BD6088GUL_11 [ROHM]

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type); Mulitifunction背光LED驱动器,用于小型液晶面板(电荷泵型)
BD6088GUL_11
型号: BD6088GUL_11
厂家: ROHM    ROHM
描述:

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
Mulitifunction背光LED驱动器,用于小型液晶面板(电荷泵型)

驱动器 泵 CD
文件: 总52页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LED Driver s for LCD Backlights  
Mulitifunction Backlight LED Driver  
for Small LCD Panels (Charge Pump Type)  
No.11040EAT29  
BD6088GUL  
Description  
BD6088GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone.  
It has 6LED driver for LCD Backlight and GPO 4 port.  
It has ALC function, that is “Low Power Consumption System” realized.  
It can be developed widely from the model high End to the model Low End.  
As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space.  
VCSP50L3(3.50mm×3.50mm 0.5mm space)  
It adopts the very thin CSP package that is the most suitable for the slim phone.  
Functions  
1) Total 6LEDs driver for LCD Backlight  
It have 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can  
chose independent control or a main allotmert by resister setting.  
“Main Group” can be controlled by Auto Luminous Control (ALC) system.  
“Main Group” can be controlled by external PWM signal.  
ON/ off and a setup of electric current are possible at the time of the independent control by the independence.  
2) Ambient Light sensor interface  
Main backlight can be controlled by ambient brightness.  
Photo Diode, Photo Transistor, Photo IC(Linear/Logarithm) can be connected.  
Bias source for ambient light sensor, gain and offset adjustment are built in.  
LED driver current as ambient level can be customized.  
3) Charge Pump DC/DC for LED driver  
It has x1/x1.5/ x2 mode that will be selected automatically.  
The most suitable voltage up magnification is controlled automatically by LED port voltage.  
Output voltage fixed mode function loading (3.9V/4.2V/4.5V/4.8V)  
Soft start functions, Over voltage protection (Auto-return type), Over current protection (Auto-return type) Loading  
4) GPO 4 Port  
Open Drain output and slope control loading  
5) Thermal shutdown  
6) I2C BUS FS mode(max 400kHz)  
*This chip is not designed to protect itself against radioactive rays.  
*This material may be changed on its way to designing.  
*This material is not the official specification.  
Absolute Maximum Ratings (Ta=25 oC)  
Parameter  
Maximum voltage  
Symbol  
Ratings  
Unit  
VMAX  
Pd  
7
V
mW  
Power Dissipation  
1380 (note  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
-30 +85  
-55 +150  
note) Power dissipation deleting is 11.04mW/ oC, when it’s used in over 25 oC.  
(It’s deleting is on the board that is ROHM’s standard)  
Operating conditions (VBATVIO, Ta=-35~85 oC)  
Parameter  
VBAT input voltage  
VIO pin voltage  
Symbol  
Ratings  
Unit  
VBAT  
VIO  
2.7 5.5  
V
V
1.65 3.3  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
1/51  
BD6088GUL  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=2.6V)  
Limits  
Parameter  
Circuit Current】  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
VBAT Circuit current 1  
VBAT Circuit current 2  
VBAT Circuit current 3  
VBAT Circuit current 4  
VBAT Circuit current 5  
IBAT1  
IBAT2  
IBAT3  
IBAT4  
IBAT5  
-
-
-
-
-
0.1  
0.5  
61  
3.0  
3.0  
65  
μA  
μA  
RESETB=0V, VIO= 0V  
RESETB=0V, VIO=2.6V  
DC/DC x1 mode, Io=60mA  
VBAT=4.0V  
mA  
mA  
mA  
DC/DC x1.5 mode, Io=60mA  
VBAT=3.6V  
92  
102  
140  
DC/DC x2 mode, Io=60mA  
VBAT=2.7V  
123  
ALC Operating  
ALCEN=1, AD cycle=0.5s setting  
Except sensor current  
VBAT Circuit current 6  
IBAT6  
-
0.25  
1.0  
mA  
LED Driver】  
LED current Step (Setup)  
ILEDSTP1  
ILEDSTP2  
IMAXWLED  
IWLED  
128  
256  
25.6  
15  
-
Step  
Step  
mA  
mA  
%
LED1~6  
LED current Step (At slope)  
LED Maximum setup current  
LED current accuracy  
LED1~6  
-
-
+7%  
4
LED1~6  
-7%  
ILED=15mA setting, VLED=1.0V  
Between LED1~6  
at VLED=1.0V, ILED=15mA  
LED current Matching  
ILEDMT  
-
-
LED OFF Leak current  
DC/DC(Charge Pump)】  
Output Voltage 1  
ILKLED  
-
1.0  
μA  
VLED=4.5V  
VoCP1  
VoCP2  
-
Vf+0.2 Vf+0.25  
V
Vf is forward direction of LED  
3.705  
3.99  
3.9  
4.2  
4.5  
4.8  
4.095  
4.41  
V
V
V
V
Fixation Voltage Output  
ModeIo=60mA  
VBAT3.2V  
Output Voltage 2  
4.275  
4.56  
4.725  
5.04  
Drive ability  
IOUT  
fosc  
-
0.8  
-
-
150  
1.2  
mA  
MHz  
V
VBAT3.2V, VOUT=3.9V  
Switching frequency  
1.0  
6.0  
250  
Over Voltage  
Protection detect voltage  
OVP  
OCP  
6.5  
375  
Over Current  
Protection detect Current  
-
mA  
VOUT=0V  
Sensor Interface】  
2.85  
2.47  
3.0  
2.6  
3.15  
2.73  
V
V
Io=200µA  
Io=200µA  
SBIAS Output Voltage  
VoS  
SBIAS Maximum Output current  
SBIAS Discharge resister at OFF  
SSENS Input range  
IomaxS  
ROFFS  
VISS  
30  
-
-
1.0  
-
-
mA  
kΩ  
Vo=2.6V setting  
1.5  
VoS×  
0
V
255/256  
ADC resolution  
ADRES  
ADINL  
ADDNL  
8
bit  
ADC integral calculus non-linearity  
-3  
-1  
-
+3  
+1  
LSB  
LSB  
ADC differential calculus  
non-linearity  
-
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
2/51  
BD6088GUL  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=2.6V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
SDA, SCL(I2C Interface)  
0.25 ×  
VIO  
L level input voltage  
VILI  
VIHI  
VhysI  
VOLI  
linI  
-0.3  
-
-
-
-
-
V
V
0.75 ×  
VIO  
VBAT  
+0.3  
H level input voltage  
0.05 ×  
VIO  
Hysteresis of Schmitt trigger input  
L level output voltage  
-
0.3  
1
V
0
-
V
SDA Pin, IOL=3 mA  
Input Voltage  
= 0.1×VIO0.9×VIO  
Input current  
μA  
RESETB(CMOS Input Pin)  
L level input voltage  
0.25 ×  
VIO  
VILR  
VIHR  
IinR  
-0.3  
-
-
-
V
V
0.75 ×  
VIO  
VBAT  
+0.3  
H level input voltage  
Input Voltage  
= 0.1×VIO0.9×VIO  
Input current  
-
1
μA  
WPWMIN(NMOS Input Pin)  
L level input voltage  
VILA  
VIHA  
IinA  
-0.3  
1.4  
-
-
-
-
-
0.3  
V
V
VBAT  
+0.3  
H level input voltage  
Input Current  
Input Voltage  
= 0.1×VBAT0.9×VBAT  
1
-
μA  
μs  
PWM input minimum High pulse  
width  
PWmin  
80  
WPWMIN Pin  
OUTCNT(Pull-down resistance NMOS Input Pin)  
L level input voltage  
H level input voltage  
Input Current  
VILA  
VIHA  
IinA  
-0.3  
1.4  
-
-
-
0.3  
V
V
VBAT  
+0.3  
3.6  
10  
μA  
Vin=1.8V  
OUT14( NMOS Open Drain Output Pin)  
L level output voltage  
Output Leak current  
VOLG  
ILKG  
-
-
-
-
0.3  
1.0  
V
IOL=10mA  
Vout=3.6V  
μA  
GC1, GC2(Sensor Gain Control CMOS Output Pin)  
L level output voltage  
H level output voltage  
VOLS  
VOHS  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
VoS  
-0.2  
KBLT(Key Back Light Control CMOS Output Pin)  
L level output voltage  
H level output voltage  
Pull-downregistance  
VOLK  
VOHK  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
Vin=3.3V  
VIO  
-0.2  
RPUDK  
-
1.0  
2.0  
MΩ  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
3/51  
BD6088GUL  
Technical Note  
Block Diagram / Application Circuit example 1  
1μF  
1μF  
VBAT  
VBATCP  
VOUT  
VBAT1  
Charge Pump  
x1 / x1.5 / x2  
1μF  
10µF  
LED1  
LED2  
LED3  
LED4  
LED5  
OVP  
Charge Pump  
Mode Control  
LED terminal voltage feedback  
Main Back Light  
VIO  
(
)
)
(
)(  
RESETB  
LED6  
SCL  
SDA  
TSD  
Level  
Shift  
I2C interface  
I/O  
LEDGND  
Digital Control  
VBAT  
Key Pad  
LED  
WPWMIN  
OUTCNT  
IREF  
・・  
KBLT  
Key  
Control  
VREF  
SBIAS  
Photo IC  
VBAT  
VDD  
GND  
IOUT  
1μF  
GC1  
GC2  
SSENS  
SGND  
OUT1  
OUT2  
OUT3  
Sensor  
I/F  
LED  
control  
BH1600FVC  
Slope  
Control  
Slope  
Control  
GPO  
Slope  
GC2  
GC1  
Control  
OUT4  
Slope  
Control  
ALC  
Fig.1 Block Diagram / Application Circuit example 1  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
4/51  
BD6088GUL  
Technical Note  
Block Diagram / Application Circuit example 2  
1μF  
1μF  
VBAT  
VBATCP  
VOUT  
VBAT1  
Charge Pump  
x1 / x1.5 / x2  
1μF  
10µF  
LED1  
LED2  
LED3  
LED4  
OVP  
Charge Pump  
Mode Control  
4ch  
LED terminal voltage feedback  
Main Back Light  
VIO  
(
)
)
(
)(  
RESETB  
LED5  
LED6  
SCL  
SDA  
2ch  
TSD  
Sub Back Light  
Level  
Shift  
I2C interface  
I/O  
Digital Control  
LEDGND  
VBAT  
Key Pad  
LED  
WPWMIN  
OUTCNT  
IREF  
・・  
KBLT  
Key  
Control  
VREF  
SBIAS  
Photo IC  
VBAT  
VDD  
GND  
IOUT  
1μF  
GC1  
GC2  
SSENS  
SGND  
OUT1  
OUT2  
OUT3  
Sensor  
I/F  
LED  
control  
BH1600FVC  
Slope  
Control  
Slope  
Control  
GPO  
Slope  
GC2  
GC1  
Control  
OUT4  
Slope  
Control  
ALC  
Fig.2 Block Diagram / Application Circuit example 2  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
5/51  
BD6088GUL  
Technical Note  
Pin Arrangement Bottom View]  
T3  
F
E
D
C
B
A
T4  
SSENS  
GC1  
SGND  
GC2  
VBAT1  
SDA  
VIO  
OUT2  
OUT3  
C1P  
6 x 6 Ball  
SBIAS  
LED5  
OUT4  
VOUT  
C2P  
LED6  
SCL  
OUT1  
LEDGND LED4 OUTCNT WPWMIN  
LED2  
T1  
LED3 RESETB  
KBLT  
C1N  
C2N  
VBATCP  
T2  
LED1  
GND1  
CPGND  
INDEX  
1
2
3
4
5
6
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
6/51  
BD6088GUL  
Technical Note  
Package  
VCSP50L3  
CSP small package  
SIZE : 3.50mm×3.50mm(A difference in publicX,Y Both ±0.05mm) Height : 0.55mm max  
A ball pitch : 0.5 mm2  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
7/51  
BD6088GUL  
Technical Note  
Pin Functions  
ESD Diode  
Equivalent  
Circuit  
No Ball No. Pin Name  
I/O  
Functions  
Battery is connected  
For Power For Ground  
1
B6  
F4  
A1  
A6  
F6  
F1  
F5  
B3  
E4  
D3  
A5  
A3  
C1  
A4  
C5  
B5  
C6  
D6  
A2  
B1  
B2  
C2  
D1  
D2  
E1  
F2  
E2  
E3  
F3  
D4  
E5  
D5  
E6  
C4  
C3  
B4  
VBATCP  
VBAT1  
T1  
-
-
-
GND  
GND  
-
A
A
B
S
M
S
C
H
I
2
-
Battery is connected  
3
I
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
Test Ground Pin(short to Ground)  
Test Input Pin (short to Ground)  
Test Output Pin(Open)  
4
T2  
I
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
5
T3  
O
I
6
T4  
Test Input Pin (short to Ground)  
I/O Power supply is connected  
Reset input (L: reset, H: reset cancel)  
I2C data input / output  
I2C clock input  
Ground  
7
VIO  
-
8
RESETB  
SDA  
I
9
I/O  
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SCL  
H
B
B
B
F
CPGND  
GND1  
LEDGND  
C1N  
-
Ground  
-
-
Ground  
-
-
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
Charge Pump capacitor is connected  
I/O  
I/O  
I/O  
I/O  
O
I
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
C1P  
G
F
C2N  
VBAT  
-
C2P  
G
A
E
E
E
E
E
E
Q
N
X
X
B
U
U
U
U
V
L
VOUT  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
SBIAS  
SSENS  
GC1  
-
Charge Pump output pin  
-
LED is connected 1 for LCD Back Light  
LED is connected 2 for LCD Back Light  
LED is connected 3 for LCD Back Light  
LED is connected 4 for LCD Back Light  
LED is connected 5 for LCD Back Light  
LED is connected 6 for LCD Back Light  
I
-
I
-
I
-
I
-
I
-
O
I
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
Bias output for the Ambient Light Sensor  
Ambient Light Sensor input  
Ambient Light Sensor gain control output 1  
Ambient Light Sensor gain control output 2  
Ground  
O
O
-
GC2  
SGND  
OUT1  
OUT2  
OUT3  
OUT4  
WPWMIN  
OUTCNT  
KBLT  
O
O
O
O
I
GND  
GND  
GND  
GND  
GND  
GND  
GND  
General Output Port 1  
-
General Output Port 1  
-
General Output Port 1  
-
General Output Port 1  
VBAT  
VBAT  
VBAT  
External PWM input for Back Light *  
OUT1,2,3,4 Output Control (L:OFF) *  
Key Back Light Control Output  
I
O
W
* A setup of a register is separately necessary to make it effective.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
8/51  
BD6088GUL  
Equivalent Circuit  
A
Technical Note  
B
G
L
VBAT  
C
VBAT  
E
F
VBAT  
H
I
VBAT  
VIO  
VBAT  
VIO  
J
VBAT  
VIO  
VBAT  
VBAT  
VBAT  
VIO  
M VBAT  
VBAT  
VBAT  
VBAT  
N
U
Y
VBAT  
Q VBAT  
VBAT  
R VBAT  
S
VBAT  
V
VBAT  
VBAT  
W VBAT  
VIO  
VBAT  
X
VoS  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
9/51  
BD6088GUL  
Technical Note  
I2C BUS format  
The writing/reading operation is based on the I2C slave standard.  
Slave address  
A7  
1
A6  
1
A5  
1
A4  
0
A3  
1
A2  
1
A1  
0
R/W  
1/0  
Bit Transfer  
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes  
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.  
SDA  
SCL  
SDA a state of stability  
Data are effective  
SDA  
It can change  
START and STOP condition  
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L  
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL  
has been H, it will become STOP (P) conditions and an access end.  
SDA  
SCL  
S
P
STOP condition  
START condition  
Acknowledge  
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and  
a receiver returns the acknowledge signal by setting SDA to L.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
1
2
8
9
SCL  
S
clock pulse for  
acknowledgement  
START condition  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
10/51  
BD6088GUL  
Technical Note  
Writing protocol  
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd  
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is  
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next  
transmission. After the transmission end, the increment of the address is carried out.  
*1  
*1  
0
A A7 A6 A5 A4 A3 A2 A1 A0 A D7D6D5D4D3D2D1D0 A  
register address  
DATA  
D7D6D5 D4D3D2D1D0 A  
DATA  
P
S
X
X
X
X
X
X
X
slave address  
register address  
increment  
register address  
increment  
R/W=0(write)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
*1: Write Timing  
Reading protocol  
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address  
accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the  
last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.  
S
1
A D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
P
X
X X X X X X  
slave address  
register address  
increment  
register address  
increment  
R/W=1(read)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
Multiple reading protocols  
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The  
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will  
read out 00h. After the transmission end, the increment of the address is carried out.  
S
A
A Sr  
1 A  
X X X X X X X  
slave address  
0
A7A6A5A4A3A2A1A0  
register address  
X X X X X X X  
slave address  
R/W=0(write)  
R/W=1(read)  
A
P
D7D6D5D4D3D2D1D0 A  
DATA  
D7D6D5D4D3D2D1D0  
DATA  
register address  
increment  
register address  
increment  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
P=STOP condition  
Sr=repeated START condition  
from master to slave  
from slave to master  
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation.  
It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the readingdata of that time is  
0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge)is done.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
11/51  
BD6088GUL  
Technical Note  
Timing diagram  
SDA  
t BUF  
t SU;DAT  
t HD;STA  
t LOW  
SCL  
t SU;STO  
t SU;STA  
t HD;STA  
t HD;DAT  
S
Sr  
P
S
t HIGH  
Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=2.6V)  
Standard-mode  
Fast-mode  
Typ.  
Parameter  
I2C BUS format】  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Max.  
SCL clock frequency  
fSCL  
tLOW  
tHIGH  
0
-
-
-
100  
0
-
-
-
400  
kHz  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
Hold time (repeated) START condition  
After this period, the first clock is generated  
tHD;STA  
4.0  
-
-
0.6  
-
-
μs  
