BM60054AFV-C [ROHM]

这是一款内置隔离元件的栅极驱动器,绝缘电压为2500Vrms,输入输出延迟时间为120ns,最小输入脉冲宽度为90ns。内置故障信号输出功能、Ready信号输出功能、低电压故障防止功能(UVLO)、热保护功能、DESAT保护功能、米勒钳位功能、开关控制器和门极状态监控功能。 此产品不在网络代理商出售。请联系我们的销售人员进行咨询。;
BM60054AFV-C
型号: BM60054AFV-C
厂家: ROHM    ROHM
描述:

这是一款内置隔离元件的栅极驱动器,绝缘电压为2500Vrms,输入输出延迟时间为120ns,最小输入脉冲宽度为90ns。内置故障信号输出功能、Ready信号输出功能、低电压故障防止功能(UVLO)、热保护功能、DESAT保护功能、米勒钳位功能、开关控制器和门极状态监控功能。 此产品不在网络代理商出售。请联系我们的销售人员进行咨询。

开关 栅极驱动 控制器 监控 脉冲 驱动器
文件: 总41页 (文件大小:1942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation voltage 2500Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM60054AFV-C  
General Description  
Key Specifications  
The BM60054AFV-C is a gate driver with isolation voltage  
2500Vrms, I/O delay time of 120ns, and a minimum input  
pulse width of 90ns. Fault signal output function, ready  
signal output function, under voltage lockout (UVLO)  
function, thermal protection function, short current  
protection (SCP) function, miller clamp function and  
switching controller function, output state feedback  
function are all built-in.  
Isolation Voltage:  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
2500Vrms  
20V (Max)  
120ns (Max)  
90ns (Max)  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W(Typ) x D(Typ) x H(Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Fault Signal Output Function  
Ready Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Soft Turn-Off Function for Short Circuit Protection  
(Adjustable Turn-Off time)  
Thermal Protection Function  
Active Miller Clamping  
Switching Controller Function  
Output State Feedback Function  
UL1577 Recognized: File No. E356010  
(Note 1) Grade 1  
SSOP-B28W  
Applications  
Automotive Inverter  
Automotive DC-DC Converter  
Industrial inverter System  
UPS System  
Typical Application Circuit  
Pin 1  
Figure 1. Typical Application Circuit  
Product structureSilicon integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/38  
TSZ22111 14 001  
 
 
 
 
 
 
BM60054AFV-C  
Contents  
General Description ................................................................................................................................................................1  
Features.................................................................................................................................................................................1  
Applications............................................................................................................................................................................1  
Key Specifications...................................................................................................................................................................1  
Package...................................................................................................................................................................................1  
Typical Application Circuit........................................................................................................................................................1  
Contents.................................................................................................................................................................................2  
Recommended Range of External Constants...........................................................................................................................3  
Pin Configuration ....................................................................................................................................................................3  
Pin Descriptions......................................................................................................................................................................3  
Description of Functions and Examples of Constant Setting .....................................................................................................6  
Absolute Maximum Ratings...................................................................................................................................................17  
Thermal Resistance..............................................................................................................................................................18  
Recommended Operating Conditions ....................................................................................................................................18  
Insulation Related Characteristics..........................................................................................................................................18  
Electrical Characteristics.......................................................................................................................................................19  
UL1577 Ratings Table...........................................................................................................................................................21  
Typical Performance Curves..................................................................................................................................................22  
Figure 19. Main Power Supply Circuit Current vs Main Power Supply Voltage.........................................................................22  
Figure 20. Output-side Circuit Current vs Output-side Positive Supply Voltage (MODE=H, VEE2=0V, OUT1=L).........................22  
Figure 21. Output-side Circuit Current vs Output-side Positive Supply Voltage (MODE=H, VEE2=0V, OUT1=H).........................22  
Figure 22. FET_G ON-resistance vs Temperature (Source /Sink)............................................................................................22  
Figure 23. Oscillation Frequency vs RT Resistance................................................................................................................23  
Figure 24. Soft-start Time vs Temperature..............................................................................................................................23  
Figure 25. FB Pin Threshold Voltage vs Temperature .............................................................................................................23  
Figure 26. COMP Pin Sink Current vs Temperature................................................................................................................23  
Figure 27. COMP Pin Source Current vs Temperature............................................................................................................24  
Figure 28. Over Current Detection Threshold vs Temperature.................................................................................................24  
Figure 29. Logic Input Filtering Time vs Temperature (L pulse)................................................................................................24  
Figure 30. Logic Input Filtering Time vs Temperature (H pulse)...............................................................................................24  
Figure 31. ENA Input Filtering Time Figure vs Temperature ....................................................................................................25  
Figure 32. MODE Input Voltage vs Temperature (VCC2=14V)...................................................................................................25  
Figure 33. OUT1H ON-resistance (Source) vs Temperature (IOUT1H=-40mA)............................................................................25  
Figure 34. OUT1L ON-resistance (Sink) vs Temperature (IOUT1L=40mA)..................................................................................25  
Figure 35. PROOUT ON-resistance vs Temperature (IPROOUT=40mA)......................................................................................26  
Figure 36. Turn ON time vs Temperature................................................................................................................................26  
Figure 37. Turn OFF time vs Temperature..............................................................................................................................26  
Figure 38. OUT2 ON-resistance vs Temperature (IOUT2=40mA)...............................................................................................26  
Figure 39. Short Current Detection Voltage vs Temperature....................................................................................................27  
Figure 40. DESAT Leading Edge Blanking Time vs Temperature ............................................................................................27  
Figure 41. Short Current Detection Filter Time vs Temperature.............................................................................................27  
Figure 42. Short Current Detection Delay Time (PROOUT) vs Temperature ............................................................................27  
Figure 43. SCPIN Pin Low Voltage vs Temperature................................................................................................................28  
Figure 44. Output Delay Difference between PROOUT and FLT vs Temperature.....................................................................28  
Figure 45. Thermal Detection Voltage vs Temperature............................................................................................................28  
Selection of Components Externally Connected .....................................................................................................................29  
I/O Equivalence Circuits........................................................................................................................................................30  
Operational Notes.................................................................................................................................................................34  
Ordering Information.............................................................................................................................................................36  
Marking Diagram...................................................................................................................................................................36  
Physical Dimension, Tape and Reel Information.....................................................................................................................37  
Revision History....................................................................................................................................................................38  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/38  
TSZ22111 15 001  
13.Sep.2019 Rev.004  
 
