BV1HB045EFJ-C [ROHM]

BV1HB045EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。另外,还配有针对输出电流的电流检测功能。;
BV1HB045EFJ-C
型号: BV1HB045EFJ-C
厂家: ROHM    ROHM
描述:

BV1HB045EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。另外,还配有针对输出电流的电流检测功能。

开关
文件: 总37页 (文件大小:1745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive IPD Series  
Built-in current sensing function  
1ch High Side Switch  
BV1HB045EFJ-C  
General Description  
Key Specifications  
The BV1HB045EFJ-C is a 1ch high-side switch for  
automotive application. It has a built-in overcurrent limit  
function, thermal shutdown protection function, open  
load detection function, low power output-OFF function.  
It has a current sensing function of output load current.  
Power Supply Operating Range  
ON-Resistance (Tj = 25 °C)  
Overcurrent Limit  
Standby Current (Tj = 25 °C)  
Active Clamp Tolerance (Tj = 25 °C)  
6 V to 28 V  
45 mΩ (Typ)  
21.0 A (Min)  
0.5 µA (Max)  
130 mJ  
Features  
Built-in current sensing function  
Package  
W (Typ) x D (Typ) x H (Max)  
4.9 mm x 6.0 mm x 1.0 mm  
Built-in Dual TSD (Note 1)  
HTSOP-J8  
AEC-Q100 Qualified (Note 2)  
Built-in Overcurrent Protection Function (OCP)  
Built-in thermal shutdown protection function (TSD)  
Built-in open load detection function  
Built-in Low-Voltage Output-OFF Function (UVLO)  
Built-in diagnostic output  
Low On-Resistance Single Nch MOSFET Switch  
Monolithic power management IC with control unit  
(CMOS) and power MOSFET mounted on a single  
chip  
(Note 1) Two type of built-in temperature protection:  
Junction temperature, and ΔTj protection that detects sudden temperature rise  
of the Power-MOS  
(Note 2) Grade 1  
Application  
Resistance load, inductance and capacitance load  
Typical Application Circuit  
VBB  
CVBB  
IN  
SEN  
RIN  
OUT  
RSEN  
MCU  
BV1HB045EFJ-C  
SENSE  
RSENSE2  
RL  
CL  
CSENSE  
RSENSE1  
GND  
Figure 1. Application Circuit  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
© 2022 ROHM Co., Ltd. All rights reserved.  
1/34  
TSZ2211114001  
 
 
 
 
 
 
BV1HB045EFJ-C  
Contents  
General Description......................................................................................................................................................................1  
Features.........................................................................................................................................................................................1  
Application ....................................................................................................................................................................................1  
Key Specifications........................................................................................................................................................................1  
Package .........................................................................................................................................................................................1  
Typical Application Circuit...........................................................................................................................................................1  
Contents ........................................................................................................................................................................................2  
Pin Configuration..........................................................................................................................................................................3  
Pin Description .............................................................................................................................................................................3  
Block Diagram...............................................................................................................................................................................3  
Definition .......................................................................................................................................................................................4  
Absolute Maximum Ratings.........................................................................................................................................................5  
Recommended Operating Conditions.........................................................................................................................................5  
Thermal Resistance......................................................................................................................................................................6  
Electrical Characteristics...........................................................................................................................................................10  
Typical Performance Curves......................................................................................................................................................12  
Measurement Circuit ..................................................................................................................................................................18  
Timing Chart................................................................................................................................................................................20  
Function Description..................................................................................................................................................................21  
Application Circuit Diagram.......................................................................................................................................................28  
I/O Equivalence Circuits.............................................................................................................................................................29  
Operational Notes.......................................................................................................................................................................30  
Ordering Information..................................................................................................................................................................32  
Marking Diagram.........................................................................................................................................................................32  
Physical Dimension and Packing Information .........................................................................................................................33  
Revision History .........................................................................................................................................................................34  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
2/34  
 
BV1HB045EFJ-C  
Pin Configuration  
(TOP VIEW)  
1
8
GND  
IN  
OUT  
7
6
5
2
3
4
OUT  
OUT  
SEN  
SENSE  
OUT  
EXP-PAD = VBB  
Figure 2. Pin Configuration  
Pin Description  
Pin No.  
1
Pin Name  
Function  
GND  
IN  
Ground pin  
Input pin. Pull-down resistor is connected internally.  
Active High to turn on the switch.  
Current Sense and Diagnostic Function Enable Terminal.  
Current Sense output terminal.  
Switch output pin  
2
3
SEN  
SENSE  
OUT  
4
5
6
OUT  
Switch output pin  
7
8
OUT  
Switch output pin  
OUT  
Switch output pin  
EXP-PAD  
VBB  
Power input pin, switch input pin  
Block Diagram  
VBB  
lnternal  
supply  
UVLO  
Clamp  
Charge  
pump  
IN  
Gate Driver  
Over current  
detction  
Control  
Logic  
Power  
limitation  
SEN  
thermal  
shut down  
Open load  
detection  
SENSE  
MUX  
Current Sense  
OUT  
GND  
Figure 3. Block Diagram  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
3/34  
BV1HB045EFJ-C  
Definition  
IBB  
VBB  
VDS VBB  
IOUT  
OUT  
IIN  
IN  
VOUT  
ISENSE  
ISEN  
SEN  
SENSE  
VSENSE  
GND  
IGND  
Figure 4. Voltage and Current Definition  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
4/34  
BV1HB045EFJ-C  
Absolute Maximum Ratings (Ta = 25 °C )  
Parameter  
Symbol  
Rating  
Unit  
VBB - OUT Voltage  
VDS  
VBB  
-0.3 to Internal clamp(Note 1)  
-0.3 to +40  
V
V
Power Supply Voltage  
Input Voltage  
VIN, VSEN  
VSENSE  
IOUT  
-0.3 to +7.0  
-0.3 to +7.0  
Internal limit(Note 2)  
20  
V
Diagnostic Output Voltage  
Output Current  
V
A
Diagnostic Output Current  
Junction Temperature Width  
Storage Temperature Range  
Maximum Junction Temperature  
ISENSE  
Tj  
mA  
°C  
°C  
°C  
-40 to +150  
-55 to +150  
+150  
Tstg  
Tjmax  
Active Clamp Energy (Single Pulse)  
Tj(START) = 25 °C, IOUT = 2A(Note 3)(Note 4)  
EAS (25 °C)  
EAS (150 °C)  
VBBLIM  
130  
70  
mJ  
mJ  
V
Active Clamp Energy (Single Pulse)  
Tj(START) = 150 °C, IOUT = 2 A(Note 3)(Note 4)  
Supply Voltage  
28  
for Short Circuit Detection (Note 5)  
(Note 1) Internally limited by output clamp voltage.  
(Note 2) Internally limited by fixed over current limit.  
(Note 3) Maximum active clamp energy using single pulse of IOUT(START) = 2 A and VBB = 14 V.  
(Note 4) Not 100% tested.  
(Note 5) Maximum power supply voltage that can detect short circuit protection.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the  
IC is operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Caution 3: When IC turns off with an inductive load, reverse energy is generated. This energy can be calculated by the following equation:  
1
퐵퐵  
퐿  
=
× ꢀ × 퐼푂푈푇 푆푇퐴푅푇 × ꢂ1 −  
(
)
2
퐵퐵 퐷푆  
Where:  
L is the inductance of the inductive load.  
IOUT(START) is the output current at the time of turning off.  
The BV1HB045EFJ-C integrates the active clamp function to internally absorb the reverse energy EL which is generated when the inductive load  
is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the reverse energy EL is active  
clamp energy EAS (refer to Figure 5. Active Clump Energy vs Output Current) or under when inductive load is used.  
1000  
Tj(start) = 25 ºC  
100  
Tj(start) = 150 ºC  
10  
0.5  
5.0  
2.0  
1.0  
Output Current: IOUT [A]  
Figure 5. Active Clamp Energy vs Output Current  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Voltage Operating Range  
Operating Temperature  
VBB  
Topr  
fIN  
6
-40  
-
14  
-
28  
+150  
1
V
°C  
Input Frequency  
-
kHz  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
5/34  
BV1HB045EFJ-C  
Thermal Resistance (Note 1)  
Parameter  
Symbol  
Typ  
Unit  
Condition  
HTSOP-J8  
(Note 2)  
130.3  
36.8  
25.9  
20  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1s  
2s  
Between Junction and Surroundings Temperature  
(Note 3)  
(Note 4)  
(Note 2)  
(Note 3)  
(Note 4)  
θJA  
Thermal Resistance  
2s2p  
1s  
Between Junction and the top center  
of the outside surface of the component package  
Thermal Characterization Parameter (Note 5)  
ΨJT  
8
2s  
6
2s2p  
(Note 1) The thermal impedance is based on JESD51-2A (Still-Air) standard. It is used the chip of BV1HB045EFJ-C.  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure, 2 oz. copper.)  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layers (2s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side) 2 oz)  
(Note 4) JESD51-5/-7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side/inner layers) 2 oz/1 oz)  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
PCB Layout 1 layer (1s)  
Footprint  
100 mm2  
600 mm2  
1200 mm2  
Figure 6. PCB Layout 1 Layer (1s)  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.57 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top Layer)  
Copper Foil Area Dimension  
0.070 mm (Cu: 2 oz)  
Footprint/100 mm2/600 mm2/1200 mm2  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
6/34  
BV1HB045EFJ-C  
Thermal Resistance – continued  
PCB Layout 2 layers (2s)  
Top Layer  
Bottom Layer  
Top Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥ 0.6 mm  
Cross Section  
Figure 7. PCB Layout 2 Layers (2s)  
Dimension  
Board Finish Thickness  
Board Dimension  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu + Plating)  
1.2 mm/0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
7/34  
BV1HB045EFJ-C  
Thermal Resistance – continued  
PCB Layout 4 layers (2s2p)  
TOP Layer  
2nd/Bottom Layers  
3rd Layer  
Top Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Via  
Isolation Clearance Diameter: ≥ 0.6 mm  
Cross Section  
Figure 8. PCB Layout 4 Layers (2s2p)  
Dimension  
Board Finish Thickness  
Value  
1.60 mm ± 10 %  
Board Dimension  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Copper Thickness (Inner Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu + Plating)  
0.035 mm  
1.2 mm/0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
8/34  
BV1HB045EFJ-C  
Thermal Resistance – continued  
Transient Thermal Resistance (Single Pulse)  
Figure 9. Transient Thermal Resistance  
Thermal Resistance (θJA vs Copper foil area- 1s)  
Figure 10. Thermal Resistance  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
9/34  
BV1HB045EFJ-C  
Electrical Characteristics (Unless otherwise specified VBB = 6 V to 28 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Power Supply  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
VBB = 14 V, VIN = VSEN = 0 V,  
VOUT = 0 V, Tj = 25 °C  
-
-
-
-
0.5  
10  
µA  
µA  
IBBL1  
VBB = 14 V, VIN = VSEN = 0 V,  
VOUT = 0 V, Tj = 150 °C  
Standby current  
VBB = 14 V, VIN = 0 V,  
VSEN = 5 V,VOUT = 0 V, Tj = 25 °C  
1.0  
mA  
IBBL2  
VBB = 14 V, VIN = 0 V,  
VSEN = 5 V,VOUT = 0 V, Tj = 150 °C  
1.2  
3
mA  
mA  
VBB = 14 V, VIN = VSEN = 5 V,  
VOUT = open  
Operating Current  
IBBH  
-
5
VIN = 5 V, RL = 10 kΩ  
RLOutput Load Resistor  
UVLO Detection Voltage  
UVLO Hysteresis Voltage  
VUVLO  
-
-
-
-
5
V
V
VUVHYS  
0.9  
Input (VIN)  
High Level Input Voltage  
Low Level Input Voltage  
VINH  
VINL  
2.1  
-
-
-
-
V
V
0.9  
Input Hysteresis Voltage  
High Level Input Current  
Low Level Input Current  
VIN_HYS  
IINH  
-
-
0.4  
50  
-
-
V
150  
+10  
µA  
µA  
VIN = 5 V  
VIN = 0 V  
IINL  
-10  
Input (VSEN  
)
H-level input voltage  
L-level input voltage  
Input hysteresis  
VSENH  
VSENL  
2.1  
-
-
-
V
V
-
-
0.9  
-
VSEN_HYS  
ISENH  
0.4  
50  
-
V
H-level input current  
L-level input current  
Power MOS Output  
-
150  
+10  
µA  
µA  
VSEN = 5 V  
VSEN = 0 V  
ISENL  
-10  
RON1  
RON2  
RON3  
IOUTL1  
-
-
-
-
45  
-
60  
90  
75  
0.5  
mΩ  
mΩ  
mΩ  
μA  
VBB = 8 V ~ 28 V, Tj = 25 °C  
VBB = 8 V ~ 28 V, Tj = 150 °C  
VBB = 6 V, Tj = 25 °C  
Output ON Resistance  
-
-
VIN = 0 V, VOUT = 0 V, Tj = 25 °C  
Output Leak Current  
Output Slew Rate  
IOUTL2  
SRON  
SROFF  
-
-
-
-
10  
1.0  
1.0  
μA  
VIN = 0 V, VOUT = 0 V, Tj = 150 °C  
VBB = 14 V, RL = 6.5 Ω  
0.3  
0.3  
V/µs  
V/µs  
VBB = 14 V, RL = 6.5 Ω  
Output voltage drop limitation  
at small load currents  
VDS(SL)  
-
10  
25  
mV  
IOUT = 50 mA  
Propagation Delay when ON  
Propagation Delay when OFF  
Output Clamp Voltage  
tOUTON  
tOUTOFF  
VDSCLP  
-
-
90  
40  
50  
140  
100  
55  
µs  
µs  
V
VBB = 14 V, RL = 6.5 Ω  
VBB = 14 V, RL = 6.5 Ω  
VIN = 0 V, IOUT = 10 mA  
45  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
10/34  
BV1HB045EFJ-C  
Electrical Characteristics (Unless otherwise specified VBB = 6V to 28V, Tj = -40°C to 150°C)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
Current sensing unit  
Current Sense Ratio 1  
Current Sense Ratio 2  
Current Sense Ratio 3  
Current Sense Ratio 4  
Current Sense Ratio 5  
Current Sense Ratio 6  
KILIS derating  
K1  
K2  
-50%  
-30%  
-20%  
-10%  
-7%  
-5%  
-5%  
-
1500  
1450  
1450  
1450  
1450  
1450  
-
+50%  
+30%  
+20%  
+10%  
+7%  
+5%  
+5%  
0.5  
-
VIN = VSEN = 5 V, IOUT = 50mA  
VIN = VSEN = 5 V, IOUT = 0.25 A  
VIN = VSEN = 5 V, IOUT = 0.5 A  
VIN = VSEN = 5 V, IOUT = 1 A  
VIN = VSEN = 5 V, IOUT = 2 A  
VIN = VSEN = 5 V, IOUT = 4 A  
K4 vs K5  
K3  
-
-
K4  
K5  
-
K6  
-
ΔKILIS  
ISENSEL  
%
SENSE terminal leakage current  
-
µA VSEN = 0 V, VSENSE = 0 V  
Output voltage of SENSE terminal in  
abnormal condition  
VSENSEH  
tINON  
4.0  
5.5  
130  
40  
10  
10  
-
6.5  
300  
100  
50  
V
VBB = 8 V to 28 V, RSENSE = 1 kΩ  
VBB = 14 V, RL = 6.5 Ω, Tj = 25 °C  
VBB = 14 V, RL = 6.5 Ω, Tj = 25 °C  
VBB = 14 V, RL = 6.5 Ω, Tj = 25 °C  
VBB = 14 V, RL = 6.5 Ω, Tj = 25 °C  
RSENSE = 1 kΩ, IOUT = 1 A to 2 A  
Diagnostic output delay time  
when input (IN) is ON  
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
Diagnostic output delay time  
when input (IN) is off  
tINOFF  
Diagnostic output delay time  
when input (SEN) is ON  
tSENON  
Diagnostic output delay time  
when input (SEN) is off  
tSENOFF  
tSENON(CL)  
50  
SENSE Settling Time after Load  
Change  
20  
Protection Circuit  
Overcurrent Limit Value  
Open Load Detection Voltage  
ILIMH  
VOLD  
IOLD  
21  
30  
40  
A
V
VDS = 5 V  
VBB -3.0  
VBB -2.0  
VBB -1.0  
VBB = 8 V to 28 V  
Open Load Detection Source  
Current  
-
10  
30  
µA VIN = 0 V, VOUT = 5 V  
Open Load Detection  
Diagnostic Output Mask Time  
tOLD  
100  
250  
400  
µs  
VBB = 14 V, VIN = 5 to 0 V  
Thermal Shutdown (Note 1)  
TTSD  
TTSDHYS  
TDTJ  
150  
175  
15  
200  
°C  
K
Thermal Shutdown Hysteresis (Note 1)  
-
-
-
-
∆Tj Protection Temperature (Note 1)  
90  
K
(Note 1) Not 100% tested.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
11/34  
BV1HB045EFJ-C  
Typical Performance Curves  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
8
6
4
2
0
0
10  
20  
30  
40  
-50  
0
50  
100  
150  
Power Supply Voltage: VBB [V]  
Junction Temperature: TJ [ºC]  
Figure 11. Standby Current vs Power Supply Voltage  
Figure 12. Standby Current vs Junction Temperature  
2.5  
2
1.6  
1.4  
1.2  
1
1.5  
1
0.5  
0
0.8  
0.6  
0
5
10 15 20 25 30 35 40  
Power Supply Voltage: VBB [V]  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Figure 13. Standby Current vs Power Supply Voltage  
Figure 14. Standby Current vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
12/34  
BV1HB045EFJ-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
Power Supply Voltage: VBB [V]  
Junction Temperature: Tj [ºC]  
Figure 15. Circuit Current vs Power Supply Voltage  
Figure 16. Circuit Current vs Junction Temperature  
6
5
4
3
2
1
0
2.2  
VINH, VSENH  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
VINL, VSENL  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 17. UVLO Detection Voltage vs Junction Temperature  
Figure 18. Input Voltage vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
13/34  
BV1HB045EFJ-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10 15 20 25 30 35 40  
Power Supply Voltage: VBB [V]  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Figure 20. Output ON Resistance vs Power Supply Voltage  
Figure 19. Input Current vs Junction Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 22. Output Leak Current vs Junction Temperature  
Figure 21. Output ON Resistance vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
14/34  
BV1HB045EFJ-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
1
0.8  
0.6  
160  
140  
120  
100  
80  
tOUTON  
SROFF  
0.4  
60  
tOUTOFF  
SRON  
40  
0.2  
20  
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 23. Output Slew Rate vs Junction Temperature  
Figure 24. Output Propagation Delay Time  
vs Junction Temperature  
55  
53  
51  
49  
47  
45  
43  
41  
16  
14  
12  
10  
8
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 26. Output Clamp Voltage vs  
Junction Temperature  
Figure 25. Output Voltage Drop at Low Load  
vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
15/34  
BV1HB045EFJ-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
7
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
0
10  
20  
30  
40  
Junction Temperature: Tj [ºC]  
Power Supply Voltage: VBB [V]  
Figure 27. Diagnostic Output Leak Current  
vs Junction Temperature  
Figure 28. Diagnostic Output High Voltage  
vs Power Supply Voltage  
7
6.5  
6
350  
300  
250  
200  
150  
100  
50  
5.5  
5
4.5  
4
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 30. Open Load Detection Diagnostic Output Mask  
Time vs Junction Temperature  
Figure 29. Diagnostic Output High Voltage  
vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
16/34  
BV1HB045EFJ-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
20  
16  
12  
8
200  
160  
tINON  
120  
tSENOFF  
80  
tSENON  
40  
4
tINOFF  
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 31. IN - SENSE Propagation Delay Time  
vs Junction Temperature  
Figure 32. SEN - SENSE Propagation Delay Time  
vs Junction Temperature  
40  
35  
30  
25  
20  
15  
10  
5
10  
8
6
4
2
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 34. Over Current Limitation  
vs Junction Temperature  
Figure 33. SENSE Settling Time after Load Change  
vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
17/34  
BV1HB045EFJ-C  
Measurement Circuit  
VBB  
VBB  
VBB  
VBB  
IN  
OUT  
IN  
OUT  
VIN  
VIN  
SEN  
SENSE  
SEN  
SENSE  
GND  
GND  
VSEN  
Figure 35. Standby Current  
Low-Level Input (VIN) Current  
Figure 36. Operating Current  
Low-Level Input (VSEN) Current  
Output Leak Current  
Diagnostic Output Leak Current  
VBB  
VBB  
VBB  
VBB  
IN  
OUT  
IN  
OUT  
1 kΩ  
1 kΩ  
VIN  
SEN  
SENSE  
VIN  
SEN  
SENSE  
VSEN  
GND  
GND  
Figure 37. UVLO Detection Voltage  
UVLO Hysteresis Voltage  
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
High Level Input Current  
Thermal Shutdown  
Figure 38. Output ON Resistance  
Output Clamp Voltage  
Thermal Shutdown Hysteresis  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
18/34  
BV1HB045EFJ-C  
Measurement Circuit - continued  
VBB  
VBB  
VBB  
IN  
VBB  
IN  
OUT  
OUT  
6.5 Ω  
Monitor  
Monitor  
Monitor  
Monitor  
VIN  
Monitor  
SEN  
SENSE  
VIN  
SEN  
SENSE  
Monitor  
VSEN  
VSEN  
GND  
GND  
1 kΩ  
1k Ω  
Figure 39. Output ON Slew Rate  
Output OFF Slew Rate  
Figure 40. SENSE Settling Time  
after Load Change  
Output ON Propagation Delay Time  
Output OFF Propagation Delay Time  
Diagnostic Output ON Propagation Delay Time  
Diagnostic Output OFF Propagation Delay Time  
VBB  
VBB  
IN  
OUT  
VOUT  
SEN  
SENSE  
VSEN  
1kΩ  
GND  
Figure 41. Open Load Detection Voltage  
Open Load Detection Sink Current  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
19/34  
BV1HB045EFJ-C  
Timing Chart  
VBB  
VINH  
VINH  
IN  
VINL  
VINL  
VSENH  
SEN  
VSENL  
SRON  
SROFF  
80%  
70%  
70%  
OUT  
30%  
30%  
20%  
tOUTON  
tOUTOFF  
SENSE  
tSENON  
tSENOFF  
tINON  
tINOFF  
IOUT  
tSENON(CL)  
Figure 42. Timing Chart  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
20/34  
BV1HB045EFJ-C  
Function Description  
1. Protection Function  
Table 1. Detection and Release Conditions of Each Protection Function and Diagnostic Output  
Mode  
Conditions  
IN  
SEN  
SENSE  
OUT  
Standby  
-
Low  
High  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
High  
High  
High  
-
Low  
ISENSE = IOUT / K  
VSENSEH  
Low  
High  
-
Operating  
-
Detect VOUT > VBB - 2.0 V (Typ)  
Release VOUT < VBB - 2.5 V (Typ)  
Detect VBB ≤ 5.0 V (Max)  
Release VBB ≥ 5.9 V (Max)  
Detect Tj > 175 °C (Typ)  
Release Tj < 150 °C (Typ)  
Detect ΔTj > 90°C (Typ)  
Release ΔTj < 30 °C (Typ)  
Detect IOUT ILIMH  
Release IOUT ILIMH  
Open Load Detect  
(OLD)  
Hi-Z  
-
Low Power  
Output-OFF  
(UVLO)  
-
Low  
High  
Low  
High  
Low  
High  
High  
High  
-
-
High  
High  
High  
High  
High  
High  
VSENSEH  
Thermal  
Shutdown (TSD)  
ISENSE = IOUT / K  
VSENSEH  
ISENSE = IOUT / K  
VSENSEH  
ΔTj  
Protection (Note 2)  
Over Current  
Protection (OCP)  
ISENSE = IOUT / K  
(Note1) Thermal shutdown is automatically restored to normal operation.  
(Note2) Protect function by detecting PowerMOS sharp increase of temperature difference with control circuit.  
This IC incorporates the above-mentioned protection-detection function, and outputs an abnormal condition at the SENSE  
terminal.Connect a resistor between the SENSE-GND and determine the abnormal condition based on the voltage level.  
It is self-rest and operation becomes normal when each protection releases after detecting.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
21/34  
BV1HB045EFJ-C  
Function Description - continued  
2. Current sensing function  
2.1 SENSE current  
VBB  
Protect  
SEN  
IOUT  
OUT  
SENSE  
MUX  
I
SENSE  
RSENSE  
VSENSEH  
Figure 43. Current Sense Block Diagram  
The SENSE terminal of the IC can feed back the current flowing through the IC.  
The SENSE voltage varies linearly according to the load current IOUT during normal operation.  
The VSENSE theoretical equations are shown below.  
푆ꢄ푁푆ꢄ  
= ꢅ푆ꢄ푁푆ꢄ × 퐼푆ꢄ푁푆ꢄ  
ꢈꢉꢊ  
ꢆ퐸ꢇꢆ퐸  
푆ꢄ푁푆ꢄ × 퐼푂푈푇  
푆ꢄ푁푆ꢄ × 퐼푂푈푇  
1450 (푡푦푝)  
푆ꢄ푁푆ꢄ  
Where:  
VSENSE: SENSE terminal voltages  
RSENSE: SENSE resistor  
IOUT: Load current  
N: Output mirror value  
BV1HB045EFJ-C is recommended to use 1 kΩ as the pull-down resistor at SENSE pin.  
When RSENSE is 1 kΩ, and IOUT is 2 A, the above formula is summarized as follows.  
ꢋꢌꢌꢌ× ꢁ  
푆ꢄ푁푆ꢄ  
= 1.379 [푉]  
ꢋꢍꢎꢌ  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
22/34  
BV1HB045EFJ-C  
Function Description - continued  
2.2 Variation of Outputs Voltage of SENSE terminals  
Diagnostic output current of ISENSE increases linearly with IOUT output current. Figure 44 shows the the variation of current  
sense ratio. The accuracy of the sense current depends on temperature and load current. To achieve high accuracy  
requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and  
temperature conditions, BV1HB045EFJ-C allows limited derating of the kILIS value, at a given point (IO = 1 A, Tj = 25 °C).  
An external RC filter between SENSE pin and microcontroller ADC input pin is recommended to reduce signal ripple  
and oscillations.  
2300  
Typical Sense Ratio  
min/max Sense Ratio  
2100  
1900  
1700  
1500  
1300  
1100  
900  
700  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Load Current: IOUT [A]  
Figure 44. Current Sense Ratio vs Output Load Current  
2.3 Outputs of SENSE terminals  
VBB  
Is(FAULT)  
Is(Current Sense)  
SEN  
FAULT  
SENSE  
Figure 45. SENSE output-block diagram  
The SENSE terminal serves as both the current sense output and the flag signal when an error is detected.  
When SEN = High, a current approximately 1/1450 of the output current is output to the SENSE terminal.  
When overcurrent detection, overheat detection, or load open detection are activated,  
The FAULT signals of the Figure 45 output the VSENSEH voltage generated internally from the SENSE terminal.  
When monitoring the VSENSEH, operate within the recommended operating conditions.  
Refer to Table 1 for more information on SENSE outputs.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
23/34  
BV1HB045EFJ-C  
Function Description - continued  
3. Overcurrent Protection  
This IC has a built-in overcurrent protection function. When overcurrent flows in the output, the output current is  
limited to 30A (Typ) and self-diagnostic output (SENSE) becomes VSENSEH  
.
4. Thermal Shutdown  
4.1 Thermal Shutdown Protection  
This IC has a built-in thermal shutdown protection function. When the IC chip temperature exceeds175 °C (Typ),  
the output is turned OFF and self-diagnostic output (SENSE) becomes VSENSEH. When the temperature goes  
below 150 °C (Typ), output will self-reset and operation becomes normal.  
4.2 ΔTj Protection  
This IC has a built-in ΔTj protection function that turns OFF the output when the temperature difference (TDTJ  
)
between the POWER-MOS unit (TPOWER-MOS) and the control unit (TAMB) in the IC is 90 °C (Typ) or more. ΔTj  
protection also has a built-in hysteresis (TDTJHYS) that returns the output to normal state when the temperature  
difference becomes 30 °C (Typ) or less.  
Figure 46 shows the timing chart of thermal shutdown protection and ΔTj protection during output short to GND  
fault.  
IN  
ILIMH  
IOUT  
TTSD  
TTSDHYS  
TPOWER-MOS  
TAMB  
Tj  
TDTJHYS  
ΔTj Protection Operation  
TSD Operation  
VSENSEH  
SENSE  
Figure 46. Thermal Shutdown Protection Timing Chart  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
24/34  
BV1HB045EFJ-C  
Function Description - continued  
5. Open Load Detection  
VBB  
VBB  
SOLD  
ROLD  
IN  
VOLD  
Internal  
supply  
SEN  
OUT  
SW1  
RL  
logic  
SENSE  
SENSE  
OUT  
R1  
R
PD  
RSENSE  
Figure 47. Open Load Detection Block Diagram  
Open load can be detected by connecting an external resistance ROLD between power supply VBB and OUT.  
When output load is disconnected during IN is low, diagnostic output of the SENSE pin is turned to high to indicate  
abnormality. To reduce the standby current of the system, an open load resistance switch SOLD is recommended.  
When the SW1 is OFF, voltage of the OUT does not fall to GND level. Because, when the IN pin is low, the  
voltage of the OUT pin does not become under or equal to the Output ON Detection Voltage. To pull down the  
OUT pin, insert the pulled down resistance RPD is recommended. The resistance RPD is 4.3 kΩ or less for outflow  
current from the OUT.  
5.1 When the OUT is pulled down by the load (Normal function)  
The value of external resistance ROLD is decided based on used minimum power supply voltage (VBB), internal  
resistance R1 and open detection voltage VOLD. External resistance RPD is unnecessary.  
The equation for calculating the ROLD value is shown below.  
× 푅  
ꢑ(푀푖푛)  
ꢐꢐ  
푂퐿퐷  
<
− ꢅꢋ(ꢕꢖꢗ) [Ω]  
ꢒꢓꢔ(Max)  
The above formula is summarized as follows.  
ꢐꢐ  
푂퐿퐷  
<
× 300 × 10− 300 × 10[Ω]  
ꢘ ꢋ.ꢌ  
ꢐꢐ  
ROLD value is fell below the above calculated result.  
5.2 If the SW is OFF, the output is no longer pulled down by the load  
The value of external resistance ROLD is decided based on used minimum power supply voltage (VBB), external  
resistance RPD and open detection voltage VOLD  
.
The equation for calculating the ROLD value is shown below.  
× 푅  
+ 푅  
ꢑ(푀ꢚꢛ)  
ꢑ(푀ꢚꢛ)  
푃ꢔ  
ꢐꢐ  
푂퐿퐷 < ꢂꢏ  
− 1ꢃ ×  
)
[Ω]  
(
푃ꢔ  
ꢒꢓꢔ Max  
When RPD is 4.3 kΩ, the above formula is summarized as follows.  
ꢐꢐ  
푂퐿퐷 < ꢜꢏ ꢘ ꢋ.ꢌ − 1ꢝ × 4.24 × 10[Ω]  
ꢐꢐ  
ROLD value is fell below the above calculated result  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
25/34  
BV1HB045EFJ-C  
Function Description - continued  
5.3 SENSE output mask time at output falling  
This IC diagnoses open load detection after the mask tine (tOLD: 250 µs) inside the IC, when the IN voltage falls  
from High to Low,  
Normal state  
Open Load state  
IN  
SEN  
VOLD  
OUT  
VSENSEH  
SENSE  
tOLD: 250 µs (typ)  
Figure 48. SENSE Output-Mask Timing Chart  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
26/34  
BV1HB045EFJ-C  
Function Description - continued  
6. Other Detection  
6.1 GND open protection  
VBB  
Clamp  
IN  
Internal  
supply  
SEN  
Control  
logic  
OUT  
SENSE  
GND  
Figure 49. GND Open Detection Block Diagram  
When GND of the IC is open, the output is switched OFF regardless of the input voltage.  
However, self-diagnostic output (SENSE) is not flagged. When an inductive load is connected,  
the active clamp operates when the GND pin is open  
6.2 MCU I/O Protection  
VBB  
Internal  
supply  
Clamp  
IN  
SEN  
Control  
logic  
OUT  
MCU  
SENSE  
GND  
Figure 50. MCU I/O Protection  
Negative surge voltage to the input, battery loss, and GND negative voltage may cause damage to the MCU I/O pin.  
To prevent these problems, a limiting resistor can be inserted between the input terminal and the MCU.  
4.7 kΩ to 10 kΩ is recommended as the insert resistor.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
27/34  
BV1HB045EFJ-C  
Application Circuit Diagram  
VBB  
CVBB  
IN  
SEN  
RIN  
ROLD  
OUT  
RSEN  
MCU  
BV1HB045EFJ-C  
SENSE  
RSENSE2  
RL  
CL  
CSENSE  
RSENSE1  
GND  
D1  
RGND  
Figure 51. Application Circuit Diagram  
Symbol  
RIN  
Value  
Purpose  
4.7 kΩ  
4.7 kΩ  
1 kΩ  
Limit resistance for negative surge  
Limit resistance for negative surge  
RSEN  
RSENSE1  
RSENSE2  
CSENSE  
RGND  
DGND  
CVBB  
Insert the pull-dpwn resistor for using diagnostic function  
For Noise suppression filter  
10 kΩ  
100 pF  
For Noise suppression filter  
100 Ω, 1 kΩ  
Current limit resistance for reverse battery connection  
Protection Diode of BV1HB045EFJ-C for reverse battery connection  
For battery line voltage spike filter  
-
10 µF  
2 kΩ  
1000 pF  
-
ROLD  
CL  
Resistor for open load detection  
Filter for radiation noise from outside  
Output Load Resistor  
RL  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
28/34  
BV1HB045EFJ-C  
I/O Equivalence Circuits  
IN, SEN  
SENSE  
VBB  
10 kΩ  
IN  
SEN  
SENSE  
100 kΩ  
OUT  
VBB  
OUT  
10 kΩ  
500 kΩ  
Resistance values shown in the diagrams above are typical values  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
29/34  
BV1HB045EFJ-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So, unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
11. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should  
always be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued  
period, the junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins.  
When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under  
no circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC  
from heat damage.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
30/34  
BV1HB045EFJ-C  
Operational Notes – continued  
12. Over Current Protection Function  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This  
protection function is effective in preventing damage due to sudden and unexpected incidents. However, the IC  
should not be used in applications characterized by continuous operation or transitioning of the protection function.  
13. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the  
inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a  
load so that the reverse energy EL is active clamp energy (refer to Figure 5. Active Clamp Energy vs Output Current)  
or under when inductive load is used.  
14. Open Power Supply Pin  
When the power supply pin (VBB) becomes open at ON (IN = High), the output is switched to OFF regardless of  
input voltage. If an inductive load is connected, the active clamp operates when VBB is open and becomes the same  
potential as that on the ground. At this time, the output voltage drops down to -50 V (Typ).  
15. Open GND Pin  
When the GND pin becomes open at ON (IN = High), the output is switched to OFF regardless of input voltage. If an  
inductive load is connected, the active clamp operates when the GND pin is open.  
16. OUT Pin Voltage  
Ensure that keep OUT pin voltage less than (VBB + 0.3 V) at any time, even during transient condition.  
Otherwise malfunction or other problems can occur.  
17. Same Pin Connection  
Connect all VBB pins, GND pins, OUT pins to same line respectively.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
31/34  
BV1HB045EFJ-C  
Ordering Information  
B V 1 H B 0 4 5 E F J  
-
CE 2  
V1: 1ch  
H: High side switch  
Package  
EFJ: HTSOP-J8  
Product Rank  
C: Automotive product  
Packaging and Forming Specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSOP-J8 (TOP VIEW)  
Part Number Marking  
LOT Number  
1
H B 0 4 5  
Pin 1 Mark  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
32/34  
BV1HB045EFJ-C  
Physical Dimension and Packing Information  
Package Name  
HTSOP-J8  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
33/34  
BV1HB045EFJ-C  
Revision History  
Date  
Revision  
Changes  
03.Mar.2022  
001  
002  
New Release  
P.5 Absolute Maximum Ratings  
Figure 5 - Change the graph of EAS  
P.6 Thermal Resistance  
Figure 6 - Change the size of PCB layout.  
P.10 Electrical Characteristics  
.
09.Feb.2023  
Change the condition of ISENH and ISENL  
.
P.28 Application Circuit Diagram  
Change the recommended value of RGND  
.
P.31 Operational Notes  
14. Open Power Supply Pin  
Change the value of output clamp voltage.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400150-1-2  
09.Feb.2023 Rev.002  
34/34  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BV1HD045EFJ-C

BV1HD045EFJ-C是一款车载用单通道高边开关。内置过电流保护功能、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。由于可以通过外置元件将过电流限值和到达限值的时间设置为任意值,因此可以轻松对负载实现更好的过电流保护。
ROHM

BV1HD090FJ-C

BV1HD090FJ-C是车载用1ch高边开关。配备过电流保护功能 (OCP)、过热保护功能 (TSD)、负载开路检测功能(OLD)、低电压时输出OFF功能 (UVLO) ,备有异常检出时诊断输出端子 (ST) 。
ROHM

BV1HD090FJ-CE2

Buffer/Inverter Based Peripheral Driver,
ROHM

BV1HJ045EFJ-C

BV1HJ045EFJ-C是车载用1ch高边开关。内置输出异常模式,即地线短接检测(过电流限制功能)、电源短接检测功能、负载开路检测功能,以及过热保护功能、低电压时输出OFF功能,具有异常检出时诊断输出功能。过电流限制值为5.0A~12.0A。还备有过电流限制值为2.5A~5.5A的BV1HL045EFJ-C。
ROHM

BV1HJ180EFJ-C

BV1HJ180EFJ-C是一款车载单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。另外,还支持冷启动,在电源电压大幅下降的情况下也可工作。
ROHM

BV1HJC45EFJ-C

BV1HJC45EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。
ROHM

BV1HL045EFJ-C

BV1HL045EFJ-C是车载用1ch高边开关。内置输出异常模式,即地线短接检测(过电流限制功能)、电源短接检测功能、负载开路检测功能,以及过热保护功能、低电压时输出OFF功能,具有异常检出时诊断输出功能。过电流限制值为2.5A~5.5A。还备有过电流限制值为5.0A~12.0A的BV1HJ045EFJ-C。
ROHM

BV1HLC45EFJ-C

BV1HLC45EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。
ROHM

BV1LA025EFJ-C

BV1LA025EFJ-C 是车载用1ch低边开关。内置Dual TSD、OCP、有源钳位功能。
ROHM

BV1LB025EFJ-C

BV1LB025EFJ-C是车载用1ch低边开关。内置Dual TSD、OCP、有源钳位功能。
ROHM

BV1LB028FPJ-C

BV1LB028FPJ-C是车载用1ch低边开关。内置过电流限制电路、过热保护电路、有源钳位电路。
ROHM

BV1LB045FPJ-C

BV1LB045FPJ-C是车载用1ch低边开关。内置过电流保护功能、过热保护功能、有源钳位功能。
ROHM