Set-up time for a repeated START condition  
Data hold time  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
4.7  
0
-
-
-
-
-
0.6  
0
-
-
-
-
-
0.9  
-
μs  
μs  
ns  
μs  
3.45  
Data set-up time  
250  
4.0  
-
-
100  
0.6  
Set-up time for STOP condition  
-
Bus free time between a STOP and START  
condition  
tBUF  
4.7  
-
-
1.3  
-
-
μs  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
12/51  
BD6088GUL  
Technical Note  
Register List  
Register data  
Address W/R  
Function  
D7  
VOUT(1)  
D6  
D5  
D4  
D3  
-
D2  
-
D1  
-
D0  
Software Reset  
DC/DC function setting  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
W
W
W/R  
W
W
W
W
W
W
R
VOUT(0)  
DCDCMD DCDCFON  
SFTRST  
MLEDMD  
MLEDEN  
IMLED(0)  
IW5(0)  
WPWMEN WPWMPOL  
-
-
W6MD  
ALCEN  
IMLED(3)  
IW5(3)  
IW6(3)  
TLH (3)  
STYPE  
W5MD  
W6EN  
IMLED(2)  
IW5(2)  
IW6(2)  
TLH (2)  
VSB  
W4MD  
W5EN  
IMLED(1)  
IW5(1)  
IW6(1)  
TLH (1)  
MDCIR  
LED Pin function setting  
-
-
-
-
Power Control  
-
IMLED(6)  
IW5(6)  
IW6(6)  
THL (2)  
IMLED(5)  
IW5(5)  
IW6(5)  
THL (1)  
GAIN (1)  
SOFS (1)  
-
IMLED(4)  
IW5(4)  
IW6(4)  
THL (0)  
GAIN(0)  
SOFS (0)  
-
Main group current setting  
LED5 current setting  
-
-
IW6(0)  
LED6 current setting  
THL (3)  
TLH (0)  
SBIASON  
Main Current transition  
Measurement mode setting  
Measurement data adjustment  
ADCYC (1) ADCYC (0)  
SOFS (3)  
SOFS (2)  
-
SGAIN (3) SGAIN (2) SGAIN (1) SGAIN (0)  
-
AMB (3)  
IU0 (3)  
IU1 (3)  
IU2 (3)  
IU3 (3)  
IU4 (3)  
IU5 (3)  
IU6 (3)  
IU7 (3)  
IU8 (3)  
IU9 (3)  
IUA (3)  
IUB (3)  
IUC (3)  
IUD (3)  
IUE (3)  
IUF (3)  
CTH (3)  
OUT4MD  
OUT4EN  
KBSLP(1)  
AMB (2)  
IU0 (2)  
IU1 (2)  
IU2 (2)  
IU3 (2)  
IU4 (2)  
IU5 (2)  
IU6 (2)  
IU7 (2)  
IU8 (2)  
IU9 (2)  
IUA (2)  
IUB (2)  
IUC (2)  
IUD (2)  
IUE (2)  
IUF (2)  
CTH (2)  
OUT3MD  
OUT3EN  
AMB (1)  
IU0 (1)  
IU1 (1)  
IU2 (1)  
IU3 (1)  
IU4 (1)  
IU5 (1)  
IU6 (1)  
IU7 (1)  
IU8 (1)  
IU9 (1)  
IUA (1)  
IUB (1)  
IUC (1)  
IUD (1)  
IUE (1)  
IUF (1)  
CTH (1)  
OUT2MD  
OUT2EN  
AMB (0) Ambient level  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
-
IU0 (6)  
IU1 (6)  
IU2 (6)  
IU3 (6)  
IU4 (6)  
IU5 (6)  
IU6 (6)  
IU7 (6)  
IU8 (6)  
IU9 (6)  
IUA (6)  
IUB (6)  
IUC (6)  
IUD (6)  
IUE (6)  
IUF (6)  
-
IU0 (5)  
IU1 (5)  
IU2 (5)  
IU3 (5)  
IU4 (5)  
IU5 (5)  
IU6 (5)  
IU7 (5)  
IU8 (5)  
IU9 (5)  
IUA (5)  
IUB (5)  
IUC (5)  
IUD (5)  
IUE (5)  
IUF (5)  
CHYS (1)  
-
IU0 (4)  
IU1 (4)  
IU2 (4)  
IU3 (4)  
IU4 (4)  
IU5 (4)  
IU6 (4)  
IU7 (4)  
IU8 (4)  
IU9 (4)  
IUA (4)  
IUB (4)  
IUC (4)  
IUD (4)  
IUE (4)  
IUF (4)  
CHYS (0)  
KBMD  
KBEN  
-
IU0 (0)  
IU1 (0)  
IU2 (0)  
IU3 (0)  
IU4 (0)  
IU5 (0)  
IU6 (0)  
IU7 (0)  
IU8 (0)  
IU9 (0)  
IUA (0)  
IUB (0)  
IUC (0)  
IUD (0)  
IUE (0)  
IUF (0)  
CTH (0)  
LED Current at Ambient level 0h  
LED Current at Ambient level 1h  
LED Current at Ambient level 2h  
LED Current at Ambient level 3h  
LED Current at Ambient level 4h  
LED Current at Ambient level 5h  
LED Current at Ambient level 6h  
LED Current at Ambient level 7h  
LED Current at Ambient level 8h  
LED Current at Ambient level 9h  
LED Current at Ambient level Ah  
LED Current at Ambient level Bh  
LED Current at Ambient level Ch  
LED Current at Ambient level Dh  
LED Current at Ambient level Eh  
LED Current at Ambient level Fh  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Key driver 2 Value  
judging control setup  
-
-
-
OUT1MD OUT, KBLT Output Mode setting  
OUT1EN OUT, KBLT Output Control  
1Ch W/R  
1Dh  
-
-
-
W
FPWM  
-
-
KBSLP(0) OUTSLP(1) OUTSLP(0) OUT, KBLT Slope setting  
Input "0” for "-".  
A free address has the possibility to assign it to the register for the test.  
Access to the register for the test and the undefined register is prohibited.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
13/51  
BD6088GUL  
Technical Note  
Register Map  
Address 00h < Software Reset , DC/DC function setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
-
Bit2  
-
Bit1  
-
Bit0  
00h  
W
VOUT(1)  
VOUT(0) DCDCMD DCDCFON  
SFTRST  
Initial  
Value  
00h  
0
0
0
0
-
-
-
0
Bit [7:6] : VOUT (1:0)  
VOUT Output Voltage setting  
VOUT Output Voltage 3.9V  
VOUT Output Voltage 4.2V  
VOUT Output Voltage 4.5V  
“00” :  
“01” :  
“10” :  
“11” :  
VOUT Output Voltage 4.8V  
Bit [5:4] : DCDCMD, DCDCFON  
<DC/DC Return Mode>  
LED Pin Return  
DC/DC setting  
<DC/DC ON/OFF Control>  
“00” :  
“01” :  
“10” :  
“11” :  
Depend on LED ON/OFF  
Depend on LED ON/OFF  
Depend on LED ON/OFF  
Compulsion ON  
LEDPin Return  
Output Voltage Fixation  
Output Voltage Fixation  
Bit [3:1] : (Not used)  
Bit0 :  
SFTRST Software Reset  
“0” :  
“1” :  
Reset cancel  
Reset(All register initializing)  
Refer to “The explanation of Reset” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
14/51  
BD6088GUL  
Technical Note  
Address 01h < LED Pin function setting>  
Address  
R/W  
Bit7  
Bit6  
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
01h  
W
WPWMEN WPWMPOL  
W6MD  
W5MD  
W4MD  
MLEDMD  
Initial  
Value  
42h  
0
1
-
-
0
0
1
0
Bit7 :  
WPWMEN  
“0” :  
“1” :  
External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)  
External PWM input invalid  
External PWM input valid  
Refer to “(11) Current Adjustment” of “The explanation of ALC” for detail.  
Bit6 :  
WPWMPOL  
Polarity setting of External PWM input "WPWMIN" terminal  
External PWM ’L’ drive  
External PWM ’H’ drive  
“0” :  
“1” :  
Refer to “(11) Current Adjustment” of “The explanation of ALC” for detail.  
Bit [5:4] : (Not used)  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
W6MD  
“0” :  
LED6 control setting (individual / Main group)  
LED6 individual control  
“1” :  
LED6 Main group control  
Refer to “LED Driver” for detail.  
W5MD  
“0” :  
LED5 control setting (individual / Main group)  
LED5 individual control  
“1” :  
LED5 Use (Main group)  
Refer to “LED Driver” for detail.  
W4MD  
“0” :  
LED4 movement setting (unuse / use)  
LED4 unuse  
“1” :  
LED4 use (Main group Control)  
Refer to “LED Driver” for detail.  
MLEDMD Main group setting (Normal / ALC)  
“0” :  
“1” :  
Main group Normal Mode(ALCNon-reflection)  
Main group ALC Mode  
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.  
Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically.  
And, do the setup of W*PW when each LED is Off.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
15/51  
BD6088GUL  
Technical Note  
Address 02h < Power Control>  
Address  
R/W  
Bit7  
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
02h  
W/R  
-
ALCEN  
W6EN  
W5EN  
MLEDEN  
Initial  
Value  
00h  
-
-
-
-
0
0
0
0
Bit [7:4] : (Not used)  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
ALCEN  
“0” :  
ALC function Control (ON/OFF)  
ALC block OFF  
“1” :  
ALC block ON (Ambient Measurement)  
W6EN  
“0” :  
LED6 Control (ON/OFF)  
LED6 OFF  
“1” :  
LED6 ON(individual control)  
W5EN  
“0” :  
LED5 Control (ON/OFF)  
LED5 OFF  
“1” :  
LED5 ON(individual control)  
MLEDEN  
“0” :  
Main group LED Control (ON/OFF)  
Main group OFF  
“1” :  
Main group ON  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
16/51  
BD6088GUL  
Technical Note  
Address 03h < Main group LED Current setting(Normal Mode) >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
03h  
W
-
IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : IMLED (6:0) Main Group LED Current Setting at non-ALC mode  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” :  
“0111111” :  
12.6 mA  
12.8 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
17/51  
BD6088GUL  
Technical Note  
Address 04h < LED5 Current setting(Independence control) >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
04h  
W
-
IW5(6)  
IW5(5)  
IW5(4)  
IW5(3)  
IW5(2)  
IW5(1)  
IW5(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : IW5 (6:0) LED5 Current setting  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” :  
“0111111” :  
12.6 mA  
12.8 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
18/51  
BD6088GUL  
Technical Note  
Address 05h < LED6 Current setting(Independence control) >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
05h  
W
-
IW6(6)  
IW6(5)  
IW6(4)  
IW6(3)  
IW6(2)  
IW6(1)  
IW6(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : IW6 (6:0) LED6 Current setting  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” :  
“0111111” :  
12.6 mA  
12.8 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
19/51  
BD6088GUL  
Technical Note  
Address 06h < Main Current slope time setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
06h  
W
THL(3)  
THL(2)  
THL(1)  
THL(0)  
TLH(3)  
TLH(2)  
TLH(1)  
TLH(0)  
Initial  
Value  
C7h  
1
1
0
0
0
1
1
1
Bit [7:4] : THL (3:0)  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
Main LED current Down transition per 0.2mA step  
0.256 ms  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
“1101” :  
“1110” :  
“1111” :  
Setting time is counted based on the switching frequency of Charge Pump.  
The above value becomes the value of the Typ (1MHz) time.  
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.  
Bit [3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
0.256 ms  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
Setting time is counted based on the switching frequency of Charge Pump.  
The above value becomes the value of the Typ (1MHz) time.  
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
20/51  
BD6088GUL  
Technical Note  
Address 07h < ALC mode setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
07h  
W
ADCYC(1) ADCYC(0) GAIN(1)  
GAIN(0)  
STYPE  
VSB  
MDCIR  
SBIASON  
Initial  
Value  
81h  
1
0
0
0
0
0
0
1
Bit [7:6] : ADCYC(1:0)  
ADC Measurement Cycle  
0.52 s  
1.05 s  
“00” :  
“01” :  
“10” :  
“11” :  
1.57 s (Initial value)  
2.10 s  
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.  
Bit [5:4] : GAIN(1:0)  
Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.)  
“00” :  
“01” :  
“10” :  
“11” :  
Auto Change (Initial value)  
High  
Low  
Fixed  
Refer to “(3) Gain control” of “The explanation of ALC” for detail.  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
STYPE  
“0” :  
Ambient Light Sensor Type Select (Linear/Logarithm)  
For Linear sensor (Initial value)  
For Log sensor  
“1” :  
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.  
VSB  
“0” :  
“1” :  
SBIAS Output Voltage Control  
SBIAS output voltage 3.0V  
SBIAS output voltage 2.6V  
(Initial value)  
Refer to “(2) I/V conversion” of “The explanation of ALC” for detail.  
MDCIR  
“0” :  
LED Current Reset Select by Mode Change  
LED current non-reset when mode change  
LED current reset when mode change  
(Initial value)  
“1” :  
Refer to “(10) LED current reset when mode change” of “The explanation of ALC” for detail.  
SBIASON  
“0” :  
“1” :  
Measurement cycle synchronous  
Usually ON (at ALCEN=1) (Initial value)  
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
21/51  
BD6088GUL  
Technical Note  
Address 08h < ADC Data adjustment >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
08h  
W
SOFS(3)  
SOFS(2)  
SOFS(1)  
SOFS(0) SGAIN(3) SGAIN(2) SGAIN(1) SGAIN(0)  
Initial  
Value  
00h  
0
0
0
0
0
0
0
0
Bit [7:4] : SOFS (3:0) ADC Data Offset adjustment  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
-8 LSB  
-7 LSB  
-6 LSB  
-5 LSB  
-4 LSB  
-3 LSB  
-2 LSB  
-1 LSB  
no adjustment  
+1 LSB  
+2 LSB  
+3 LSB  
+4 LSB  
+5 LSB  
+6 LSB  
+7 LSB  
Offset adjust is performed to ADC data.  
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.  
Bit [3:0] : SGAIN (3:0) ADC Data Inclination adjustment  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
reserved  
reserved  
-37.50%  
-31.25%  
-25.00%  
-18.75%  
-12.50%  
-6.25%  
no adjustment  
+6.25%  
+12.50%  
+18.75%  
+25.00%  
+31.25%  
+37.50%  
reserved  
Gain adjust is performed to ADC data.  
The data after adjustment are round off by 8-bit data.  
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
22/51  
BD6088GUL  
Technical Note  
Address 09h < Ambient level (Read Only) >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
09h  
R
-
-
-
AMB(3)  
AMB(2)  
AMB(1)  
AMB(0)  
Initial  
Value  
(00h)  
-
-
-
-
(0)  
(0)  
(0)  
(0)  
Bit [7:4] : (Not used)  
Bit [3:0] : AMB (3:0) Ambient Level  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
It begins to read Ambient data through I2C, and possible.  
To the first AD measurement completion, it is AMB(3:0)=0000.  
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
23/51  
BD6088GUL  
Technical Note  
Address 0Ah~19h < Ambient LED Current setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0Ah~19h  
W
IU*(7)  
IU*(6)  
IU*(5)  
IU*(4)  
IU*(3)  
IU*(2)  
IU*(1)  
IU*(0)  
Initial  
Value  
-
Refer to after page for initial table.  
“*” means 0~F.  
Bit7 :  
(Not used)  
Bit [6:0] : IU* (6:0)  
Main Current at Ambient Level for 0h~Fh  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” : 19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” : 22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” : 24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” : 24.8 mA  
“1111100” : 25.0 mA  
“1111101” : 25.2 mA  
“0110001” : 10.0 mA  
“0110010” : 10.2 mA  
“0110011” : 10.4 mA  
“0110100” : 10.6 mA  
“0110101” : 10.8 mA  
“0110110” : 11.0 mA  
“0110111” : 11.2 mA  
“0111000” : 11.4 mA  
“0111001” : 11.6 mA  
“0111010” : 11.8 mA  
“0111011” : 12.0 mA  
“0111100” : 12.2 mA  
“0111101” : 12.4 mA  
“0111110” :  
“0111111” :  
12.6 mA  
12.8 mA  
“1111110” :  
“1111111” :  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
24/51  
BD6088GUL  
Technical Note  
Address 1Ah < Key Driver 2 value decision control setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
1Ah  
W
-
-
CHYS(1)  
CHYS(0)  
CTH(3)  
CTH(2)  
CTH(1)  
CTH(0)  
Initial  
Value  
2Ah  
-
-
1
0
1
0
1
0
Bit [7:6] : (Not used)  
Bit [5:4] : CHYS(1:0) Key DriverON Brightness hysteresis  
“00” :  
“01” :  
“10” :  
“11” :  
Ambient 1h Width  
Ambient 2h Width  
Ambient 3h Width (initial)  
Ambient 4h Width  
Refer to “(12) Key back light value decision” of “The explanation of ALC” for detail.  
Bit [3:0] : CTH (3:0) Key DriverOFF Brightness threshold  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
Ambient level 0h OFF  
Ambient level 1h OFF  
Ambient level 2h OFF  
Ambient level 3h OFF  
Ambient level 4h OFF  
Ambient level 5h OFF  
Ambient level 6h OFF  
Ambient level 7h OFF  
Ambient level 8h OFF  
Ambient level 9h OFF  
Ambient level Ah OFF (initial)  
Ambient level Bh OFF  
Ambient level Ch OFF  
Ambient level Dh OFF  
Ambient level Eh OFF  
Ambient level Fh OFF  
Refer to “(12) Key back light value decision” of “The explanation of ALC” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
25/51  
BD6088GUL  
Technical Note  
Address 1Bh < OUT KEY Output Mode setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
1Bh  
W
-
-
-
KBMD  
OUT4MD OUT3MD OUT2MD OUT1MD  
Initial  
Value  
00h  
-
-
-
0
0
0
0
0
Bit [7:5] : (Not used)  
Bit4 :  
Bit3 :  
KBMD Key back light mode choice (ALC/ Individual)  
“0” :  
“1” :  
KBLT ALC Control  
KBLT Individual Control  
Refer to “(13) Key back light PWM control” of “The explanation of “ ALC” for detail.  
OUT4MD OUTCNT External Control setting  
“0” :  
“1” :  
OUTCNT invalid, OUT4 output depends on output control by OUT4EN.  
OUT4 output depends on output control by OUT4EN with OUTCNT=H.  
With OUTCNT=L, OUT4=Hi-z (compulsory off).  
Refer to “The explanation of OUTPWM control” for detail.  
Bit2 :  
Bit1 :  
Bit0 :  
OUT3MD OUTCNT External Control setting  
“0” :  
“1” :  
OUTCNT invalid, OUT3 output depends on output control by OUT3EN.  
OUT3 output depends on output control by OUT3EN with OUTCNT=H.  
With OUTCNT=L, OUT3=Hi-z (compulsory off).  
Refer to “The explanation of OUTPWM control” for detail.  
OUT2MD OUTCNT External Control setting  
“0” :  
“1” :  
OUTCNT invalid, OUT2 output depends on output control by OUT2EN.  
OUT2 output depends on output control by OUT2EN with OUTCNT=H.  
With OUTCNT=L, OUT2=Hi-z (compulsory off).  
Refer to “The explanation of OUTPWM control” for detail.  
OUT1MD OUTCNT External Control setting  
“0” :  
“1” :  
OUTCNT invalid, OUT1 output depends on output control by OUT1EN.  
OUT1 output depends on output control by OUT1EN with OUTCNT=H.  
With OUTCNT=L, OUT1=Hi-z (compulsory off).  
Refer to “The explanation of OUTPWM control” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
26/51  
BD6088GUL  
Technical Note  
Address 1Ch < OUT KEY Output level setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
1Ch  
W/R  
-
-
-
KBEN  
OUT4EN  
OUT3EN  
OUT2EN  
OUT1EN  
Initial  
Value  
00h  
-
-
-
0
0
0
0
0
Bit [7:5] : (Not used)  
KBEN KBLT output level setting (non-ALC mode)  
Bit4 :  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
“0” :  
“1” :  
KBLT L 出力  
KBLT H 出力  
Refer to “(13) Key back light PWM control” of “The explanation of ALC” for detail.  
OUT4EN OUT4 Output level setting  
“0” :  
“1” :  
OUT4 Hi-Z Output  
OUT4 L Output  
Refer to “The explanation of OUTPWM control” for detail.  
OUT3EN OUT3 Output level setting  
“0” :  
“1” :  
OUT3 Hi-Z Output  
OUT3 L Output  
Refer to “The explanation of OUTPWM control” for detail.  
OUT2EN OUT2 Output level setting  
“0” :  
“1” :  
OUT2 Hi-Z Output  
OUT2 L Output  
Refer to “The explanation of OUTPWM control” for detail..  
OUT1EN OUT1Output level setting  
“0” :  
“1” :  
OUT1 Hi-Z Output  
OUT1 L Output  
Refer to “The explanation of OUTPWM control” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
27/51  
BD6088GUL  
Technical Note  
Address 1Dh < OUT KEY Output Mode setting >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
1Dh  
W
FPWM  
-
-
KBSLP (1) KBSLP (0) OUTSLP(1) OUTSLP(0)  
Initial  
Value  
00h  
0
-
-
-
0
0
0
0
Bit7 :  
FPWM Key Driver, OUT14 PWM cycle setting  
“0” :  
“1” :  
2.048 ms  
4.096 ms  
Refer to “(13) Key back light PWM control” of “The explanation of ALC” and  
“The explanation of OUTPWM control” for detail.  
Bit [6:4] : (未使用)  
Bit [3:2] : KBSLP(1:0) The slope time of around 1step for Key Driver PWM  
FPWM=0  
0.00 ms  
FPWM=1  
0.00 ms  
“00” :  
“01” :  
“10” :  
“11” :  
16.38 ms  
32.77 ms  
65.54 ms  
32.77 ms  
65.54 ms  
131.08 ms  
Refer to “(13) Key back light PWM control” of “The explanation of ALC” for detail.  
Bit [1:0] : OUTSLP(1:0) The slope time of around 1step for OUT14 PWM  
FPWM=0  
0.00 ms  
FPWM=1  
0.00 ms  
“00” :  
“01” :  
“10” :  
“11” :  
16.38 ms  
32.77 ms  
65.54 ms  
32.77 ms  
65.54 ms  
131.08 ms  
Refer to “The explanation of OUTPWM control” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
28/51  
BD6088GUL  
Technical Note  
Reset  
There are two kinds of reset, software reset and hardware reset  
(1) Software reset  
All the registers are initialized by SFTRST="1".  
SFTRST is an automatically returned to "0". (Auto Return 0).  
(2) Hardware reset  
It shifts to hardware reset by changing RESETB pin “H” “L”.  
The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address.  
It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”.  
RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.  
(3) Reset Sequence  
When hardware reset was done during software reset, software reset is canceled when  
hardware reset is canceled. (Because the initial value of software reset is “0”)  
VIODET  
The decline of the VIO voltage is detected, and faulty operation inside the LSI is prevented by giving resetting to Levelsift block  
Image Block Diagram  
VIO  
VBAT  
2.6V  
DEToutput  
Inside reset  
Reset by  
VIODET  
VBAT  
(typ)1.0V  
VIO  
VIODET  
RESETB  
RESETB  
R
LEVEL  
Digital  
pin  
I/O  
DET output  
Inside reset  
SHIFT  
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed.  
On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range)  
thermal shutdown  
A thermal shutdown function is effective in the following block.  
DC/DC (Charge Pump)  
LED Driver  
SBIAS  
The thermal shutdown function is detection temperature that it works is about 195.  
Detection temperature has a hysteresis, and detection release temperature is about 175 oC.  
(Design reference value)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
29/51  
BD6088GUL  
Technical Note  
DC/DC Explanation for operate  
Start  
DC/DC circuit operates when any LED turns ON. (DCDCFON=0)  
When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current.  
Force of VBAT and VIO is to go as follows.  
DCDCMD=1 must be set in the fixed voltage mode and DCDCMD=DCDCFON=1 must be set when DCDC output takes  
place regardless of LEDs.  
VBAT  
VIO  
TVIOON=min 0.1ms  
TVIOOFF=min 0.1ms  
RESETB  
TRSTB=min 0.1ms  
TRST=min 0ms  
EN (*)  
TSOFT  
VOUT  
LEDcurrent  
(*) An EN signal means the following in the upper figure.  
EN = “MLEDEN” or “WEN”  
(= LED The LED lighting control of a setup of connection VOUT)  
But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective.  
TSOFT changes by the capacitor connected to VOUT and inside OSC.  
TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF).  
Over Voltage protection / Over Current protection  
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function.  
A VOUT over-voltage detection voltage is about 6.0V(typ). (VOUT at the time of rise in a voltage)  
A detection voltage has a hysteresis, and a detection release voltage is about 5.1V(typ).  
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
30/51  
BD6088GUL  
Technical Note  
Mode transition  
The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage.  
STANDBY  
ALL off  
1
condition○  
MLEDEN=”1” or W*EN=”1”  
and  
1
Ta<TTSD  
SOFT  
CP x1.0 mode  
After detecting VOUT>1.5V(typ), 128us(typ) wait  
CP x1.0 mode  
mode up=”H”  
X1.0  
mode down=”H”  
CP x1.5 mode  
mode up=”H”  
X1.5  
X2.0  
mode down=”H”  
CP x2.0 mode  
The mode transition of the charge pump works as follows.  
x1.0x1.5x2.0 Mode transition>  
The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied.  
x1.0x1.5 Mode transition  
VBAT VOUT + (Ron10×Iout)  
(LED Pin feedbackVOUT = Vf+0.2(Typ))  
x1.5x2.0 Mode transition  
VBAT×1.5 VOUT +(Ron15×Iout)  
(LED Pin feedbackVOUT = Vf+0.2(Typ))  
Ron10: x1 Charge pump on resistance 1.2(Typ)  
Ron15: x1.5 Charge pump on resistance 7.1(Typ)  
x2.0x1.5x1.0 Mode transition>  
The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio.  
x1.5x1.0 Mode transition  
VBAT / VOUT =1.16(Design value)  
x2.0x1.5 Mode transition  
VBAT / VOUT =1.12(Design value)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
31/51  
BD6088GUL  
Technical Note  
LED Driver  
The LED driver of 6ch is constructed as the ground plan.  
Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.).  
LED5, LED6 is controllable individually.  
As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group  
in the allotment. LED5 and LED6 are setups of grouping to the main control.  
When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective.  
LED1  
LED2  
IMLED[6:0]  
MLEDEN  
LED3  
MLEDMD  
WPWMIN  
LED4  
W4MD  
1
LED5  
IW5[6:0]  
W5EN  
0
W5MD  
1
0
LED6  
IW6[6:0]  
W6EN  
W6MD  
General-purpose Output Ports  
General-purpose Output Ports 4ch is constructed as the ground plan.  
VGPO  
VLED  
GPO  
Slope  
GPO  
Slope  
Vf  
Control  
Control  
OUT*  
OUT*  
When OUT* is used with Pull Up.  
When OUT* is used with LED.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
32/51  
BD6088GUL  
Technical Note  
The explanation of ALC (Auto Luminous Control)  
LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.  
Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear/logarithm)) is  
possible by building adjustment feature of Sensor bias, gain adjustment and offset adjustment.  
Ambient data is changed into ambient level by digital data processing, and it can be read through I2C I/F.  
Register setting can customize a conversion to LED current. (Initial value is pre-set.)  
Natural dimming of LED driver is possible with the adjustment of the current transition speed.  
ON/ off of the key back light can be controlled automatically by the brightness.  
PWM Polarity  
switching  
Usually ON / intermittent  
PWM enabling  
WPWMIN  
Offset Correction  
Gain Correction  
Sensor  
SBIAS  
ADC  
SBIAS  
Slope Timer  
Mode Select  
Sensor  
LIN/LOG  
Average  
Conversion  
LED*  
LCD  
Backlight  
Sensor  
Current  
Slope  
Data  
Correction  
SSENS  
Logarithmic Conv.  
Ambient Level  
Conversion  
process  
VBAT  
DC current setup  
Main Group  
setup  
・・  
GC1  
GC2  
2 value  
decision  
PWM  
Gain  
Control  
process  
KBLT  
Key  
Backlight  
Threshold  
Hysteresis  
Mode Select  
Slope Timer  
PWM Cycle  
Ambient Level  
Gain Control ON/OFF  
: Effective also in ALC functional the case of not using it  
(1) Auto Luminous Control ON/OFF  
ALC block can be independent setting ON/OFF.  
It can use only to measure the Ambient level.  
Register : ALCEN  
Register : MLEDEN  
Register : MLEDMD  
Refer to under about the associate ALC mode and Main LED current.  
Main LED  
current  
ALCEN MLEDEN MLEDMD  
Sensor I/F  
LED control  
Mode  
OFF  
0
0
0
1
1
1
0
1
1
0
1
1
x
0
1
x
0
1
OFF  
-
OFF  
( AMB(3:0)=0h )  
IMLED(6:0)  
IU0(6:0) (*1)  
-
IMLED(6:0)  
ALC mode (*2)  
Non ALC  
mode  
ON  
OFF  
ON  
ON  
ALC mode  
(*1) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h.  
So, Main LED current is selected IU0(6:0).  
(*2) At this mode, Main LED current is selected IU0(6:0)~IUF(6:0)  
It becomes current value corresponding to each brightness.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
33/51  
BD6088GUL  
Technical Note  
(2) I/V conversion  
The bias voltage and external resistance for the I-V conversion (Rs)  
are adjusted with adaptation of sensor characteristic  
The bias voltage is selectable by register setup.  
Register : VSB  
“0” : SBIAS output voltage 3.0V  
“1” : SBIAS output voltage 2.6V  
Ambient  
SBIAS  
SBIAS  
SSENS voltage  
VCC  
VSSENS  
Rs is large  
Iout  
Sensor IC  
A/D  
IOUT  
SSENS  
SGND  
GND  
Rs  
BD6088GUL  
Rs is small  
Rs : Sense resistance (A sensor output current is changed into the voltage value.)  
SBIAS : Bias power supply terminal for the sensor (3.0V / 2.6V by register setting)  
SSENS : Sense voltage input terminal  
Ambient  
SSENS Voltage = Iout x Rs  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
34/51  
BD6088GUL  
Technical Note  
(3) Gain control  
Sensor gain switching function is built in to extend the dynamic range.  
It is controlled by register setup.  
When automatic gain control is off, the gain status can be set upin the manual.  
Register : GAIN(1:0)  
GC1 and GC2 are outputted corresponding to each gain status.  
High Gain mode  
Low Gain mode  
Ambient  
Auto Gain mode  
Ambient  
Example 1 (Use BH1600FVC)  
Example 2  
Example 3  
SBIAS  
SBIAS  
SBIAS  
SSENS  
VCC  
SSENS  
IOUT  
SSENS  
BH1600  
Applicationexample  
GC1  
GC1  
GC1  
GC1  
GC2  
GC2  
GC2  
GC2  
GND  
SGND  
SGND  
SGND  
Resister values are relative  
Manual  
Manual  
Operating mode  
Auto  
00  
Auto  
Fixed  
High  
01  
Low  
10  
High  
01  
Low  
10  
GAIN(1:0) setting  
Gain status  
00  
11  
-
High Low High  
L
Low High Low High  
Low  
L
GC1 output  
L
L
GC2 output  
L
L
L
L
L
: This means that it becomes High with A/D measurement cycle synchronously.  
: Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.  
(*1)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
35/51  
BD6088GUL  
Technical Note  
(4) A/D conversion  
The detection of ambient data is done periodically for the low power.  
SBIAS and ADC are turned off except for the ambient measurement.  
The sensor current may be shut in this function, it can possible to decrease the current consumption.  
SBIAS pin and SSENS pin are pull-down in internal when there are OFF.  
SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)  
Register : ADCYC(1:0)  
Register : SBIASON  
16 times  
ALCEN  
ADCYC(1:0)  
ADC Cycle  
SBIAS Output  
Twait= 64ms(typ) (Wait time)  
When SBIASON=1  
ADC Movement  
TAD= 16.4ms(typ)  
AD start signal  
(A/D conversion time)  
GC1, GC2  
GC1, GC2=00  
TADone= 1.024ms(typ)  
16 times measurement  
AMB(3:0)  
AMB(3:0)  
Toprt= 80.4ms(typ)  
(Operate time)  
(5) ADC data Gain / offset adjustment  
To correct the characteristic dispersion of the sensor,  
Gain and offset adjustment to ADC output data is possible.  
They are controlled by register setup.  
Register : SGAIN(3:0)  
Register : SOFS(3:0)  
< Gain Adjustment >  
Gain adjustment  
SGAIN(3:0)  
Ambient  
Ambient  
Ambient  
< Offset Adjustment >  
Offset adjustment  
SOFS(3:0)  
Ambient  
Ambient  
Ambient  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
36/51  
BD6088GUL  
Technical Note  
(6) Average filter  
Average filter is built in to rid noise or flicker.  
Average is 16 times  
(7) Ambient level detection  
Averaged A/D value is converted to Ambient level corresponding to Gain control and sensor type.  
Ambient level is judged to rank of 16 steps by ambient data.  
The type of ambient light sensor can be chosen by register.  
(Linear type sensor / Logarithm type sensor)  
Register : STYPE  
“0” : For Linear sensor  
“1” : For Log sensor  
Ambient level is output through I2C.  
Register : AMB(3:0)  
STYPE  
GAIN(1:0)  
GAIN  
0
1
xx  
-
00  
10  
01  
11  
-
Low  
High  
Low  
High  
Ambient  
Level  
SSENS Voltage  
VoS×0/256  
VoS×17/256  
VoS×18/256  
VoS×26/256  
VoS×27/256  
VoS×36/256  
VoS×37/256  
VoS×47/256  
VoS×48/256  
VoS×59/256  
VoS×60/256  
VoS×71/256  
VoS×72/256  
VoS×83/256  
VoS×84/256  
VoS×95/256  
VoS×96/256  
VoS×107/256  
VoS×108/256  
VoS×119/256  
VoS×120/256  
VoS×131/256  
VoS×132/256  
VoS×143/256  
VoS×144/256  
VoS×155/256  
VoS×156/256  
VoS×168/256  
VoS×169/256  
VoS×181/256  
VoS×182/256  
VoS×255/256  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
VoS×0/256  
VoS×1/256  
VoS×2/256  
VoS×0/256  
VoS×1/256  
VoS×2/256  
VoS×0/256  
VoS×1/256  
VoS×2/256  
VoS×3/256  
VoS×4/256  
VoS×5/256  
VoS×7/256  
VoS×8/256  
VoS×3/256  
VoS×4/256  
VoS×5/256  
VoS×7/256  
VoS×8/256  
VoS×3/256  
VoS×4/256  
VoS×5/256  
VoS×6/256  
VoS×7/256  
VoS×9/256  
VoS×0/256  
VoS×1/256  
VoS×0/256  
VoS×1/256  
VoS×12/256  
VoS×13/256  
VoS×21/256  
VoS×22/256  
VoS×37/256  
VoS×38/256  
VoS×65/256  
VoS×66/256  
VoS×113/256  
VoS×114/256  
VoS×199/256  
VoS×200/256  
VoS×255/256  
VoS×12/256  
VoS×13/256  
VoS×21/256  
VoS×22/256  
VoS×37/256  
VoS×38/256  
VoS×65/256  
VoS×66/256  
VoS×113/256  
VoS×114/256  
VoS×199/256  
VoS×200/256  
VoS×255/256  
VoS×10/256  
VoS×13/256  
VoS×14/256  
VoS×19/256  
VoS×20/256  
VoS×27/256  
VoS×28/256  
VoS×38/256  
VoS×39/256  
VoS×53/256  
VoS×54/256  
VoS×74/256  
VoS×75/256  
VoS×104/256  
VoS×105/256  
VoS×144/256  
VoS×145/256  
VoS×199/256  
VoS×200/256  
VoS×255/256  
VoS×2/256  
VoS×3/256  
VoS×4/256  
VoS×6/256  
VoS×7/256  
VoS×2/256  
VoS×3/256  
VoS×4/256  
VoS×6/256  
VoS×7/256  
VoS×11/256  
VoS×12/256  
VoS×20/256  
VoS×21/256  
VoS×36/256  
VoS×37/256  
VoS×64/256  
VoS×65/256  
VoS×114/256  
VoS×115/256  
VoS×199/256  
VoS×200/256  
VoS×255/256  
VoS×11/256  
VoS×12/256  
VoS×20/256  
VoS×21/256  
VoS×36/256  
VoS×37/256  
VoS×64/256  
VoS×65/256  
VoS×114/256  
VoS×115/256  
VoS×199/256  
VoS×200/256  
VoS×255/256  
This is in case of not adjustments of the gain/offset control.  
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.  
” : This means that this zone is not outputted in this mode.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
37/51  
BD6088GUL  
Technical Note  
(8) LED current assignment  
LED current can be assigned as each of 16 steps of the ambient level.  
Setting of a user can do by overwriting, though it prepares for the table  
setup in advance.  
Register : IU*(6:0)  
Conversion table  
can be changed  
Ambient Level  
Conversion Table (initial value)  
Ambient Level  
Setting data  
11h  
Current value  
3.6mA  
Ambient Level  
Setting data  
48h  
Current value  
14.6mA  
17.4mA  
19.2mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
13h  
4.0mA  
56h  
15h  
4.4mA  
5Fh  
18h  
5.0mA  
63h  
1Eh  
6.2mA  
63h  
25h  
7.6mA  
63h  
2Fh  
9.6mA  
63h  
3Bh  
12.0mA  
63h  
(9) Slope process  
Slope process is given to LED current to dim naturally.  
LED current changes in the 256Step gradation in sloping.  
Up(darkbright),Down(brightdark) LED current transition speed  
are set individually.  
Current Data which is set  
LED Current  
Register : THL(3:0)  
Register : TLH(3:0)  
Main LED current changes as follows at the time as the slope.  
TLH (THL) is setup of time of the current step 2/256.  
THL  
(3:0)  
TLH(3:0)  
Up/Down transition Speed  
is set individually  
TLH  
time  
Zoom  
25.6mA  
256  
THL  
=0.1mA  
TLH(3:0)  
time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
38/51  
BD6088GUL  
Technical Note  
(10) LED current reset when mode change  
When mode is changed (ALCNon ALC),  
it can select the way to sloping.  
Register : MDCIR  
“0” : LED current non-reset when mode change  
“1” : LED current reset when mode change  
NonALC  
mode  
ALC  
mode  
NonALC  
mode  
NonALC  
mode  
ALC  
mode  
NonALC  
mode  
IMLED(6:0)  
IMLED(6:0)  
IMLED(6:0)  
IMLED(6:0)  
IU*(6:0)  
IU*(6:0)  
MDCIR= “0”  
MDCIR= “1”  
0mA  
0mA  
time  
time  
(11) Current adjustment  
When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.  
B it Name : WPWMEN  
It is suitable for the intensity correction by external control, because PWM based on Main LED current of register setup or  
ALC control.  
WPWMIN(External Pin)  
WPWMEN  
(Register)  
Main group  
LED current  
WPWMPOL=H  
WPWMPOL=L  
(Register)  
H
(Register)  
L
Normal operation  
Normal operation  
Forced OFF  
0
1
H
L
L
H
L
H
Normal operation  
" Normal operation " depends on the setup of each register.  
E N (*)  
Inte rna l S o ft-Sta rt T im e  
D C /D C  
O utp ut  
inp ut  
W P W M IN  
W P W M E N  
L E D C urrent  
E N (*) : it m e a ns “M L E D E N ” or “W *E N ”.  
It is poss ib le to m ak e it a W P W M IN inp ut a nd W P W M E N = 1 in fro nt of E N (*).  
A P W M driv e b e c om e s e ffec tiv e afte r the tim e o f a n L E D c urre nt s tand up .  
W he n ris ing during P W M o p e ratio n, a s for the s ta nd up tim e o f  
a D C /D C o utp ut, o nly the ra te o f  
P W M D uty b e c o m es la te. A p p e ara nc e m a y b e influ e nce d w he n e xtrem ely la te freq ue nc y a nd  
e xtrem e ly lo w D uty a re inp utte d .  
P le a s e s e c ure 80 μ s or m o re o f H s ectio ns a t the tim e of P W M p uls e F o rc e.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
39/51  
BD6088GUL  
Technical Note  
(12) Key back light 2-value decision  
ON  
Capable of comparing luminosity factor data with judgment threshold value  
with a hysteresis to determine binary judgment for illumination intensity.  
Available for key backlight ON/OFF control based on illumination intensity.  
Sets a threshold value and a hystresis via the registers.  
Bit Name : CTH(3:0)  
Bit Name : CHYS(1:0)  
Detect threshold level,  
Hysteresis  
setup is possible  
The threshold value and hystresis must meet the following condition:  
CTH setting CHYS setting  
OFF  
Example: The backlight turns on with an illumination intensity of 7 and turns off wit
Ambient Level  
CTH[3:0]=7h CHYS[1:0]=1h  
(13) Key back light PWM control  
Outputs ON or OFF for binary judgment via the KBLT terminal after PWM processing.  
Allows a slope time to be set in the register via PWM.  
32 levels of duties prepared as MAX Duty are sequentially stepped at KBSLP time intervals.  
Bit name: KBSLP(1:0)  
A PWM cycle can choose 2 value.  
Bit name: FPWM  
It can be changed to the single control by the following setup of a register.  
The KBSLP(1:0), FPWM setting is effective.  
KBMD  
0
KBEN  
KBLT output  
-
Depend on ALC setting  
0
1
0
1
1
32 levels Duty ratio (H level section) becomes the following set point.  
Step  
0
Duty(%)  
0.00  
Step  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Duty(%)  
25.00  
28.13  
31.25  
34.38  
37.50  
40.63  
45.31  
50.00  
56.25  
62.50  
68.75  
75.00  
81.25  
87.50  
93.75  
100.00  
1
1.56  
2
3.13  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
4.69  
4
6.25  
5
7.81  
6
9.38  
7
10.94  
12.50  
14.06  
15.63  
17.19  
18.75  
20.31  
21.88  
23.44  
8
9
10  
11  
12  
13  
14  
15  
0
5
10  
15  
20  
25  
30  
The number of st ep' s  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
40/51  
BD6088GUL  
Technical Note  
KBEN  
KBLT DUTY  
Expansion  
t= time per 1step×32  
KBEN  
Duty=1.56%(At the time of step 1)  
Duty=93.75%(At the time of step 30)  
FPWM  
Expansion  
KBLT  
Step  
OUTSLP(1:0)  
1
OFF  
0
・・・・・・ 301  
31  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
41/51  
BD6088GUL  
Technical Note  
OUT PWM Control  
PWM A fixed signal is output from OUT1 ~ 4 terminal.  
Allows a slope time to be set in the register via PWM.  
32 levels of duties prepared as MAX Duty are sequentially stepped at OUTSLP time intervals.  
Bit name: OUTSLP(1:0)  
A PWM cycle can choose 2 value.  
Bit name: FPWM  
Forced OFF is made with an OUTCNT terminal.  
Bit name: OUT*MD  
OUT*MD  
0
OUT*EN  
OUTCNT  
OUT*出力  
0
1
-
-
After the PWM slope, Hi-z (Duty 0%)  
After the PWM slope, L (Duty 100%)  
Hi-z (LED is compulsory lights off)  
0
0
1
0
1
Hi-z(Duty0%) *1  
Hi-z (LED is compulsory lights off  
L (Duty100%) *  
1
1
*1 But, Duty in the middle of the PWM slope is output at the time as the PWM slope by OUT*EN.  
OUT*  
0
PWM  
OUT*EN  
1
Slope circuit  
OUTCNT  
OUT*MD  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
42/51  
BD6088GUL  
Technical Note  
Setup of a slope (Except for OUTSLP [1:0] =00h)  
1
OUT*MD  
0
1
OUT*EN  
0
1
OUTCNT  
0
Duty(100%)  
OUT*DUTY  
Duty(0%)  
Lights off (Hi-z)  
OUT* terminal  
Lights on(L)  
PWM operate  
OUT*DUTY show the H section of the output step NMOS gate. (Duty 0%~100 %)  
Slope setup nothing (OUTSLP[1:0]=00h)  
Slope by OUTCNT is nothing.  
(It is done ON/OFF promptly.)  
1
OUT*MD  
0
1
OUT*EN  
0
1
OUTCNT  
0
Duty(100%)  
OUT*DUTY  
Duty(0%)  
Light off (Hi-z)  
OUT* terminal  
Light on(L)  
OUT*DUTY shows the H section of the output step NMOS gate. (Duty 0%~100%)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
43/51  
BD6088GUL  
Technical Note  
32 levels Duty ratio (H level section) becomes the following set point.  
Step  
0
Duty(%)  
0.00  
Step  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Duty(%)  
25.00  
28.13  
31.25  
34.38  
37.50  
40.63  
45.31  
50.00  
56.25  
62.50  
68.75  
75.00  
81.25  
87.50  
93.75  
100.00  
1
1.56  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
3.13  
3
4.69  
4
6.25  
5
7.81  
6
9.38  
7
10.94  
12.50  
14.06  
15.63  
17.19  
18.75  
20.31  
21.88  
23.44  
8
9
10  
11  
12  
13  
14  
15  
0
5
10  
15  
20  
25  
30  
The number of st ep' s  
OUT*EN  
OUT*DUTY  
Expansion  
t= time per 1step×32  
OUT*EN  
Duty=1.56%(At the time of step 1)  
Duty=93.75%(At the time of step 32)  
Expansion  
FPWM  
OUT*  
OUTSLP(1:0)  
1
Step  
OFF  
0
30  
31  
・・・・・・  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
44/51  
BD6088GUL  
Technical Note  
I/O  
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.  
When RESETB=L, output is fixed at “H.”  
Level shifter  
EN  
SCL  
(SDA)  
Logic  
RESETB  
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O  
power-on sequence or an input level.  
About the pin management of the function that isn't used and test pins  
Setting it as follows is recommended with the test pin and the pin which isn't used.  
Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.  
T1  
Short to GND because pin for test GND  
Short to GND because pin for test input  
OPEN because pin for test output  
T2, T4  
T3  
Short to GND (Must)  
But, the setup of a register concerned with LED that isn’t used is prohibited.  
Short to ground  
Non-used LED Pin  
WPWMIN, OUTCNT  
(A Pull-Down resistance built-in terminal is contained, too.)  
OUT14  
It opens for an output  
KBLT  
Although Pull-Down is built in, it opens for an output.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
45/51  
BD6088GUL  
Technical Note  
Operation Settings (Flow Example)  
1. Backlight: Auto luminous Mode  
Apply supply voltage.  
Cancel reset.  
The backlight settings can be made at any timing  
so long as it precedes MLEDEN=1.  
MLEDMD=1 is mandatory.  
Luminous control: Various  
settings  
Backlight: Various settings  
ALC block operation takes place for  
Illumination Intensity measurement.  
ALCEN=1  
Wait for 80.4 ms or more  
Time required for initial Illumination  
Intensity acquisition.  
The backlight turns on.  
MLEDEN=0 must be set first when the backlight is off.  
MLEDEN=1  
ALCEN  
ADCYC(1:0)  
ADC Cycle  
SBIAS Output  
Twait= 64ms(typ)  
W hen SBIASON=1  
ADC Movement  
GC1, GC2  
TAD= 16.4ms(typ)  
GC1, GC2=00  
AMB(3:0)  
AMB(3:0)  
TAMB= 80.4ms(typ)  
VOUT  
LED current  
TSOFT  
When It cannot wait for the first illumination measurement, backlight lighting is possible with ALCEN.  
But the extremely short case of slope rise time, a shoulder may be done like for an LED electric current.  
(To the first illumination measurement for AMB(3:0)=00h)  
2. Backlight: Fade-in/Fade-out  
Apply supply voltage.  
Cancel reset.  
Backlight setting.  
Backlight: Various settings  
Slow time setting.  
The backlight turns on.  
MLEDEN=1  
(Rise at designated slope time)  
Set the minimum current.  
MLEDEN=0  
(Rise at designated slope time)  
The backlight turns off.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
46/51  
BD6088GUL  
Technical Note  
3. Backlight: Un-auto luminous Mode  
Apply supply voltage.  
Cancel reset.  
The backlight settings can be made at any timing  
so long as it precedes MLEDEN=1.  
MLEDMD=0 is mandatory.  
Backlight: Various settings  
The backlight turns on.  
MLEDEN=1  
MLEDEN=0 must be set first when the backlight is off.  
MLEDEN  
VOUT  
LED current  
The rise time depends on TLH(3:0) setting  
TSOFT  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
47/51  
BD6088GUL  
Technical Note  
PCB pattern of the Power dissipation measuring board  
1st layer(component)  
2nd layer  
3rd layer  
4th layer  
5th layer  
6th layer  
7th layer  
8th layer(solder)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
48/51  
BD6088GUL  
Technical Note  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Power supply and ground line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay  
attention to the interference by common impedance of layout pattern when there are plural power supplies and ground  
lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external  
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between  
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the  
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low  
temperature, thus determining the constant.  
(3) Ground voltage  
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient.  
(4) Short circuit between pins and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the  
pin and the power supply or the ground pin, the ICs can break down.  
(5) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(6) Input pins  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower  
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input  
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to  
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.  
(7) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(8) Thermal shutdown circuit (TSD)  
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,  
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating  
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do  
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(9) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(10) LDO  
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it  
has the possibility that an operation becomes unstable.  
(11) About the pin for the test, the un-use pin  
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a  
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our  
company person in charge.  
(12) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width  
of ground wiring, and routing of wiring.  
(13) About the function description or application note or more.  
The function description and the application notebook are the design materials to design a set. So, the contents of the  
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the  
external elements.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
49/51  
BD6088GUL  
Technical Note  
Power dissipation (On the ROHM’s standard board)  
1.6  
1380mW  
1.4  
Information of the ROHM’s standard board  
Material : glass-epoxy  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Size : 50mm×58mm×1.75mm(8th layer)  
Wiring pattern figure Refer to after page.  
0
25  
50  
75  
100 125 150  
Ta(℃)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
50/51  
BD6088GUL  
Technical Note  
Ordering part number  
-
B D  
6
0
8
8
G U  
L
E
2
Part No.  
Part No.  
6088  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
GUL : VCSP50L3  
VCSP50L3(BD6088GUL)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
1PIN MARK  
Quantity  
E2  
Direction  
of feed  
3.50 0.05  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
S
(
)
0.06  
S
φ
36- 0.25 0.05  
A
0.05  
A B  
F
E
D
C
B
A
B
φ
(
0.15)INDEX POST  
1
2 3 4 5 6  
Direction of feed  
1pin  
0.50 0.05  
P=0.50×5  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.04 - Rev.A  
51/51  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD60910GU

Silicon Monolithic Integrated Circuit
ROHM

BD60910GU-E2

White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60910GU_11

White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD6091GU

Silicon Monolithic Integrated Circuit
ROHM

BD6091GU_11

Silicon Monolithic Integrated Circuit
ROHM

BD6092GU

Silicon Monolithic Integrated Circuit
ROHM

BD6092GU-E2

Analog Circuit, 1 Func, PBGA24, 2.80 X 2.80 MM, 0.50 MM PITCH, ROHS COMPLIANT, VCSP85H2-24
ROHM

BD6095GU

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD6095GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6095GUL_11

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD60A00NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX-TR

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM