results in  
ripple voltage. The output voltage ripple (VP-P) can be  
calculated by the following equation :  
1
Over-Current Protection (OCP)  
VP_P = LIRILOAD(MAX) ESR +  
8COUT fSW  
The RT5771B provides over-current protection by detecting  
high-side MOSFET peak inductor current. If the sensed  
peak inductor current is over the current limit threshold,  
the OCP will be triggered. When OCP is tripped, the  
RT5771B will keep the over current threshold level until  
the over current condition is removed.  
When load transient occurs, the output capacitor supplies  
the load current before the controller can respond.  
Therefore, the ESR will dominate the output voltage sag  
during load transient. The output voltage undershoot (VSAG  
)
can be calculated by the following equation :  
VSAG = ILOAD ESR  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5771B-01 June 2019  
www.richtek.com  
11  
RT5771B  
Thermal Shutdown (OTP)  
conductivity four-layer test board. The maximum power  
dissipation at TA = 25°C can be calculated as below :  
The device implements an internal thermal shutdown  
function when the junction temperature exceeds 150°C.  
The thermal shutdown forces the device to stop switching  
when the junction temperature exceeds the thermal  
shutdown threshold. Once the die temperature decreases  
below the hysteresis of 20°C, the device reinstates the  
power up sequence.  
PD(MAX) = (125°C 25°C) / (70°C/W) = 1.429W for a  
WDFN-10L 3x3 package.  
The maximum power dissipation depends on the operating  
ambient temperature for the fixed TJ(MAX) and the thermal  
resistance, θJA. The derating curves in Figure 2 allows  
the designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
Thermal Considerations  
The junction temperature should never exceed the  
absolute maximum junction temperature TJ(MAX), listed  
under Absolute Maximum Ratings, to avoid permanent  
damage to the device. The maximum allowable power  
dissipation depends on the thermal resistance of the IC  
package, the PCB layout, the rate of surrounding airflow,  
and the difference between the junction and ambient  
temperatures. The maximum power dissipation can be  
calculated using the following formula :  
Layout Considerations  
Layout is very important in high frequency switching  
converter design. The PCB can radiate excessive noise  
and contribute to converter instability with improper layout.  
Certain points must be considered before starting a layout  
using the RT5771B.  
Make the traces of the main current paths as short and  
wide as possible.  
Put the input capacitor as close as possible to the device  
PD(MAX) = (TJ(MAX) TA) / θJA  
pins (VIN andGND).  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJA is the junction-to-ambient  
thermal resistance.  
SW node encounters high frequency voltage swings so  
it should be kept in a small area. Keep sensitive  
components away from the SW node to prevent stray  
capacitive noise pick-up.  
For continuous operation, the maximum operating junction  
temperature indicated under Recommended Operating  
Conditions is 125°C. The junction-to-ambient thermal  
resistance, θJA, is highly package dependent. For a  
WDFN-10L 3x3 package, the thermal resistance, θJA, is  
70°C/W on a standard JEDEC 51-7 high effective-thermal-  
Ensure all feedback network connections are short and  
direct. Place the feedback network as close to the chip  
as possible.  
TheGNDpin and Exposed Pad should be connected to  
a strong ground plane for heat sinking and noise  
protection.  
1.5  
1.4  
Four-Layer PCB  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
An example of PCB layout guide is shown in Figure 3  
for reference.  
SW should be connected to  
inductor by wide and short trace.  
Keep sensitive components away  
from this trace.  
The voltage divider must  
be connected as close to  
the device as possible.  
R1  
V
OUT  
R2  
R
EN  
1
2
3
4
5
10  
9
EN  
PGOOD  
NC  
SW  
FB  
VCC  
VIN  
GND  
GND  
C
V
IN  
IN2  
R
PGOOD  
L
8
C
IN1  
7
V
OUT  
11  
6
SW  
C
OUT  
GND  
0
25  
50  
75  
100  
125  
Input capacitor must be placed  
as close to the IC as possible.  
The output capacitor must  
be placed near the IC.  
Ambient Temperature (°C)  
Figure 2.Derating Curve of Maximum PowerDissipation  
Figure 3. PCB Layout Guide  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS5771B-01 June 2019  
RT5771B  
Outline Dimension  
D2  
D
L
E
E2  
SEE DETAIL A  
1
e
b
2
1
2
1
A
A3  
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.300  
3.050  
2.650  
3.050  
1.750  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
2.950  
2.300  
2.950  
1.500  
0.028  
0.000  
0.007  
0.007  
0.116  
0.091  
0.116  
0.059  
0.031  
0.002  
0.010  
0.012  
0.120  
0.104  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 10L DFN 3x3 Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify  
that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek  
product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use;  
nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent  
or patent rights of Richtek or its subsidiaries.  
DS5771B-01 June 2019  
www.richtek.com  
13  

相关型号:

RT5771C

暂无描述
RICHTEK

RT5771D

暂无描述
RICHTEK

RT5779A

暂无描述
RICHTEK

RT5785A

暂无描述
RICHTEK

RT5788A

暂无描述
RICHTEK

RT5788B

暂无描述
RICHTEK

RT5789A

暂无描述
RICHTEK

RT5789B

暂无描述
RICHTEK

RT5795A

暂无描述
RICHTEK

RT5796A

暂无描述
RICHTEK

RT5800

暂无描述
RICHTEK

RT5C348B

4-WIRE SERIAL INTERFACE
RICOH