BM60054AFV-C  
Recommended Range of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
1.0  
Typ  
3.3  
-
Max  
10.0  
-
VREG  
VCC2  
RT  
CVREG  
CVCC2  
RRT  
µF  
µF  
kΩ  
0.33  
24  
68  
150  
Pin Configuration  
(TOP VIEW)  
VEE2  
1
2
GND1  
28  
27 SENSE  
26  
PROOUT  
VTSIN  
SCPIN  
NC  
3
FET_G  
4
25 VREG  
24 V_BATT  
23 COMP  
22 FB  
5
6
GND2  
MODE  
UVLOIN  
VCC2  
NC  
7
8
21 RT  
9
20 RDY  
10  
11  
12  
13  
19  
18  
17  
16  
15  
INB  
INA  
OUT1H  
OUT1L  
OUT2  
ENA  
FLT  
14  
GND1  
VEE2  
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No.  
1
Pin Name  
Function  
VEE2  
PROOUT  
VTSIN  
SCPIN  
NC  
Output-side negative power supply pin  
Soft turn-off pin/Gate voltage input pin  
Temperature sensor voltage input pin  
Short circuit current detection pin  
Non-connection  
2
3
4
5
6
GND2  
MODE  
UVLOIN  
VCC2  
NC  
Output-side ground pin  
7
Mode selection pin of output-side UVLO  
Output-side UVLO setting input pin  
Output-side positive power supply pin  
Non-connection  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
OUT1H  
OUT1L  
OUT2  
VEE2  
GND1  
FLT  
Source side output pin  
Sink side output pin  
Miller Clamp pin  
Output-side negative power supply pin  
Input-side ground pin  
Fault output pin  
ENA  
Input enabling signal input pin  
Control input pin A  
INA  
INB  
Control input pin B  
RDY  
Ready output pin  
RT  
Switching frequency setting pin for switching controller  
Error amplifier inverting input pin for switching controller  
Error amplifier output pin for switching controller  
Main power supply pin  
FB  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
Input-side internal power supply pin  
MOS FET control pin for switching controller  
Current detection pin for switching controller  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/38  
TSZ22111 15 001  
BM60054AFV-C  
Pin Descriptions continued  
1. V_BATT (Main power supply pin)  
This is the main power supply pin. Connect a bypass capacitor between V_BATT and GND1 in order to suppress  
voltage variations.  
2. GND1 (Input-side ground pin)  
The GND1 pin is a ground pin on the input side.  
3. VCC2 (Output-side positive power supply pin)  
The VCC2 pin is a positive power supply pin on the output side. To reduce voltage fluctuations due to OUT1H/L pin  
output current and due to the driving current of the internal transformers, connect a bypass capacitor between VCC2  
and GND2 pins.  
4. VEE2 (Output-side negative power supply pin)  
The VEE2 pin is a negative power supply pin on the output side. To suppress voltage fluctuations due to OUT1H/L pin  
output current and due to the driving current of the internal transformers, connect a bypass capacitor between the VEE2  
and the GND2 pins. Connect the VEE2 pin to the GND2 pin when no negative power supply is used.  
5. GND2 (Output-side ground pin)  
The GND2 pin is a ground pin on the output side. Connect the GND2 pin to the emitter/source of a power device.  
6. INA, INB, ENA (Control Input pin)  
The INA, INB, ENA are pins used to determine output logic.  
ENA  
L
H
H
H
INB  
X
H
L
L
INA  
X
X
L
H
OUT1H  
Hi-Z  
Hi-Z  
Hi-Z  
H
OUT1L  
L
L
L
Hi-Z  
7. FLT (Fault output pin)  
The FLT pin is an open drain pin used to output a fault signal when short circuit protection function (SCP) or thermal  
protection function is activated, and fault state (FLT=L output) is released in rising of ENA (L to H).  
Status  
FLT  
Hi-Z  
L
While in normal operation  
When SCP or thermal protection is activated  
8. RDY (Ready output pin)  
The RDY pin is an open drain pin that outputs an internal abnormal state (V_BATT UVLO, VCC2 UVLO, output state  
feedback). output state feedbackis a function to compare gate logic monitored by the PROOUT pin with input logic,  
and outputs L when it does not match.  
Status  
RDY  
Hi-Z  
L
While in normal operation  
V_BATT UVLO or VCC2 UVLO or Output state feedback (disaccord)  
9. MODE (Mode selection pin of output-side UVLO)  
The MODE pin is a pin which selects internal threshold or external setting threshold for output-side UVLO.  
MODE  
Output-side UVLO threshold voltage  
Setting by external (Use UVLOIN pin)  
L (=GND2)  
H (=VCC2)  
Fixed (=VUVLO2L) (Connect UVLOIN pin to VCC2 pin)  
10. UVLOIN (Output-side UVLO setting input pin)  
The UVLOIN pin is a pin for deciding UVLO setting value of VCC2. The threshold value of UVLO can be set by  
dividing the resistance voltage of VCC2. UVLOIN activates only at MODE pin=L. When MODE pin=H, connect  
UVLOIN pin to VCC2 pin.  
11. OUT1H, OUT1L (Output pin)  
The OUT1H pin is a source side pin used to drive the gate of a power device, and the OUT1L pin is a sink side pin  
used to drive the gate of a power device.  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/38  
TSZ22111 15 001  
BM60054AFV-C  
Pin Descriptions continued  
12. OUT2 (Miller Clamp pin)  
This is the miller clamp pin for preventing a rise of gate voltage due to miller current of output element connected to  
OUT1H/L. It also functions as a pin for monitoring gate voltage for miller clamp. OUT2 pin voltage become less than  
VOUT2ON (typ 2.0V), miller clamp function operates. OUT2 should be connect to VEE2 when miller clamp function is  
not used.  
13. PROOUT (Soft turn-off pin/Gate voltage input pin)  
This is a pin for soft turn-off of output pin when short circuit protection or thermal protection is in action. It also  
functions as a pin for monitoring gate voltage for output state feedback function.  
14. SCPIN (Short circuit current detection pin)  
The SCPIN pin is a pin used to detect current for short circuit protection. When the SCPIN pin voltage exceeds  
VSCDET, SCP function will be activated. This may cause the IC to malfunction in an open state. To avoid such trouble,  
short circuit the SCPIN pin to the GND2 pin when the short circuit protection is not used. In order to prevent the  
wrong detection due to noise, the noise filter time tSCPFIL is set.  
15. VTSIN (Temperature sensor voltage input pin)  
The VTSIN pin is a temperature sensor voltage input pin, which can be used for thermal protection of an output  
device. If VTSIN pin voltage becomes VTSDET or less, the thermal protection function will be activated. IC may  
malfunction in the open status, so be sure to supply the VTSIN more than VTSDET if the thermal protection function is  
not used. In order to prevent the wrong detection due to noise, the noise mask time tTSFIL is set. In addition, it can be  
used also as compulsive shutdown pin other than a temperature sense by inputting a comparator output etc.  
16. RT (Switching frequency setting pin for switching controller)  
The RT pin is a pin used to make setting of switching frequency of switching controller. The switching frequency is  
determined by the resistance value connected between RT and GND1. The value of switching frequency is  
determined by the value of the resistor RRT.  
FSW 1/(7.3108 RRT 2.2104 )  
kHz  
17. FB (Error amplifier inverting input pin for switching controller)  
This is a voltage feedback pin of the switching controller. This pin combine with voltage monitoring at overvoltage  
protection function and under voltage protection function for switching controller. When overvoltage or under voltage  
protection is activated, switching controller will be at OFF state (FET_G pin outputs low). When the protection holding  
time tDCDCRLS is completed, the protection function will be released. Under voltage function is not activated during  
soft-start.  
18. COMP (Error amplifier output pin for switching controller)  
This is the gain control pin of the switching controller. Connect a phase compensation capacitor and resistor.  
19. VREG (Input-side internal power supply pin)  
This is the input-side internal power supply pin. Be sure to connect a capacitor between VREG and GND1 even when  
the switching controller is not used, in order to prevent oscillation and suppress voltage variation due to FET_G  
output current and IC internal transformer drive current.  
20. FET_G (MOS FET control pin for switching controller)  
This is a MOSFET control pin for the switching controller transformer drive.  
21. SENSE (Current detection pin for switching controller)  
This is a pin connected to the resistor of the switching controller current feedback. This pin combines with current  
monitoring at overcurrent restriction function for switching controller. When overcurrent restriction is activated,  
switching controller will be at OFF state (FET_G pin outputs Low), and the overcurrent restriction function will be  
released in the next switching period.  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting  
1. Miller Clamp Function  
When OUT1H/L=Hi-Z/L and OUT2 pin voltage<VOUT2ON, internal MOS of OUT2 pin is turned ON and miller clamp  
function operates. Miller clamp will be maintained until next turn on (OUT1H/L=H/Hi-Z).  
During short circuit protection and thermal protection, the miller clamp function does not operate and the miller clamp  
function is enabled after soft turn-off release time tSTO has passed.  
OUT2 pin  
input voltage  
IN  
OUT2 output  
L
less than VOUT2ON  
L
H
X
Hi-Z  
VCC2  
PREDRIVER  
OUT1H/L  
PROOUT  
PREDRIVER  
PREDRIVER  
PREDRIVER  
LOGIC  
OUT2  
GND2  
VEE2  
+
-
VOUT2ON  
Figure 3. Block Diagram of Miller Clamp Function  
H
L
ENA  
INA  
H
L
VTSDET  
VTSIN  
VSCDET  
Hi-Z  
L
SCPIN  
FLT  
H
OUT1H/L  
OUT2  
Hi-Z  
L
VOUT2ON  
tPON  
tSTO  
tSTO  
Figure 4. Timing Chart of Miller Clamp Function  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
2. Under Voltage Lockout (UVLO)Function  
The BM60054AFV-C incorporates the under voltage lockout (UVLO) function on V_BATT and VCC2. When the  
power supply voltage drops to VUVLOBATTL, VUVLOINL (MODE=L), or VUVLO2L (MODE=H), the OUT1H/L pin will output the  
"Hi-Z/L" and the RDY pin will output the Lsignal. When the power supply voltage rises to VUVLOBATTH  
(=VUVLOBATTL+VUVLOBATTHYS), VUVLOINH (=VUVLOINL+VUVLOINHYS) or VUVLO2H (=VUVLO2L+VUVLO2HYS), these pins will be reset.  
In addition, to prevent miss-triggers due to noise, mask time tUVLOBATTFIL and tUVLO2FIL are set on both voltage sides.  
H
L
INA  
VUVLOBATTH  
VUVLOBATTL  
V_BATT  
Hi-Z  
L
H
L
RDY  
OUT1H/L  
FET_G  
H
Hi-Z  
L
Figure 5. V_BATT UVLO Function Operation Timing Chart  
H
L
INA  
VUVLOINH  
VUVLOINL  
UVLOIN  
(VCC2)  
Hi-Z  
L
RDY  
H
Hi-Z  
L
OUT1H/L  
H
L
FET_G  
Figure 6. VCC2 UVLO Function Operation Timing Chart (MODE=L)  
H
L
INA  
VUVLO2H  
VUVLO2L  
VCC2  
Hi-Z  
L
RDY  
H
Hi-Z  
OUT1H/L  
L
H
L
FET_G  
Figure 7. VCC2 UVLO Function Operation Timing Chart (MODE=H)  
: Since the V_BATT to GND1 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
: Since the VCC2 to VEE2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
3. Short Circuit Protection Function (SCP, DESAT)  
When the SCPIN pin voltage exceeds VSCDET, the SCP function will be activated. When the SCP function is activated,  
the OUT1H/L pin voltage will be set to the Hi-Z/Hi-Zlevel and the PROOUT pin voltage will go to the Llevel first  
(soft turn-off). Next, after tSTO has passed, OUT1H/L pin become Hi-Z/L (PROOUT pin hold L).  
When the rising edge is put in the ENA pin after ENA=L (>tENAFIL), the SCP function will be released.  
When OUT1H/L=Hi-Z/L or Hi-Z/Hi-Z, MOSFET is built-in between SCPIN pin and GND2 pin turns ON to discharge  
CBLANK for desaturation protection function. When OUT1H/L=H/Hi-Z, internal MOSFET connected to SCPIN pin turns  
OFF. Collector/drain voltage VDESAT at which desaturation protection function operates and blank time tBLANKouternal can  
be set by the following formula.  
R3 R2  
VDESAT VSCDET  
VF  
V
   
D1  
R3  
R3 R2 R1  
R3  
VCC2 VSCDET  
V  
MIN  
V
R2 R1  
R3 R2 R1  
R3 R2 R1  
R3  
tBLANKouternal    
R3CBLANK ln(1  
SCDET ) tDESATleb  
VCC2  
s
   
設定参考値  
R2  
VDESAT  
R1  
R3  
4.0V  
4.5V  
5.0V  
5.5V  
6.0V  
6.5V  
7.0V  
7.5V  
8.0V  
8.5V  
9.0V  
9.5V  
10.0V  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
39kΩ  
47kΩ  
51kΩ  
27kΩ  
33kΩ  
62kΩ  
47kΩ  
20kΩ  
82kΩ  
62kΩ  
33kΩ  
75kΩ  
68kΩ  
4.7kΩ  
5.1kΩ  
5.1kΩ  
2.4kΩ  
2.7kΩ  
4.7kΩ  
3.3kΩ  
1.3kΩ  
5.1kΩ  
3.6kΩ  
1.8kΩ  
3.9kΩ  
3.3kΩ  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
VCC2  
OUT1H/L  
PROOUT  
LOGIC  
FLT  
SCPIN  
FLT  
+
SCPFIL  
-
VSCDET  
GND2  
VEE2  
GND1  
Figure 8. Block Diagram of Short Circuit Protection  
VCC2  
R1  
OUT1H/L  
PROOUT  
LOGIC  
FLT  
D1  
R2  
R3  
FLT  
SCPIN  
+
SCPFIL  
-
VSCDET  
GND2  
VEE2  
GND1  
Figure 9. Block Diagram of DESAT  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
H
L
IN  
tSCPFIL  
tSCPPRO  
tSCPFIL  
tSCPPRO  
VSCDET  
SCPIN  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
tDESATleb  
tDESATleb  
tSTO  
tSTO  
H
L
ENA  
>tENAFIL  
Figure 10. SCP Operation Timing Chart  
>tENAFIL  
Start  
OUT1H/L=Hi-Z/L, PROOUT=L  
No  
No  
VSCPIN>VSCDET  
Yes  
No  
ENA=L to H  
Yes  
Exceed filter time  
Yes  
FLT=Hi-Z  
OUT1H/L=Hi-Z/Hi-Z, PROOUT=L, FLT=L  
No  
No  
Exceed tSTO  
Yes  
IN=H  
Yes  
OUT1H/L=H/Hi-Z, PROOUT=Hi-Z  
Figure 11. SCP Operation Status Transition Diagram  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
4. Thermal Protection Function  
When the VTSIN pin voltage becomes VTSDET or less, the thermal protection function will be activated. When the  
thermal protection function is activated, the OUT1H/L pin voltage will be set to the Hi-Z/Hi-Zlevel and the PROOUT  
pin voltage will go to the Llevel first (soft turn-off). Next, when the VTSIN pin voltage rises to the threshold value  
and after tSTO has passed, OUT1H/L pin become Hi-Z/L (PROOUT pin hold L).  
When the rising edge is put in the ENA pin after ENA=L (>tENAFIL), the thermal protection function will be released.  
VCC2  
OUT1H/L  
LOGIC  
TSFIL  
FLT  
PROOUT  
VTSIN  
FLT  
SENSOR  
VTSDET  
GND2  
VEE2  
GND1  
Figure 12. Block Diagram of thermal protection function  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
H
L
IN  
tTSFIL  
tTSFIL  
VTSIN  
VTSDET  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
tSTO  
tSTO  
H
L
ENA  
>tENAFIL  
>tENAFIL  
Figure 13. Thermal Protection Function Operation Timing Chart  
START  
OUT1H/L=Hi-Z/L, PROOUT=L  
ENA=L to H  
No  
No  
VTSIN<VTSDET  
Yes  
No  
No  
Exceed filter time  
Yes  
Yes  
FLT=Hi-Z  
OUT1H/L=Hi-Z/Hi-Z, PROOUT=L, FLT=L  
No  
No  
VTSIN>VTSDET  
IN=H  
Yes  
Yes  
OUT1H/L=H/Hi-Z, PROOUT=Hi-Z  
Exceed tSTO  
Figure 14. Thermal Protection Function Operation Status Transition Diagram  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
5. Switching Controller  
(a) Basic action  
This IC has a built-in switching power supply controller which repeats ON/OFF synchronizing with internal clock  
set by RT pin. When V_BATT voltage is supplied (VBATT>VUVLOBATTH (=VUVLOBATTL+ VUVLOBATTHYS)), FET_G pin  
starts switching by soft-start. Output voltage is determined by the following equation by external resistance and  
winding ratio nof fly back transformer (n= VOUT2 side winding number/VOUT1 side winding number)  
VOUT 2 VFB  
(b) Max duty  
R1 R2  
/ R2  
n  
V
   
When, for example, output load is large, and voltage level of SENSE pin does not reach current detection level,  
output is forcibly turned OFF by Maximum ON Duty (DONMAX).  
(c) Protection function  
The switching controller has protection function as overvoltage protection (OVP), and under voltage protection  
(UVP) monitoring the voltage of FB pin.  
When the protection function is activated, switching controller will be OFF state (FET_G pin outputs Low). The  
protection holding time (tDCDCRLS) is completed, the protection function will be released. Under voltage function is  
not activated during soft-start.  
VOUT1  
RT  
FB  
OSC  
VFB  
R1  
R2  
-
UVLO_BATT  
+
OVP  
UVP  
COMP  
V_BATT  
VREG  
VOUT2  
Max duty  
VREG  
Slope  
COMP  
VFB  
+
-
R
Q
FET_G  
SENSE  
GND1  
S
OSC  
OC  
Soft start  
Figure 15. Block Diagram of switching controller  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
(d)The pin handling when not using switching controller  
When not using switching controller, do pin handling as follows.  
Pin no.  
21  
22  
23  
24  
25  
26  
27  
Pin name  
RT  
Processing method  
pull down in GND1 by 68kΩ  
connect to VREG  
connect to GND1  
connect power supply  
connect capacitor  
open  
FB  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
connect to VREG  
RT  
FB  
OSC  
VFB  
-
UVLO_BATT  
+
OVP  
UVP  
COMP  
V_BATT  
Max duty  
VREG  
VREG  
FET_G  
SENSE  
GND1  
COMP  
+
-
R
Q
S
OSC  
VFB  
Slope  
OC  
Soft start  
Figure 16. The pin handling when not using switching controller  
6. Gate State Monitoring Function  
When input logic and gate logic of output device monitored with PROOUT pin are compared, a logic L is output from  
RDY pin when they disaccord. In order to prevent the detection error due to delay of input and output, OSFB filter  
time tOSFBFIL is provided.  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
14/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
(7) I/O Condition Table  
Input  
Output  
No.  
Status  
1
2
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
H
X
X
X
X
X
X
L
L
L
H
H
X
X
X
X
X
X
X
X
X
X
L
H
L
X
X
H
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
Hi-Z  
Hi-Z  
L
SCP  
L
L
3
UVLO  
UVLO  
X
X
X
X
X
X
X
X
H
H
L
H
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
UVLO_VBATT  
UVLO_VCC2  
4
L
L
5
UVLO  
UVLO  
H
L
H
L
L
6
L
L
7
H
L
X
X
H
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
L
L
L
L
Hi-Z  
Hi-Z  
L
Thermal  
protection  
8
L
9
H
H
H
H
H
H
H
H
H
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
H
L
L
L
L
L
L
Hi-Z Hi-Z Hi-Z  
Disable  
10  
11  
12  
13  
14  
15  
16  
L
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
H
H
H
H
H
H
H
L
H
L
L
INB active  
L
H
L
H
L
L
Normal Operation  
L Input  
L
L
L
L
H
H
H
L
H
L
Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z Hi-Z  
Normal Operation  
H Input  
L
H
L
: > UVLO, X:Don't care  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/38  
TSZ22111 15 001  
BM60054AFV-C  
Description of Functions and Examples of Constant Setting continued  
(8) Power Supply Startup/Shutdown Sequence  
H
L
IN  
VUVLOBATTL  
VUVLOBATT  
L
VUVLOBATTL  
V_BATT  
VCC2  
0V  
VUVLO2H  
VUVLO2H  
VUVLO2H  
0V  
0V  
(=VUVLO2L+ VUVLO2HYS  
)
VEE2  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
OUT2  
PROOUT  
RDY  
L
Hi-Z  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTH  
(=VUVLOBATTL+ VUVLOBATTHYS  
VUVLOBATTL  
VUVLO2H  
VUVLOBATTH  
0V  
)
VUVLO2L  
VUVLO2L  
0V  
0V  
VEE2  
H
OUT1H/L  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
RDY  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTL  
VUVLOBATTL  
VUVLOBATTH  
VUVLO2L  
0V  
VUVLO2H  
VUVLO2H  
0V  
0V  
VEE2  
H
OUT1H/L  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
RDY  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTH  
VUVLOBATTH  
VUVLOBATTH  
0V  
VUVLO2L  
VUVLO2L  
VUVLO2L  
0V  
0V  
VEE2  
H
OUT1H/L  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
RDY  
L
Hi-Z  
L
: Since the VCC2 to VEE2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
: Since the V_BATT to GND1 pin voltage is low and the RDY output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
Figure 17. Power Supply Startup/Shutdown Sequence  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/38  
TSZ22111 15 001  
13.Sep.2019 Rev.004  
BM60054AFV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
VBATT  
VCC2  
Limit  
Unit  
V
-0.3 to +40.0(Note 2)  
-0.3 to +24.0(Note 3)  
-15.0 to +0.3(Note 3)  
Main Power Supply Voltage  
Output-side Positive Supply Voltage  
Output-side Negative Supply Voltage  
V
VEE2  
V
Maximum Difference  
VMAX2  
30.0  
V
Between Output-Side Positive and NegativeVoltages  
INA, INB, ENA Pin Input Voltage  
MODE Pin Input Voltage  
VIN  
VMODE  
VSCPIN  
VVTS  
-0.3 to +7.0(Note 2)  
V
V
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
SCPIN Pin Input Voltage  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
VTSIN Pin Input Voltage  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
UVLOIN Pin Input Voltage  
VUVLOIN  
IOUT1PEAK  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
OUT1H, OUT1L Pin Output Current (Peak 10μs)  
OUT2 Pin Output Current (Peak 10μs)  
PROOUT Pin Output Current (Peak 10μs)  
FLT, RDY Pin Output Current  
5.0(Note 4)  
5.0(Note 4)  
2.5(Note 4)  
10  
A
IOUT2PEAK  
A
IPROOUTPEA  
A
IFLT  
IFET_GPEAK  
Tstg  
mA  
A
FET_G Pin Output Current (Peak 1μs)  
Storage Temperature Range  
1
-55 to +150  
°C  
Junction Temperature  
Tjmax  
+150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) Should not exceed Tjmax=150C  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/38  
TSZ22111 15 001  
13.Sep.2019 Rev.004  
BM60054AFV-C  
Thermal Resistance(Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 7)  
2s2p(Note 8)  
SSOP-B28W  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 6)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 5) Based on JESD51-2A (Still-Air).  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
70μm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
4
Typ  
12  
15  
-
Max  
Unit  
V
Main Power Supply Voltage(Note 9)  
VBATT  
VCC2  
VEE2  
32  
20  
0
Output-side Positive Supply Voltage(Note 10)  
Output-side Negative Supply Voltage(Note 10)  
10  
-12  
V
V
Maximum Difference  
VMAX2  
10  
-
28  
V
Between Output-Side Positive and Negative Voltages  
Switching Frequency for Switching Controller  
Operating Temperature Range  
fSWR  
Topr  
100  
-40  
-
500  
kHz  
°C  
+25  
+125  
(Note 9) Relative to GND1  
(Note 10) Relative to GND2  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
Unit  
Ω
Insulation Resistance (VIO=500V)  
Insulation Withstand Voltage/1min  
Insulation Test Voltage/1sec  
>109  
2500  
3000  
VISO  
Vrms  
Vrms  
VISO  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/38  
TSZ22111 15 001  
BM60054AFV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40°C to +125°C, VBATT=4V to 32V, VCC2=UVLO to 20V, VEE2=-12V to 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Main Power Supply  
1.0  
0.7  
0.8  
1.6  
1.3  
1.4  
2.2  
1.9  
2.0  
IBATT1  
IBATT2  
IBATT3  
mA  
mA  
mA  
VBATT=4V  
Circuit Current 1  
Main Power Supply  
VBATT=12V  
VBATT=32V  
Circuit Current 2  
Main Power Supply  
Circuit Current 3  
0.8  
0.4  
0.9  
0.5  
1.5  
1.1  
1.6  
1.2  
2.2  
1.8  
2.3  
1.9  
Output-side Circuit Current 1  
Output-side Circuit Current 2  
Output-side Circuit Current 3  
Output-side Circuit Current 4  
ICC21  
ICC22  
ICC23  
ICC24  
mA  
mA  
mA  
mA  
VCC2=14V, OUT1=L  
VCC2=14V, OUT1=H  
VCC2=18V, OUT1=L  
VCC2=18V, OUT1=H  
VCC2=16V, VEE2=-8V,  
OUT1=L  
1.0  
0.6  
1.6  
1.3  
2.4  
2.0  
Output-side Circuit Current 5  
ICC25  
ICC26  
mA  
mA  
VCC2=16V, VEE2=-8V,  
OUT1=H  
Output-side Circuit Current 6  
Switching Power Supply Controller  
FET_G Output Voltage H1  
4.2V<VBATT32V  
IFET_G=0A(open)  
VBATT4.2V  
VFETGH1  
VFETGH2  
3.8  
-
4.0  
4.2  
V
V
FET_G Output Voltage H2  
V_BATT-0.2  
V_BATT  
IFET_G=0A(open)  
IFET_G=0A(open)  
IFET_G=-10mA  
IFET_G=10mA  
RT=68kΩ  
FET_G Output Voltage L  
FET_G ON-resistance (Source)  
FET_G ON-resistance (Sink)  
Oscillation Frequency  
VFETGL  
RONGH  
0
3
-
6
0.3  
12  
V
Ω
RONGL  
0.3  
182  
-
0.6  
200  
-
1.3  
222  
50  
Ω
fSW  
kHz  
ms  
V
Soft-start Time  
tSS  
FB Pin Threshold Voltage  
FB Pin Input Current  
VFB  
1.47  
-0.8  
-160  
40  
1.50  
0
1.53  
+0.8  
-40  
160  
3.60  
0.13  
-
IFB  
µA  
µA  
µA  
V
COMP Pin Sink Current  
COMP Pin Source Current  
V_BATT UVLO ON Voltage  
V_BATT UVLO Hysteresis  
V_BATT UVLO Filtering Time  
Maximum ON DUTY  
ICOMPSINK  
ICOMPSOURCE  
VUVLOBATTL  
VUVLOBATTHYS  
tUVLOBATTFIL  
DONMAX  
VOVTH  
-80  
80  
3.20  
0.07  
-
3.40  
0.1  
2
V
μs  
%
-
48  
-
Over Voltage Detection Threshold  
1.60  
1.65  
1.70  
V
Under Voltage Detection  
Threshold  
VUVTH  
1.23  
1.30  
1.37  
V
Over Current Detection Threshold  
Protection Holding Time  
VOCTH  
0.17  
20  
0.20  
40  
0.23  
60  
V
tDCDCRLS  
ms  
Logic  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-Down Resistance  
Minimum Input Pulse Width  
ENA Input Filtering Time  
MODE Low Level Input Voltage  
MODE High Level Input Voltage  
VINH  
VINL  
2.0  
-
-
5.5  
0.8  
V
V
INA, INB, ENA  
INA, INB, ENA  
INA, INB, ENA  
INA, INB  
0
RIND  
25  
50  
-
100  
kΩ  
ns  
µs  
V
tINFIL  
-
90  
tENAFIL  
VMODEL  
VMODEH  
-
0
0.5  
-
0.8  
ENA  
0.3xVCC2  
VCC2  
Relative to GND2  
Relative to GND2  
0.7xVCC2  
-
V
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/38  
TSZ22111 15 001  
BM60054AFV-C  
Electrical Characteristics continued  
(Unless otherwise specified Ta=-40°C to +125°C, VBATT=4V to 32V, VCC2=UVLO to 20V, VEE2=-12V to 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Output  
IOUT1H=-40mA  
IOUT1L=40mA  
OUT1H ON-resistance (Source)  
OUT1L ON-resistance (Sink)  
RONH  
RONL  
0.50  
0.25  
0.85  
0.45  
1.45  
0.80  
Ω
Ω
VCC2=15V  
Guaranteed by design  
IPROOUT=40mA  
3.0  
4.5  
-
OUT1 Maximum Current  
PROOUT ON-resistance  
IOUT1MAX  
A
0.45  
40  
0.85  
80  
1.55  
120  
120  
RONPRO  
tPONA  
tPONB  
tPOFFA  
tPOFFB  
tPDISTA  
tPDISTB  
tRISE  
Ω
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Ω
INA=PWM, INB=L  
Turn ON Time  
40  
80  
INA=H, INB=PWM  
INA=PWM, INB=L  
INA=H, INB=PWM  
tPOFFA tPONA  
35  
35  
-25  
-25  
-
75  
75  
115  
115  
+15  
+15  
-
Turn OFF Time  
-5  
Propagation Distortion  
-5  
tPOFFB tPONB  
Rise Time  
50  
10nF between OUT1-VEE2  
Guaranteed by design  
IOUT2=40mA  
Fall Time  
tFALL  
-
50  
-
0.25  
0.45  
0.80  
OUT2 ON-resistance  
RON2  
OUT2 ON Threshold Voltage  
Common Mode Transient Immunity  
Protection Functions  
Output-side UVLO ON  
Threshold Voltage (UVLOIN)  
Output-side UVLO Threshold  
Hysteresis (UVLOIN)  
VOUT2ON  
CM  
1.8  
2
-
2.2  
-
V
Relative to VEE2  
100  
kV/μs Guaranteed by design  
MODE=L  
MODE=L  
VUVLOINL  
0.85  
0.90  
0.95  
V
V
0.10×  
VUVLOINL  
10.9  
0.8  
0.11×  
VUVLOINL  
11.5  
0.12×  
VUVLOINL  
12.1  
VUVLOINHYS  
MODE=H  
MODE=H  
Output-side UVLO ON Voltage  
Output-side UVLO Hysteresis  
Output-side UVLO Filtering Time  
DESAT Leading Edge  
VUVLO2L  
VUVLO2HYS  
tUVLO2FIL  
V
V
1.2  
1.6  
6
12  
22  
µs  
tDESATleb  
0.14  
0.20  
0.26  
µs  
Guaranteed by design  
Relative to GND2  
Blanking Time  
Short Current Detection Voltage  
Short Current Detection Filtering Time  
Short Current Detection  
VSCDET  
tSCPFIL  
V
0.47  
0.12  
0.50  
0.2  
0.53  
0.28  
µs  
tSCPPRO  
VSCPINL  
tPROFLT  
0.26  
-
0.38  
0.1  
0.50  
0.22  
0.7  
µs  
V
Delay Time (PROOUT)  
SCPIN Pin Low Voltage  
Output Delay Difference  
between PROOUT and FLT  
Thermal Detection Voltage  
Thermal Detection Filtering Time  
Soft Turn Off Release Time  
FLT Output Low Voltage  
Gate State H Detection  
Threshold Voltage  
ISCPIN=1mA  
0.1  
0.4  
µs  
VTSDET  
tTSFIL  
tSTO  
1.62  
4
1.72  
10  
1.82  
30  
V
µs  
µs  
V
Relative to GND2  
30  
-
-
110  
0.40  
VFLTL  
0.18  
IFLT=5mA  
VOSFBH  
VOSFBL  
4.5  
4.0  
5.0  
4.5  
5.5  
5.0  
V
V
Relative to GND2  
Gate State L Detection  
Threshold Voltage  
Relative to GND2  
IRDY=5mA  
OSFB Output Filtering Time  
RDY Output Low Voltage  
tOSFBFIL  
VRDYL  
4.0  
-
6.2  
8.4  
µs  
V
0.18  
0.40  
50%  
50%  
90%  
tPON  
INA  
tPOFF  
90%  
50%  
50%  
10%  
OUT1H/L  
10%  
tFALL  
tRISE  
Figure 18. INA to OUT1H/L Timing Chart  
20/38  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BM60054AFV-C  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input Side) Circuit Current  
Side 2 (Output Side) Circuit Current  
Side 1 (Input Side) Consumption Power  
Side 2 (Output Side) Consumption Power  
Isolation Voltage  
Value  
1.3  
Unit  
mA  
mA  
Conditions  
VBATT=12V, OUT1H/L=L  
1.6  
VCC2=16V, VEE2=-8V, OUT1H/L=L  
VBATT=12V, OUT1H/L=L  
15.6  
38.4  
2500  
125  
150  
150  
5.5  
mW  
mW  
Vrms  
°C  
VCC2=16V, VEE2=-8V, OUT1H/L=L  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Storage Temperature  
Maximum Data Transmission Rate  
°C  
°C  
MHz  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves  
2.2  
2
2.2  
2
+25°C  
+125°C  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
+125°C  
+25°C  
-40°C  
-40°C  
0.8  
0.6  
0.4  
0.8  
10  
12  
14  
16  
18  
20  
4
11  
18  
25  
32  
Output-side Positive SupplyVoltage : VCC2 [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 20. Output-side Circuit Current vs  
Output-side Positive Supply Voltage  
(MODE=H, VEE2=0V, OUT1=L)  
Figure 19. Main Power Supply Circuit Current  
vs Main Power Supply Voltage  
12  
2.2  
2
Source  
9
6
3
0
1.8  
1.6  
1.4  
1.2  
1
+125°C  
+25°C  
0.8  
0.6  
0.4  
Sink  
-40°C  
10  
15  
20  
-40  
0
40  
80  
120  
Output-side Positive SupplyVoltage : VCC2 [V]  
Temperature : Ta [°C]  
Figure 21. Output-side Circuit Current vs  
Output-side Positive Supply Voltage  
(MODE=H, VEE2=0V, OUT1=H)  
Figure 22. FET_G ON-resistance vs  
Temperature (Source /Sink)  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
50  
40  
30  
20  
10  
0
480  
430  
380  
330  
280  
230  
180  
130  
80  
20  
40  
60  
80 100 120 140  
-40  
0
40  
80  
120  
RT Resistance : RRT [kΩ]  
Temperature : Ta [°C]  
Figure 24. Soft-start Time vs  
Temperature  
Figure 23. Oscillation Frequency vs  
RT Resistance  
1.53  
1.52  
1.51  
1.5  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
1.49  
1.48  
1.47  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 25. FB Pin Threshold Voltage vs  
Temperature  
Figure 26. COMP Pin Sink Current vs  
Temperature  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
160  
0.23  
0.21  
0.19  
0.17  
140  
120  
100  
80  
60  
40  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 27. COMP Pin Source Current vs Temperature  
Figure 28. Over Current Detection Threshold vs Temperature  
90  
60  
30  
0
90  
60  
30  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 29. Logic Input Filtering Time vs  
Temperature (L pulse)  
Figure 30. Logic Input Filtering Time vs  
Temperature (H pulse)  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
0.8  
9
8.8  
8.6  
8.4  
8.2  
8
VMODEH  
0.6  
0.4  
0.2  
0
7.8  
7.6  
7.4  
7.2  
7
VMODEL  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 31. ENA Input Filtering Time Figure vs  
Temperature  
Figure 32. MODE Input Voltage vs Temperature  
(VCC2=14V)  
0.8  
0.75  
0.7  
1.4  
1.3  
1.2  
1.1  
1
0.65  
0.6  
0.55  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 33. OUT1H ON-resistance (Source) vs  
Temperature (IOUT1H=-40mA)  
Figure 34. OUT1L ON-resistance (Sink) vs  
Temperature (IOUT1L=40mA)  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
120  
100  
80  
1.45  
1.25  
1.05  
0.85  
0.65  
0.45  
tPONB  
tPONA  
60  
40  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 35. PROOUT ON-resistance vs  
Temperature (IPROOUT=40mA)  
Figure 36. Turn ON time vs Temperature  
0.8  
0.6  
0.4  
0.2  
115  
95  
tPOFFB  
75  
tPOFFA  
55  
35  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 37. Turn OFF time vs Temperature  
Figure 38. OUT2 ON-resistance vs  
Temperature (IOUT2=40mA)  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
26/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
0.53  
0.52  
0.51  
0.5  
0.26  
0.24  
0.22  
0.2  
0.49  
0.48  
0.47  
0.18  
0.16  
0.14  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 40. DESAT Leading Edge  
Blanking Time vs Temperature  
Figure 39. Short Current Detection Voltage vs  
Temperature  
0.5  
0.44  
0.38  
0.32  
0.26  
0.28  
0.24  
0.2  
0.16  
0.12  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 41. Short Current Detection  
Filter Time vs Temperature  
Figure 42. Short Current Detection Delay  
Time (PROOUT) vs Temperature  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
27/38  
TSZ22111 15 001  
BM60054AFV-C  
Typical Performance Curves continued  
0.7  
0.5  
0.3  
0.1  
0.2  
0.15  
0.1  
0.05  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 44. Output Delay Difference  
between PROOUT and FLT vs  
Temperature  
Figure 43. SCPIN Pin Low Voltage vs  
Temperature  
1.82  
1.77  
1.72  
1.67  
1.62  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Figure 45. Thermal Detection Voltage vs  
Temperature  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/38  
TSZ22111 15 001  
BM60054AFV-C  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
Selection of Components Externally Connected  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
MCR03EZP  
Recommended  
SUMIDA  
CEER117  
Recommended  
ROHM  
Recommended  
ROHM  
Recommended  
ROHM  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
RB168M150DD  
LTR18EZP  
RSR025N05  
Figure 46. Recommended External Parts  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/38  
TSZ22111 15 001  
BM60054AFV-C  
I/O Equivalence Circuits  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VCC2  
PROOUT  
2
PROOUT  
Soft turn-off pin/Gate voltage input pin  
VEE2  
VCC2  
VTSIN  
3
VTSIN  
GND2  
Temperature sensor voltage input pin  
VCC2  
SCPIN  
Short circuit current detection pin  
MODE  
4
SCPIN  
GND2  
VCC2  
MODE  
7
Mode selection pin of output-side UVLO  
GND2  
VEE2  
VCC2  
UVLOIN  
UVLOIN  
8
Output-side UVLO setting input pin  
GND2  
VEE2  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
30/38  
TSZ22111 15 001  
BM60054AFV-C  
I/O Equivalence Circuits continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VCC2  
OUT1H  
11  
Source side output pin  
OUT1H  
OUT1L  
OUT1L  
12  
VEE2  
VCC2  
OUT2  
Sink side output pin  
OUT2  
13  
Output pin for Miller Clamp  
VEE2  
FLT  
FLT  
RDY  
16  
Fault output pin  
RDY  
20  
GND1  
Ready output pin  
VREG  
ENA  
ENA  
17  
Input enabling signal input pin  
GND1  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
31/38  
TSZ22111 15 001  
BM60054AFV-C  
I/O Equivalence Circuits continued  
Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Function  
VREG  
INA  
INA  
18  
Control input pin A  
GND1  
VREG  
INB  
INB  
19  
Control input pin B  
GND1  
V_BATT  
RT  
21  
RT  
Switching frequency setting pin for  
switching controller  
GND1  
Internal power  
supply  
V_BATT  
FB  
22  
FB  
Error amplifier inverting input pin for  
switching controller  
GND1  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
32/38  
TSZ22111 15 001  
BM60054AFV-C  
I/O Equivalence Circuits continued  
Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Function  
Internal power  
V_BATT  
supply  
COMP  
COMP  
GND1  
23  
Error amplifier output pin for switching  
controller  
VREG  
V_BATT  
VREG  
Internal power  
supply  
25  
26  
Input-side internal power supply pin  
FET_G  
FET_G  
MOS FET control pin for switching  
controller  
GND1  
Internal power  
supply  
V_BATT  
SENSE  
27  
SENSE  
GND1  
Current detection pin for switching  
controller  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
33/38  
TSZ22111 15 001  
BM60054AFV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital  
and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block.  
Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the  
capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground  
caused by large currents. Also ensure that the ground traces of external components do not cause variations on the  
ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions.  
The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
7. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
8. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the  
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent  
damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
34/38  
TSZ22111 15 001  
13.Sep.2019 Rev.004  
BM60054AFV-C  
Operational Notes continued  
9. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin  
shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional  
solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply  
or ground line.  
11. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 47. Example of IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature  
and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within the  
Area of Safe Operation (ASO).  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
35/38  
TSZ22111 15 001  
13.Sep.2019 Rev.004  
BM60054AFV-C  
Ordering Information  
A
F
V
B M 6  
0
0
5
4
-
C E 2  
Package  
FV:  
Rank  
C:Automotive  
Part Number  
SSOP-B28W  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M6 0 05 4A  
1PIN MARK  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
36/38  
TSZ22111 15 001  
BM60054AFV-C  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B28W  
(Max 9.55 (include.BURR))  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
37/38  
TSZ22111 15 001  
BM60054AFV-C  
Revision History  
Date  
Revision  
001  
Changes  
26.Feb.2018  
New Release  
P1 Features : add UL1577 Recognized  
P17 Absolute Maximum Ratings : delete condition Ta=25°C  
P19 Change spec of Output-side Circuit Current 5  
P20 Change spec of Thermal Detection Voltage  
P21 Adding UL1577 Rating Table  
19.Mar.2018  
23.Apr.2018  
13.Sep.2019  
002  
003  
004  
P28 Update Figure 45  
P18 Misprint correction of Thermal Resistance  
P6 Miller Clamp Function add comment, Figure 4. change Timing chart  
P10 Figure 10. change Timing chart  
P15 I/O Condition Table change No.8  
P30 I/O Equivalence Circuits change PROOUT,VTSIN  
P31 I/O Equivalence Circuits change OUT2,ENA  
P32 I/O Equivalence Circuits change RT  
www.rohm.com  
TSZ02201-0818ABH00220-1-2  
13.Sep.2019 Rev.004  
© 2018 ROHM Co., Ltd. All rights reserved.  
38/38  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM60054FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM60054FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM60055FV-C

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage
ROHM

BM60055FV-CE2

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage
ROHM

BM60059FV-C

内置绝缘电压2500Vrms、输入输出延迟时间450ns、最小输入脉冲宽度400ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、米勒钳位功能、温度监测功能、开关控制、栅极恒流驱动功能、栅极状态监视功能。
ROHM

BM60060FV-C

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。
ROHM

BM60210FV-C

High Voltage High & Low-side, Gate Driver
ROHM

BM60210FV-CE2

High Voltage High & Low-side, Gate Driver
ROHM

BM60212FV-C

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER