STE2001DIE2 [STMICROELECTRONICS]

65 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER; 65 X 128单芯片LCD控制器/驱动
STE2001DIE2
型号: STE2001DIE2
厂家: ST    ST
描述:

65 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER
65 X 128单芯片LCD控制器/驱动

显示驱动器 驱动程序和接口 接口集成电路 控制器 CD
文件: 总36页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STE2001  
65 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER  
PRODUCT PREVIEW  
65 x 128 bits Display Data RAM  
Low Power Consumption, suitable for battery  
operated systems  
Configurable matrix: 65 x 128 or 33 x 128  
Programmable (65/33) MUX rate  
Row by Row Scrolling  
Logic Supply Voltage range from 1.9 to 5V  
High Voltage Generator Supply Voltage range  
from 2.4 to 4.5V  
Automatic data RAM Blanking procedure  
Display Supply Voltage range from 4.5 to 9V  
Selectable Input Interface:  
2
I C Bus Fast and Hs-mode (read and write)  
DESCRIPTION  
Parallel Interface (write only)  
Serial Interface (write only)  
The STE2001 is a low power CMOS LCD controller  
driver. Designed to drive a 65 rows by 128 columns  
graphic display, provides all necessary functions in a  
single chip, including on-chip LCD supply and bias  
voltages generators, resulting in a minimum of exter-  
nals components and in a very low power consump-  
tion. The STE2001 features three standard interfaces  
Fully Integrated Oscillator requires no external  
components  
Fully Integrated Configurable LCD bias voltages  
generator with:  
Selectable (5X, 4X, 3X, 2X) multiplication factor  
Effective sensing for High Precision Output  
Four selectable temperature compensation  
coefficients  
2
(Serial, parallel, I C) for ease of interfacing with the  
host µcontroller.  
Type  
Bumped Wafers  
BumpedDice on Waffle Pack  
Ordering Number  
STE2001DIE1  
Designed for chip-on-glass (COG) applications  
Programmable bottom row pads mirroring and  
top row pads mirroring for compatible with both  
TCP and COG applications  
STE2001DIE2  
Figure 1. Block Diagram  
CO to C127  
R0 to R64  
TIMING  
GENERATOR  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
OSC  
OSC  
CLOCK  
BIAS VOLTAGE  
GENERATOR  
VLCDIN  
DATA  
SHIFT  
LATCHES  
REGISTER  
VLCDSENSE  
VLCDOUT  
HIGH VOLTAGE  
GENERATOR  
65 x 128  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_0_13  
BSY_FLG  
VDD1,2,3  
TEST  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
V
SS1,2  
SEL1,2  
2
I CBUS  
PARALLEL  
SERIAL  
D00IN1137  
SAO SCL  
SDA_IN SDA_OUT DB0 to DB7 E  
PD/C SCE SDIN SCLK SD/C  
October 2001  
1/36  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
STE2001  
PIN DESCRIPTION  
N°  
Pad  
Type  
Function  
R0 to R64  
1 to 16  
O
LCD Row Driver Output  
145 to 177  
257 to 272  
C0 to C127 17 to 144  
227 to 238  
O
LCD Column Driver Output  
V
,
GND  
Ground pads. V  
is GND for V  
, V  
DD1 SS2  
for V  
and V  
DD2 DD3  
SS1 2  
SS1  
V
186 to 191 Supply IC Positive Power Supply  
192 to 201 Supply Internal Generator Supply Voltages.  
DD1  
V
,
DD2 3  
V
246 to 251 Supply LCD Supply Voltages for the Column and Row Output Drivers.  
239 to 244 Supply Voltage Multiplier Ouput  
LCDIN  
V
LCDOUT  
V
245  
Supply Voltage Multiplier Regulation Input. V Sensing for Output Voltage Fine  
LCDOUT  
LCDSENSE  
Tuning  
SEL1,2  
183, 184  
223  
I
I
Interface Mode Selection  
2
SDA_IN  
I C Bus Data In  
2
SDA_OUT  
SCL  
222  
224  
225  
O
I
I C Bus Data Out  
2
I C bus Clock  
2
SA0  
I
I C Slave Address LSB  
OSC  
RES  
185  
221  
I
I
I
External Oscillator Input  
Reset Input. Active Low.  
DB0 to  
DB7  
211 to 218  
Parallel Interface 8 Bit Data Bus  
E
220  
219  
207  
210  
209  
208  
206  
I
I
Parallel Interface Data Latch Signal. Data are Latched on the Falling EDGE.  
Parallel Interface Data/Command Selector  
Serial Interface Data Input  
PD/C  
SDIN  
SCLK  
SCE  
I
I
Serial Interface Clock  
I
Serial Interface ENABLE. When Low the Incoming Data are Clocked In.  
Serial Interface Data/Command selection  
SD/C  
BSYFLG  
I
O
Active Procedure Flag. Notice if There is an ongoing Internal Operation. Active  
Low.  
T1 to T13 178 to 181  
202 to 205  
I/O  
Test Pads.  
226  
252 to 256  
2/36  
STE2001  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V
Supply Voltage Range  
Supply Voltage Range  
LCD Supply Voltage Range  
Supply Current  
- 0.5 to + 6.5  
- 0.5 to + 5  
- 0.5 to + 10  
- 50 to +50  
DD1  
V
V
DD2,3  
V
V
LCD  
I
mA  
V
SS  
V
Input Voltage (all input pads)  
DC Input Current  
-0.5 to V  
+ 0.5  
DD2,3  
i
I
- 10 to + 10  
mA  
mA  
mW  
mW  
°C  
°C  
in  
I
DC Output Current  
- 10 to + 10  
300  
out  
P
Total Power Dissipation (T = 85°C)  
tot  
j
P
Power Dissipation per Output  
Operating Junction Temperature  
Storage Temperature  
30  
o
T
-40 to + 85  
- 65 to 150  
j
T
stg  
ELECTRICAL CHARACTERISTICS  
DC OPERATION  
(V  
= 1.9to V  
+ 0.5V; V  
= 2.4 to 4.5 V; V  
= 0V; V  
= 4.5 to9V; T  
=-40 to 85°C; unless otherwise  
DD1  
DD2,3  
DD2,3  
ss1,2  
LCD  
amb  
specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Voltages  
Supply Voltage  
V
1.9  
1.8  
2.4  
V
V
V
V
DD1  
DD2,3  
+ 0.5  
T
=-20 to 85°C  
V
DD2,3  
+ 0.5  
amb  
V
Supply Voltage  
LCD Voltage Internally  
generated  
4.5  
DD2,3  
V
LCD Supply Voltage  
LCD Supply Voltage  
Supply Current  
LCD Voltage Supplied externally  
Internally generated; note 1  
4.5  
4.5  
9
9
V
V
LCDIN  
V
LCDOUT  
I(V  
)
V
DD  
= 2.8V; V  
LCD  
= 7.6V; 4x  
= 0;  
8
15  
µA  
DD1  
charge pump; f  
sclk  
T
amb  
= 25°C; note 3.  
I(V  
)
Voltage Generator Supply  
Current  
with VOP = 0 and PRS = 0  
with external V = 7.6V  
10  
70  
15  
A
µ
DD2,3  
LCD  
V
=7.6V; V =2.8V;  
115  
µA  
LCD  
DD  
f
= 0; T  
= 25°C; no display  
sclk  
amb  
load; 4x charge pump; note 3,6  
= 0  
F
osc  
3/36  
STE2001  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
I(V  
Parameter  
Test Condition  
= 7.6V; V =2.8V;  
Min.  
Typ.  
Max.  
Unit  
)
Total Supply Current  
V
80  
125  
µA  
DD1,2,3  
LCD  
DD  
4x charge pump; f  
= 0; T  
amb  
sclk  
= 25°C; no display load; note 3,6  
F
osc  
= 0  
I(V  
)
External LCD Supply Voltage  
Current  
V
=2.8V; V  
LCD  
=7.6V;no  
= 0;  
15  
25  
µA  
LDCIN  
DD  
display load; f  
sclk  
T
amb  
= 25°C; note 3. F  
= 0  
osc  
Logic Inputs  
V
Logic LOW voltage level  
V
V
= V (t < 10µs)  
V
SS  
0.3  
V
V
IL  
IN  
IN  
ih  
p
V
DD  
V
Logic HIGH Voltage Level  
= V (t < 10µs)  
0.7  
V
IH  
il  
p
DD2,3  
+ 0.5  
V
DD  
I
Input Current  
V
= V  
or V  
DD1  
-1  
1
µA  
in  
in  
SS1  
Column and Row Driver  
R
ROW Output Resistance  
12  
12  
20  
20  
kohm  
kohm  
mV  
row  
R
V
Column Output resistance  
Column Bias voltage accuracy  
Row Bias voltage accuracy  
col  
col  
No load  
-100  
-100  
100  
100  
V
mV  
row  
LCD Supply Voltage  
V
LCD Supply Voltage accuracy;  
Internally generated  
V
= 2.8V; V = 7.6V;  
LCD  
-300  
300  
mV  
LCD  
DD  
fsclk=0; Tamb=25 C;  
no display load; note 2, 3, 6 & 7  
TC  
Temperature coefficient  
00  
01  
10  
11  
-550  
-1350  
-1650  
-2650  
PPM/°C  
PPM/°C  
PPM/°C  
PPM/°C  
Notes: 1. The maximum possible V  
2. Internal clock  
voltage that can be generated is dependent on voltage, temperature and (display) load.  
LCD  
3. When f  
= 0 there is no interface clock.  
sclk  
4. Power-down mode. During power-down all static currents are switched-off.  
5. If external V , the display load current is not transmitted to I  
LCD  
DD  
6. Tolerance depends on the temperature; (typically zero at T  
ature range limit.  
= 27°C), maximum tolerance values are measured at the temper-  
amb  
7. For TC0 to TC3  
AC OPERATION  
(V = 1.9to V  
+ 0.5V; V  
= 2.4 to 4.5 V; V  
= 0V; V  
= 4.5 to9V; T  
=-40 to 85°C; unless otherwise  
DD1  
DD2,3  
DD2,3  
ss1,2  
LCD  
amb  
specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
INTERNAL OSCILLATOR  
F
Internal Oscillator frequency  
External Oscillator frequency  
V
= 2.8V;  
DD  
20  
20  
38  
38  
70  
kHz  
kHz  
OSC  
F
100  
EXT  
4/36  
STE2001  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Frame frequency  
Test Condition  
fosc or fext = 38 kHz; note 1  
Min.  
Typ.  
Max.  
Unit  
Hz  
ms  
ns  
F
73  
FRAME  
T
Vdd1 to RES Low  
note 2 and 10; C = 1µF  
VLCD  
0
5
VHRL  
T
RES LOW pulse width  
Reset Pulse Rejection  
Reset Pulse Rejection  
Reset Pulse vs. Device Ready  
note 3  
600  
w(RES)  
T
amb  
= 25°C; note 11  
370  
µs  
note 11  
200  
s
µ
T
1
0
ms  
START  
T
VDD  
2
I C BUS INTERFACE (See note 4)  
F
SCL Clock Frequency  
Fast Mode ; V  
=4.5V  
DD1  
DC  
400  
400  
kHz  
kHz  
SCL  
V
=18V; T  
= -20 to 70°C  
DD1  
amb  
High Speed Mode; Cb=100pF  
(max); note 6; V =4.5V  
DC  
DC  
3.4  
MHz  
DD1  
High Speed Mode; Cb=400pF  
1.7  
MHz  
(max); note 6 ; V  
=4.5V  
DD1  
T
Cb=100pF  
Cb=100pF  
Cb=400pF  
Cb=400pF  
Cb=100pF  
Cb=100pF  
Cb=400pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
Cb=100pF  
Cb=400pF  
160  
160  
320  
320  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLL  
T
SCLH  
T
SCLL  
T
SCLH  
T
T
T
T
T
T
T
T
30  
30  
SU;DAT  
HD;DAT  
SU;DAT  
HD;DAT  
SU;STA  
SU;STA  
HD;STA  
HD;STA  
SU;STO  
SU;STO  
30  
30  
Note 8  
170  
330  
170  
330  
170  
330  
25  
Note 8  
Note 8  
Note 8  
T
T
Note 8  
Note 8  
T
Note 5, 8  
Note 5, 8  
Note 5, 8  
Note 5, 8  
Note 5, 8  
Note 5, 8  
Note 5, 8  
Note 5, 8  
rCL  
T
50  
rCL  
T
30  
rCL1  
T
120  
30  
rCL1  
T
rDA  
T
120  
25  
rDA  
T
fCL  
fCL  
T
50  
5/36  
STE2001  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
25  
Max.  
Unit  
ns  
T
T
Cb=100pF  
Cb=400pF  
fDA  
fDA  
120  
ns  
C
Capacitive load for SDAH and  
SCLH  
100  
400  
400  
pF  
b
C
b
Capacitive load for SDAH + SDA  
line and SCLH + SCL line  
pF  
ns  
T
note 5  
10  
SW  
PARALLEL INTERFACE  
T
Enable Cycle Time  
Enable Pulse width  
Address Set-up Time  
Address Hold Time  
Data Set-Up Time  
Data Hold Time  
V
V
V
V
V
V
= 4.5V; Write  
125  
60  
30  
50  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
CY(EN)  
DD  
DD  
DD  
DD  
DD  
DD  
T
= 4.5V; Write  
= 4.5V; Write  
= 4.5V; Write  
= 4.5V; Write  
= 4.5V; Write  
W(EN)  
T
SU(A)  
T
H(A)  
T
SU(D)  
T
H(D)  
SERIAL INTERFACE  
F
Clock Frequency  
V
V
V
V
V
= 4.5V  
8
5
MHz  
MHz  
ns  
SCLK  
DD  
= 1.8V  
DD1  
T
Clock Cycle SCLK  
SCLK pulse width HIGH  
SCLK Pulse width LOW  
SCE setup time  
= 4.5V  
= 4.5V  
= 4.5V  
125  
70  
70  
50  
50  
60  
60  
60  
40  
40  
40  
CYC  
DD  
DD  
DD  
T
ns  
PWH1  
T
PWL1  
ns  
T
T
ns  
S2  
H2  
SCE hold time  
ns  
T
SCE minimum high time  
SCE start hold time  
SD/C setup time  
ns  
PWH2  
T
T
T
T
T
Note 8  
ns  
H5  
S3  
H3  
S4  
H4  
ns  
SD/C hold time  
ns  
SDIN setup time  
ns  
SDIN hold time  
ns  
fosc  
Fframe  
Notes: 1.  
= --------  
520  
2. RES may be LOW or HIGH before V  
goes HIGH.  
DD1  
3. If T  
is longer than 500ns (typical) a reset may be generated.  
w(RES)  
4. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to V and V with  
IL  
IH  
an input voltage swing of V to V  
SS  
DD  
5. The rise and fall times specified here refer to the driver device and are part of general Hs-mode specification.  
6. The device inputs SDA and SCL are filtered and will reject any spike on the bus-lines of with T  
7. Cb is the capacitive load for each bus line.  
SW  
8. T is the time from the previous SCLK positive edge to the negative edge of SCE  
H5  
9. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated  
10.C is the filtering capacitor on VLCDOUT  
VLCD  
11.If T  
is shorter than max. value a reset pulse is rejected.  
w(RES)  
6/36  
STE2001  
CIRCUIT DESCRIPTION  
Supplies Voltages and Grounds  
V
and V  
are supply voltages to the internal voltage generator (see below). They must be externally connected.  
DD2  
DD3  
If the internal voltagegenerator is not used, these should be connected to V pad. V  
supplies the rest of the IC.  
DD1  
DD1  
This supply voltage could be different form V  
and V . V  
DD3 DD1  
must be lower than V  
+ 0.5V.  
DD2  
DD2,3  
Internal Supply Voltage Generator  
The IC has a fully integrated (no external capacitors required) charge pump for the LiquidCrystal Display supply volt-  
age generation. The multiplying factor can be programmed to be: X5; X4; X3; X2, using the ’set CP Multiplication’  
Command. The output voltage (V  
) is tightly controlled through the V  
pad. For this voltage, four dif-  
LCDOUT  
LCDSENSE  
ferent temperature coefficients(TC, rateof change withtemperature) can be programmed using the bits TC1 and TC0.  
This will ensure no contrast degradation over the LCD operating range. Using the internal charge pump, the V  
LCDIN  
and V  
pads must be connected together. An external supply could be connected to V  
to supply the LCD  
LCDOUT  
LCDIN  
without using the internal generator. In such event the V  
and V  
must be connected to GND and the  
LDCOUT  
LCDSENSE  
internal voltage generator must be programmed to zero (PRS = 0, Vop = 0 - Reset condition).  
Oscillator  
A fully integrated oscillator (requires no external components) is present to provide the clock for the Display System.  
Whenused the OSC padmustbe connectedtoVDD1pad. An external oscillatorcould beused andfedintothe OSC pin.  
Display Data RAM  
The STE2001, provides an 65X128 bits Static RAM to store Display data. This is organized into 8 (Bank0 to  
Bank7) banks with 128 Bytes and one Bank (Bank8) with 128 Bits to be used for icons. RAM access is accom-  
plished in either one of the Bus Interfaces provided (see below). Allowed addresses are X0 to X127 (Horizontal)  
and Y0 to Y8 (Vertical). When writing to RAM, four addressing mode are provided:  
Normal Horizontal (MX = 0 and V = 0), having the columnwith address X = 0 located on the left of the memory map.  
The X pointeris increased after each byte written. After the last column address (X = 127), Y address pointer is mod-  
ified to jump to next row. X restarts from X = 0 (Fig.2).  
Normal Vertical (MX = 0 and V = 1), having the column with address X = 0 located on the left of the memory map.  
The Y pointer is increased after each byte written. After the last row address (Y = 8), the X pointer is modified to  
jump to next column and Y restarting from Y = 0. (Fig. 3).  
Mirrored Horizontal (MX = 1 and V = 0), having the column with address X = 0 located on the right of the memory  
map. The X pointer is increased after each byte written. After the last column address (X = 127), Y address pointer  
is modified to jump to nextrow. X restarts from X = 0 (fig. 4).  
Mirrored Vertical (MX =1 and V = 1), having the column with address X = 0 located on the right of the memory map.  
The Y pointer is increased after each byte written. After the last row address (Y = 8), the X pointer is modified to  
jump to next column and Y restarting from Y = 0. (Fig. 5).  
After the last allowed address (X;Y) = (128;8), the address pointers always jump to the cell with address (X;Y) = (0;0). Data  
bytes in the memory could have the MSB either on top (D0 = 0, Fig. 6) or on the bottom (D0 = 1, Fig. 7).  
Mux 65 Mode  
The STE2001 provides also means to alter the normal output addressing. A mirroring of the Display along the X axis  
is enabled setting to a logic one the MY bit. This function is achieved reading the matrix from physical row 63 to 0,  
since the relation between the physical memory rows and the output row drivers is only dependent on the memory  
reading sequence (1st row read output on R0, 2nd on R1... last on R65). This function doesn’t affect the content of  
the memory map. It is only related to the visualizatio nprocess (Fig. 8 & Fig. 9).  
It is also possible to modify the why with which row drivers are connected with DDRAM memory. A flip along y-axis of  
each sub-block can be applied on both the Row Pads located on the Interface Side (the edge of the chip where the  
Interface Pads are located), setting the TRS bit to a logic one, and on the Row Pads located on the other edge, setting  
the BRS bit to a logic one.  
Figure 2 Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0) Figure 3 Automatic  
data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)  
7/36  
STE2001  
Figure 2. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)  
0
1
2
3
124 125 126 127  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
D00IN1138  
Figure 3. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)  
0
1
2
3
124 125 126 127  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
D00IN1139  
Figure 4. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)  
127 126 125 124  
3
2
1
0
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
D00IN1140  
Figure 5. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)  
127 126 125 124  
3
2
1
0
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
D00IN1141  
8/36  
STE2001  
Figure 6. Data RAM Byte organization with D0 = 0  
MSB  
0
1
2
3
124 125 126 127  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
LSB  
D00IN1142  
Figure 7. Data RAM Byte organization with D0 = 1  
LSB  
0
1
2
3
124 125 126 127  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
MSB  
D00IN1143  
Figure 8. Output drivers rows and physical memory rows correspondence with MY =0  
ROW DRIVER PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
ROW 0  
ROW 1  
ROW 2  
ROW 3  
ROW 4  
ROW 5  
R 60  
R 61  
R 62  
R 63  
R 64  
ROW 60  
ROW 61  
ROW 62  
ROW 63  
ROW 64  
D00IN1144  
Figure 9. Output drivers rows and physical memory rows correspondence with MY =1  
ROW DRIVER PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
R 63  
R 62  
R 61  
R 60  
R 59  
R 58  
ROW 0  
ROW 1  
ROW 2  
ROW 3  
ROW 4  
ROW 5  
R 3  
R 2  
R 1  
R 0  
R 64  
ROW 60  
ROW 61  
ROW 62  
ROW 63  
ROW 64  
D00IN1145  
9/36  
STE2001  
MUX 33 Mode  
When using the 1:33 MUX ratio (MUX bit Set), the memory map is changed so that the only ”active” row drivers  
are the ones related to Bank4 to Bank7.  
When writing data RAM, as for Mux 65, four addressing mode are provided. The memory matrix is written as in  
mux 65 mode so the user must take care of updating X and Y pointers to fill the memory matrix in the correct  
way.  
In MUX 33 mode only the MUX 33 memory logic matrix is read. The MY bit control the reading process. If MY  
is set to a logic zero the row reading sequence is 0-1-2..........33 (fig.11). If MY is set to a logic one the reading  
sequence is 32....1-33 (Fig 12).  
The icon row (BANK8) is always the last being output either MY bit is a logic one or zero.  
The functions related to bit TRS is the same as in MUX 65 mode.  
In fig. 11 is shown the output drivers pad connection for MUX 33 mode. Note that the unused BANK 0-3 row  
drivers become columns drivers.  
If a 33x128 LCD matrix is driven, the output row drivers R0-R15 and R32-R47 must be floating.  
Figure 10. Physical 65x128 memory matrix and 33x128 correspondence  
0
1
14 15 16 17 18  
109110 111112 113  
126127  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
BANK 8  
NOT USED  
D00IN1146  
R16-R23  
R24-R31  
R48-R55  
R56-R63  
R64  
D00IN1147  
10/36  
STE2001  
Figure 11. Output drivers rows and logical memory rows correspondence with MY = 0  
ROW DRIVER  
MUX 33 PHYSICAL MEMORY ROW  
0
1
2
3
4
5
6
7
120 121 122123 124 125126 127  
R16  
to  
Row 0  
to  
BANK 4  
BANK 5  
BANK 6  
R23  
Row 7  
R24  
Row 8  
to  
to  
R31  
Row15  
R48  
Row 16  
to  
to  
R55  
Row 23  
R56  
Row 24  
to  
to  
BANK 7  
BANK 8  
R63  
Row 31  
R64  
Row 32  
D00IN1148  
Figure 12. Output drivers rows and logical memory rows correspondence with MY = 1  
ROW DRIVER  
MUX 33 PHYSICAL MEMORY ROW  
0
1
2
3
4
5
6
7
120 121 122123 124 125126 127  
R16  
to  
R23  
R24  
to  
R31  
R48  
to  
Row 0  
to  
Row 7  
Row 8  
to  
Row15  
Row 16  
to  
BANK 4  
BANK 5  
BANK 6  
R55  
R56  
to  
Row 23  
Row 24  
to  
BANK 7  
BANK 8  
R63  
Row 31  
R64  
Row 32  
D00IN1148  
Instruction Set  
Two different instructions formats are provided:  
- With D/C set to LOW  
commands are sent to the Control circuitry.  
- With D/C set to HIGH  
the Data RAM is addressed Instructions have the syntax summarized in Table.1.  
Reset (RES)  
At power-on, all internal registers and RAM content are not defined. A Reset pulse must be applied on RES pad  
(active low) to initialize the internal registers content (see Tables 3,4,5,&6). Every on-going communication with  
the host controller is interrupted. The IC after the reset pulse is programmed in Power Down mode.  
The Default configurations is:  
- Horizontal addressing (V = 0)  
- Normal instruction set (H = 0)  
- Normal display (MX = MY = TRS =BRS = 0)  
- MUX 65 mode (MUX = 0)  
11/36  
STE2001  
- Display blank (E = D = 0)  
- Address counter X[6: 0] = 0 and Y[3 : 0] = 0  
- Temperature coefficient (TC[1 : 0] = 0)  
- Bias system (BS[2 : 0] = 0)  
- V = 0  
OP  
- Power Down (PD = 1)  
To clear the RAM content a MEMORY BLANK instruction should be executed.  
Power Down (PD = 1)  
When at Power Down, all LCD outputs are kept at V (display off). Bias generator and V  
generator are OFF  
SS  
LCD  
(V  
LCDOUT  
output is discharged to V , and then is possible to disconnect V  
). The internal Oscillator is in  
LCDOUT  
SS  
off state. An external clock can be provided. The RAM contents is not cleared.  
Charge Pump Factor  
The desired Charge Pump Multiplication Factor can be programmed though the S1 and S0 bits, as follows:  
S1  
0
S0  
0
Multiplication Factor  
2X  
3X  
4X  
5X  
0
1
1
0
1
1
At Reset the X2 factor is selected.  
Bias Levels  
To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated. The ra-  
tios among these levels and VLCD, should be selected according to the MUX ratio (m). They are established to  
be (Fig. 14):  
+
+
+
2
n
n
3
4
n
n
2
+
1
+
n 4  
------------  
-------------  
-------------  
-------------  
, V  
LCD  
V
,
V
,
V
,
V
,V  
LCD SS  
LCD  
LCD  
LCD  
+
4
n
4
Figure 13. Bias level Generator  
VLCD  
R
R
n + 3  
n + 4  
·VLCD  
·VLCD  
·VLCD  
·VLCD  
n + 2  
n + 4  
nR  
R
2
n + 4  
1
n + 4  
R
VSS  
D00IN1150  
12/36  
STE2001  
thus providing an 1/(n+4) ratio, with n calculated from:  
=
3
n
m
For m = 65, n = 5 and an 1/9 ratio is set.  
For m = 33, n =3 and an 1/7 ratio is set.  
The STE2001 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below:  
BS2  
0
BS1  
0
BS0  
0
n
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
The following table Bias Level for m = 65 and m = 33 are provided:  
Symbol  
V1  
m = 65 (1/9)  
m = 33 (1/7)  
V
V
LCD  
LCD  
V2  
8/9*V  
7/9*V  
6/7* V  
5/7* V  
2/7* V  
1/7* V  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
V3  
V4  
2/9*V V  
LCD  
LCD  
V5  
1/9 *V  
V6  
V
V
SS  
SS  
LCD Voltage Generation  
The LCD Voltage at reference temperature (To = 35°C) can be set using the VOP register content according to  
the following formula:  
V
LCD  
(T=To) = V  
o = (Ai+V · B)  
(i=0,1)  
LCD  
OP  
with the following values:  
Symbol  
Value  
2.90  
6.91  
0.034  
35  
Unit  
V
Note  
Ao  
A1  
B
PRS = 0  
PRS = 1  
V
V
To  
°C  
Note that the two PRS value produces two adjacent ranges for VLCD. If the register and PRS bit are set to zero  
13/36  
STE2001  
the internal voltage generator is switched off.  
The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Multiplexing  
Rate. A general expression for this is:  
+
1
m
----------------------------------- - V  
=
V
LCD  
th  
1
--------  
2
1
m
For MUX Rate m = 65 the ideal V  
than:  
is:  
LCD  
V
= 6.85 · V  
th  
LCD(to)  
(6.85 V  
A )  
i
th  
= ---------------------------------------- -  
V
op  
0.03  
Temperature Coefficient  
As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there’s the need  
to vary the LCD Voltage with temperature. The STE2001 provides the possibility to change the VLCD in a linear  
fashion against temperature with four different Temperature Coefficient selectable through the TC0 and TC1  
bits.  
TC1  
TC0  
Value  
-550  
Unit  
0
0
1
1
0
1
0
1
PPM/°C  
PPM/°C  
PPM/°C  
PPM/°C  
-1350  
-1650  
-2650  
Figure 14. VLCD Slopes Cross Point with Different TC  
VLCD  
TEMP  
D01IN1256/mod  
35ºC  
14/36  
STE2001  
Figure 15.  
VLCD  
B
A1  
A0+B  
A
0
00h 01h 02h 03h 04h 05h  
7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h  
7Ch 7Dh 7Eh 7Fh  
VO  
PRS=0 PRS=1  
D01IN1257  
Finally, the V  
voltage at a given (T) temperature can be calculated as:  
LCD  
V
(T) = V  
o · [1 + (T-To) · TC]  
LCD  
LCD  
Memory Blanking Procedure  
This instruction allows to fill the memory with ”blank” patterns, in order to delete patterns randomly generated  
in memory when starting up the device. This instruction substitutes (128X9) single ”write” instructions. It is pos-  
sible to program ”Memory Blanking Procedure” only under the following conditions:  
- X address = 0  
- Y address = 0  
- V bit  
= 0  
= 0  
= 0  
- PD bit  
- MX bit  
The end of the procedure will be notified on the BSY_FLG pad going HIGH (while LOW the procedure is run-  
ning). Any instruction programmed with BSY_FLG LOW will be ignored that is, no instruction can be pro-  
grammed for a period equivalent to 128X9 internal write cycles (128X9X1/fclock). The start of Memory blanking  
procedure will be between one and two fclock cycles from the last active edge (E rising edge for the parallel  
2
interface, last SCLK rising edge for the Serial interface, last SCL rising edge for the I C interface).  
Checker Board Procedure  
This instruction allows to fill the memory with ”checker-board” pattern. It is mainly intended to developers, who  
can now simply obtain complex module test configuration by means of a single instruction. It is possible to pro-  
gram ”Checker Board Procedure” only under the following conditions:  
- X address = 0  
- Y address = 0  
- V bit  
= 0  
= 0  
= 0  
- PD bit  
- MX bit  
15/36  
STE2001  
The end of the procedure will be notified on theBSY_FLG pad going HIGH, while LOW the procedure is running.  
Any instruction programmed with BSY_FLG LOW will be ignored, that is, no instruction can be programmed for  
a period equivalent to 128X9 internal write cycles (128X9X1/fclock). The start of Memory blanking procedure  
will be between one and two fclock cycles from the last active edge (E rising edge for the parallel interface, last  
2
SCLK rising edge for the Serial interface, last SCL rising edge for the I C interface).  
Scroll  
The STE2001 can scroll the graphics display in units of raster-rows. The scrolling function is achieved changing  
the correspondence between the rows of the logical memory map and the output row drivers. The scroll function  
doesn’t affect the data ram content. It is only related to the visualization process. The information output on the  
drivers is related to the row reading sequence (the 1st row read is output on R0, the 2nd on R1 and so on).  
Scrolling means reading the matrix starting from a row that is sequentially increased or decreased. After every  
scrolling command the offset between the memory address and the memory scanning pointer is increased or  
decreased by one. The offset range is between 0 to 63 in mux 65 mode and 0-31 in mux 33 mode. After the  
64th scrolling command in mux 65 mode and after the 32th in mux 33 mode, the offset between the memory  
address and the memory scanning pointer is again zero (Cyclic Scrolling). Bank8 is always accessed last in  
each frame, and so isn’t scrolled.  
If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is scrolled from top down. If  
the DIR Bit is set to a logic one the offset register is decreased by one and the raster is scrolled from bottom-up.  
Bus Interfaces  
To provide the widest flexibility and ease of use the STE2001 features three different methods for interfacing  
the host Controller. To select the desired interface the SEL1 and SEL2 pads need to be connected to a logic  
LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused interfaces must be  
connected to GND. If I/O pins voltage is lower than VDD interfaces could sink more current than expected.  
All interfaces are working while the STE2001 is in Power Down.  
SEL2  
SEL1  
Interface  
Note  
2
0
0
Read and Write; Fast and  
High Speed Mode  
I C  
0
1
1
1
1
0
Serial  
Parallel  
Write only  
Write only  
Not Used  
2
I C Interface  
2
2
The I C interface is a fully complying I C bus specification, selectable to work in both Fast (400kHz Clock) and  
High Speed Mode (3.4MHz).  
This bus is intended for communication between different Ics. It consists of two lines: one bi-directional for data  
signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a positive  
supply voltage via an active or passive pull-up.  
The following protocol has been defined:  
- Data transfer may be initiated only when the bus is not busy.  
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line  
while the clock line is high will be interpreted as control signals.  
Accordingly, the following bus conditions have been defined:  
BUS not busy: Both data and clock lines remain High.  
Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, define the  
START condition.  
16/36  
STE2001  
Stop Data Transfer:  
A Change in the state of the data line, from low to High, while the clock signal is High,  
defines the STOP condition.  
Data Valid: The state of the data line represents valid data when after a start condition, the data line is stable  
for the duration of the High period of the clock signal. The data on the line may be changed during the Low period  
of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data  
bytes transferred between the start and the stop conditions is not limited. The information is transmitted byte-  
wide and each receiver acknowledges with the ninth bit.  
By definition, a device that gives out a message is called ”transmitter”, the receiving device that gets the signals  
is called ”receiver”. The device that controls the message is called ”master”. The devices that are controlled by  
the master are called ”slaves”  
Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level  
put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a  
master receiver must generate an acknowledge after the reception of each byte that has been clocked out of  
the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the acknowledge  
clock pulse. Of course, setup and hold time must be taken into account. A master receiver must signal an end-  
of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of  
the slave. In this case, the transmitter must leave the data line High to enable the master to generate the STOP  
condition.  
Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the ac-  
knowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass  
(COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system  
SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin  
Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2001 will not be able  
to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode  
that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is nec-  
essary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid  
LOW level.  
2
To be compliant with the I C-bus Hs-mode specification the STE2001 is able to detect the special sequence  
”S00001xxx”. After this sequence no acknowledge pulse is generated.  
Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode without  
detecting the master code.  
Figure 16. Bit transfer and START,STOP conditions definition  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
D00IN1151  
17/36  
STE2001  
2
Figure 17. Acknowledgment on theI C-bus  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
D00IN1152  
2
Figure 18. I C-bus timings  
Sr  
Sr P  
t
t
rDA  
fDA  
SDAH  
t
HD;DAT  
t
HD;STA  
t
SU;DAT  
t
SU;STA  
SCLH  
t
fCL  
t
t
t
rCL1  
rCL  
rCL1  
(1)  
(1)  
t
t
t
t
HIGH LOW  
LOW HIGH  
t
RES  
START  
=
MCS current source pull-up  
= Rp resistor pull-up  
D00IN1153  
Communication Protocol  
2
The STE2001 is an I C slave. The access to the device is bi-directional since data write and status read are allowed.  
Two are the device addresses availablefor the device. Both have in common the first 6 bits (011110). The least sig-  
nificant bit of the slave address is set by connecting the SA0 input to a logic 0 or to a logic 1.  
To start the communication between the bus master and the slaveLCD driver, the master must initiate a START con-  
dition. Followingthis, the mastersends an 8-bit byte, shown in Fig. 18, on the SDA bus line (Most significant bit first).  
This consists of the 7-bit Device selectCode, and the 1-bit Read/Write Designator (RW/ ).  
2
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the IC-bus transfer.  
Writing Mode.  
If the R/W bit is set to logic 0 the STE2001 is set to be a receiver. After the slaves acknowledge one or more  
command word follows to define the status of the device.  
A command word is composed by two bytes. The first is a control byte which defines the Co and D/C values,  
the second is a data byte (fig 18). The Co bit is the command MSB and defines if after this command will follow  
one data byte and an other command word or if will follow a stream of data (Co = 1 Command word, Co = 0  
Stream of data). The D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/  
C = 0 Command).  
If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following  
data byte will be stored in the data RAM at the location specified by the data pointer.  
E very byte of a command word must be acknowledged by all addressed units.  
After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2001 Display  
RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every  
byte written and in the end points to the last RAM location written.  
Every byte must be acknowledged by all addressed units.  
Reading Mode.  
If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If the D/C bit sent  
during the last write access, is set to a logic 0, the byte read is the status byte.  
18/36  
STE2001  
Figure 19. communication protocol  
WRITE MODE  
STE2001 ACK  
STE2001 ACK  
STE2001 ACK  
STE2001 ACK  
STE2001 ACK  
S
S 0 1 1 1 1 0 A 0 A 1 DC Control Byte A  
0
DATA Byte  
A 0 DC Control Byte A  
DATA Byte  
A P  
R/W Co  
SLAVE ADDRESS  
Co  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
COMMAND WORD  
READ MODE  
STE2001 ACK  
MASTER  
P
S
S R  
C D  
o C  
S 0 1 1 1 1 0 A 1 A  
0
0 1 1 1 1 0 A /  
0 W  
0 0 0 0 0 0 A  
R/W  
STE2001  
SLAVE ADDRESS  
CONTROL BYTE  
D01IN1247  
SERIAL INTERFACE  
The STE2001 serial Interface is a unidirectional link between the display driver and the application supervisor.  
It consists of four lines: one for data signals (SDIN), one for clock signals (SCLK), one for the peripheral enable  
(SCE) and one for mode selection (SD/C).  
The serial interface is active only if the SCE line is set to a logic 0. When SCE line is high the serial peripheral  
power consumption is zero.  
The STE2001 is always a slave on the bus and receive the communication clock on the SCLK pin from the mas-  
ter. The STE2001 is only able to receive data.  
Information are exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge.  
While SCE pin is high the serial interface is kept in reset.  
SD/C line status indicates whether the byte is a command (SD/C =0) or RAM data (SD/C =1);it is read on the  
eighth SCLK clock pulse during every byte transfer.  
If SCE stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte  
at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal  
registers are cleared.  
If SCE is low after the positive edge of RES, the serial interface is ready to receive data.  
19/36  
STE2001  
Figure 20. Serial bus protocol - one byte transmission  
SCE  
D/C  
SCLK  
SDIN  
MSB  
LSB  
D00IN1159  
Figure 21. Serial bus protocol - several byte transmission  
SCE  
D/C  
SCLK  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
D00IN1160  
Figure 22. RESET effect on the serial interface  
t
t
t
PWH2  
S2  
H2  
SCE  
D/C  
t
H5  
t
t
t(  
H5)  
S3  
H3  
t
CYC  
t
t
WH1  
PWL1  
t
S2  
SCLK  
SDIN  
RES  
t
t
H4  
S4  
t
START  
D00IN1161  
20/36  
STE2001  
Parallel Interface  
The STE2001 parallel Interface is a unidirectional link between the display driver and the application supervisor.  
It consists of ten lines: eight data lines (from DB7 to DB0) and two control lines. The control lines are: enable  
(E) for data latch and PD/C for mode selection.  
The data lines and the control line values are internally latched on E rising edge (fig. 23).  
Figure 23. Parallel interface timing  
PD/C  
t
t
W(en)  
SU(A)  
t
h(A)  
E
t
t
SU(D) HO(D)  
t
CY(en)  
DB0-DB7  
RES  
t
START  
D00IN1162  
Table 1. Instruction Set  
Instruction  
D/C R/W  
Description  
B7  
B6 B5  
B4 B3 B2 B1 B0  
H=0 or H=1  
NOP  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
No Operation  
Function Set  
MX MY PD  
V
H
PowerDown Management; Entry  
Mode; Extended Instruction Set  
2
Read Status Byte  
0
1
1
0
PD TRS BRS  
D
E
MX MY DO  
( I C interface only )  
Write Data  
H=0  
D7  
D6 D5  
D4 D3 D2 D1 D0  
Writes data to RAM  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
Starts Memory Blank Procedure  
DIR Scrolls by one Row UP or DOWN  
V
Range Setting  
0
0
0
0
1
0
PRS  
E
V
programmingrangeselection  
LDC  
LCD  
Display Control  
Set CP Factor  
Set RAM Y  
Set RAM X  
H=1  
0
0
0
1
D
0
Select Display Configuration  
0
0
1
0
0
S1  
Y1  
X1  
S0 Charge Pump Multiplication Factor  
Y0 Set Horizontal (Y) RAM Address  
1
0
0
Y3  
X3  
Y2  
X2  
X6  
X5  
X4  
X0  
Set Vertical (X) RAM Address  
Checker Board  
Multiplex Select  
TC Select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
Starts Checker Board Procedure  
Selects MUX factor  
MUX  
TC1 TC0 Set TemperatureCoefficient for V  
LDC  
Output Address  
Bias Ratios  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
X
0
1
X
1
0
X
DO TRS BRS Set Row Order on Output Pads  
BS2 BS1 BS0  
Set desired Bias Ratios  
Not to be used  
X
X
X
Set V  
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
V
register Write instruction  
OP  
OP  
21/36  
STE2001  
Table 2. Explanations of Table 6 symbols  
RESET  
STATE  
BIT  
0
1
DIR  
H
Scroll by one down  
Use basic instruction set  
Device fully working  
Scroll by one up  
Use extended instruction set  
Device in power down  
0
1
0
0
0
0
0
0
0
0
PD  
V
Horizontal addressing  
Vertical addressing  
MX  
MY  
TRS  
BRS  
DO  
PRS  
MUX  
Normal X axis addressing  
Image is displayed not vertically mirrored  
No top rows mirroring  
X axis address is mirrored.  
Image is displayed vertically mirrored  
Top rows mirroring (row pads 16-31 & 48-64)  
Bottom rows mirroring (row pads 0-15 & 32-47)  
MSB on BOTTOM  
No bottom rows mirroring  
MSB on TOP  
V
= 2.94V  
V
= 6.75V  
LCD  
LCD  
1:65 multiplexing ratio  
1:33 multiplexing ratio  
Table 3.  
D
E
0
0
1
1
DESCRIPTION  
RESET STATE  
0
1
0
1
display blank  
normal mode  
D=0  
E=0  
all display segments on  
inverse video mode  
Table 4.  
S1  
S0  
0
DESCRIPTION  
RESET STATE  
0
0
1
1
Multiplication Factor 2X  
Multiplication Factor 3X  
Multiplication Factor 4X  
Multiplication Factor 5X  
1
0
0
1
Table 5.  
TC1  
TC0  
DESCRIPTION  
RESET STATE  
0
0
1
1
0
1
0
1
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 1  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
00  
22/36  
STE2001  
Table 6.  
BS2  
BS1  
0
BS0  
0
DESCRIPTION  
Bias Ratio equal to 7  
RESET STATE  
0
0
0
0
1
1
1
1
0
1
Bias Ratio equal to 6  
Bias Ratio equal to 5  
Bias Ratio equal to 4  
Bias Ratio equal to 3  
Bias Ratio equal to 2  
Bias Ratio equal to 1  
Bias Ratio equal to 0  
1
0
1
1
000  
0
0
0
1
1
0
1
1
Figure 24. Application Schematic Using an External LCD Voltage Generator  
I/O  
VDD2,3  
VDD  
32  
128  
33  
VDD1  
100nF  
VSS  
65 x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
VLCD  
D00IN1157  
Figure 25. Application Schematic using the Internal LCD VoltageGenerator and two separate supplies  
I/O  
VDD2  
VDD2,3  
VDD1  
32  
128  
33  
VDD1  
100nF  
VSS  
100nF  
VSS2  
VSS1  
65 x 128  
DISPLAY  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
D00IN1158  
23/36  
STE2001  
Figure 26. Application Schematic using the Internal LCD Voltage Generator and a single supply  
I/O  
VDD  
VDD2,3  
VDD1  
32  
128  
33  
100nF  
VSS  
65 x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
D00IN1156  
Figure 27. Pad Configuration with I2C interface  
TEST_13  
TEST_12  
TEST_11  
TEST_10  
TEST_8  
VSS2  
VSS1  
GND  
TEST 9  
SA0  
VDD1/GND/VSSOUT  
SCL  
SDAIN  
SDAOUT  
RES  
STE2001  
µP  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VDD1  
SCLK  
SCE  
SD/C  
SDIN  
BSY_FLG  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
VDD3  
VDD2  
VDD1  
OSCIN  
SEL1  
SEL2  
GND/VSSOUT  
VSSOUT  
TEST_3  
TEST_2  
TEST_1  
TEST_0  
D01IN1261  
24/36  
STE2001  
Figure 28. Pad Configuration with Parallel interface  
TEST_13  
TEST_12  
TEST_11  
TEST_10  
TEST_8  
VSS2  
VSS1  
TEST 9  
SA0  
GND  
VDD1/GND/VSSOUT  
VDD1  
SCL  
SDAIN  
SDAOUT  
RES  
E
STE2001  
µP  
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK  
SCE  
VDD1  
SD/C  
SDIN  
BSY_FLG  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
VDD3  
VDD2  
VDD1  
OSC  
SEL1  
SEL2  
GND/VSSOUT  
VDD1  
VSSOUT  
TEST_3  
TEST_2  
TEST_1  
TEST_0  
D01IN1262  
Figure 29. Pad Configuration with Serial interface  
TEST_13  
TEST_12  
TEST_11  
TEST_10  
TEST_8  
VSS2  
VSS1  
GND  
TEST 9  
SA0  
VDD1/GND/VSSOUT  
VDD1  
SCL  
SDAIN  
SDAOUT  
STE2001  
µP  
RES  
E
PD/C  
D0  
D1  
D2  
VDD1  
D3  
D4  
D5  
D6  
D7  
SCLK  
SCE  
SD/C  
SDIN  
BSY_FLG  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
VDD3  
VDD2  
VDD1  
OSCIN  
SEL1  
VDD1  
SEL2  
GND/VSSOUT  
VSSOUT  
TEST_3  
TEST_2  
TEST_1  
TEST_0  
D01IN1263  
25/36  
STE2001  
Figure 30. Power OFF Timing Diagram  
VDD2/3  
t
VDD  
VDD1  
RES  
INPUTS  
D01IN1264  
Figure 31. Power OFF Sequence  
POWER OFF SEQUENCE  
SET by Software (PD=0) or (Vop=0 & PRS=[0;0])  
Force Active Input Lines Low  
REMOVE VDD1  
REMOVE VDD2/3  
END OF POWER OFF SEQUENCE  
D01IN1265  
26/36  
STE2001  
Figure 32. Power-Up & RESET timing diagram  
VDD2/3  
t
VDD  
VDD1  
t
W(RES)  
RES  
INPUTS  
D01IN1189  
Figure 33. Power-Up & RESET timing diagram  
VDD2/3  
t
VHRL  
t
VDD  
VDD1  
t
W(RES)  
RES  
INPUTS  
D01IN1190  
Figure 34. Power Up Sequence  
POWER UP SEQUENCE  
Set Active Input lines low  
Apply VDD2/3  
Apply VDD1  
Apply a RESET Pulse  
END OF POWER UP SEQUENCE  
(STE2001 in Reset State)  
D01IN1266  
27/36  
STE2001  
Figure 35. Chip Mechanical Drawing  
ALIGNEMENT MARK  
ROW 0  
ROW16  
ROW 15  
COL 0  
ROW31  
TEST  
ALIGNEMENT MARK  
VLCDIN  
VLCDSENSE  
VLCDOUT  
VSS2  
VSS1  
TEST  
SA0  
SCL  
SDAIN  
SDAOUT  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
COL 63  
COL 64  
(0,0)  
Y
X
SCLK  
SCE  
SD/C  
SDIN  
BSY_FLG  
TEST  
VDD2  
VDD3  
VDD1  
OSC  
SEL1  
SEL2  
VSSOUT  
TEST  
COL 127  
ROW 47  
ALIGNEMENT MARK  
ROW64  
ROW 32  
ROW48  
ALIGNEMENT MARK  
D01IN1191  
28/36  
STE2001  
Figure 36. Improved ALTH & PLESKO Driving Method  
VLCD  
V2  
V3  
V1(t)  
V2(t)  
ROW 0  
R0 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
ROW 1  
R1 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
COL 0  
C0 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
COL 1  
C1 (t)  
V4  
V5  
VSS  
VLCD - VSS  
V3 - VSS  
V
LCD - V2  
0V  
V4 - V5  
Vstate1(t)  
0V  
V3 - VSS  
VSS - V5  
V4 - VLCD  
VLCD - VSS  
V3 - VSS  
VSS - VLCD  
VLCD - V2  
0V  
V4 - V5  
0V  
Vstate2(t)  
V3 - VSS  
VSS - V5  
V4 - VLCD  
VSS - VLCD  
.......  
.......  
0
..... 64  
1 2 3 4 5 6 7 8  
9
..... 64  
0 1 2 3 4 5 6 7 8 9  
FRAME n  
FRAME n + 1  
D00IN1154  
V1(t) = C1(t) - R0(t)  
V2(t) = C1(t) - R1(t)  
29/36  
STE2001  
Figure 37. DATA RAM to display Mapping  
DISPLAY DATA RAM  
bank  
0
GLASS  
TOP VIEW  
bank  
1
DISPLAY DATA RAM = ”1”  
DISPLAY DATA RAM = ”0”  
bank  
2
LCD  
bank  
3
bank  
7
bank  
8
ICOR ROW  
D00IN1155  
Table 7. Test Pin Configuration  
Test Numb.  
Pin  
TEST_0  
TEST_1  
TEST_2  
TEST_3  
GND  
GND  
GND  
GND  
TEST_4  
TEST_5  
TEST_6  
TEST_7  
OPEN  
OPEN  
OPEN  
OPEN  
T8  
T9  
OPEN  
OPEN  
TEST_10  
TEST_11  
TEST_12  
TEST_13  
OPEN  
OPEN  
OPEN  
OPEN  
30/36  
STE2001  
Table 8. Mechanical Dimensions  
Table 9. Pad Coordinates  
(continued)  
NAME  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
PAD  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
X ( m)  
Y( m)  
µ
µ
Die Size  
2.12mmX12.5mm  
-3,681.8  
-3,611.8  
-3,541.8  
-3,471.8  
-3,401.8  
-3,331.8  
-3,261.8  
-3,191.8  
-3,121.8  
-3,051.8  
-2,981.8  
-2,911.8  
-2,841.8  
-2,771.8  
-2,701.8  
-2,631.8  
-2,561.8  
-2,491.8  
-2,421.8  
-2,351.8  
-2,281.8  
-2,211.8  
-2,141.8  
-2,071.8  
-2,001.8  
-1,931.8  
-1,861.8  
-1,791.8  
-1,721.8  
-1,651.8  
-1,581.8  
-1,511.8  
-1,441.8  
-1,371.8  
-1,301.8  
-1,231.8  
-1,161.8  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
Pad Pitch  
70 µm  
62µm X 100 µm  
50µmX88µmX17.5  
500µm  
Pad Size  
Bump Dimensions  
WFS Thickness  
Table 9. Pad Coordinates  
NAME  
R0  
PAD  
1
X (µm)  
Y(µm)  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-5,994  
-5,924  
R1  
2
R2  
3
-5,854  
R3  
4
-5,784  
R4  
5
-5,714  
R5  
6
-5,644  
R6  
7
-5,574  
R7  
8
-5,504  
R8  
9
-5,434  
R9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
-5,364  
R10  
R11  
R12  
R13  
R14  
R15  
C0  
-5,294  
-5,224  
-5,154  
-5,084  
-5,014  
-4,944  
-4,591.8  
-4,521.8  
-4,451.8  
-4,381.8  
-4,311.8  
-4,241.8  
-4,171.8  
-4,101.8  
-4,031.8  
-3,961.8  
-3,891.8  
-3,821.8  
-3,751.8  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
31/36  
STE2001  
Table 9. Pad Coordinates  
Table 9. Pad Coordinates  
(continued)  
(continued)  
NAME  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
PAD  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
X ( m)  
Y( m)  
NAME  
PAD  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
X ( m)  
Y( m)  
µ
µ
µ
µ
-1,091.8  
-1,021.8  
-951.8  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
C87  
1,785.44  
1,855.44  
1,925.44  
1,995.44  
2,065.44  
2,135.44  
2,205.44  
2,275.44  
2,345.44  
2,415.44  
2,485.44  
2,555.44  
2,625.44  
2,695.44  
2,765.44  
2,835.44  
2,905.44  
2,975.44  
3,045.44  
3,115.44  
3,185.44  
3,255.44  
3,325.44  
3,395.44  
3,465.44  
3,535.44  
3,605.44  
3,675.44  
3,745.44  
3,815.44  
3,885.44  
3,955.44  
4,025.44  
4,095.44  
4,165.44  
4,235.44  
4,305.44  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
C88  
C89  
-881.8  
C90  
C91  
-811.8  
-741.8  
C92  
C93  
-671.8  
-601.8  
C94  
-531.8  
C95  
-461.8  
C96  
-391.8  
C97  
C98  
-321.8  
-251.8  
C99  
C100  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C109  
C110  
C111  
C112  
C113  
C114  
C115  
C116  
C117  
C118  
C119  
C120  
C121  
C122  
C123  
-181.8  
175.44  
245.44  
315.44  
385.44  
455.44  
525.44  
595.44  
665.44  
735.44  
805.44  
875.44  
945.44  
1,015.44  
1,085.44  
1,155.44  
1,225.44  
1,295.44  
1,365.44  
1,435.44  
1,505.44  
1,575.44  
1,645.44  
1,715.44  
32/36  
STE2001  
Table 9. Pad Coordinates  
Table 9. Pad Coordinates  
(continued)  
(continued)  
NAME  
C124  
C125  
C126  
C127  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
PAD  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
X ( m)  
Y( m)  
NAME  
TEST_3  
TEST_2  
TEST_1  
TEST_0  
VSSOUT  
SEL2  
PAD  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
X ( m)  
Y( m)  
µ
µ
µ
µ
4,375.44  
4,445.44  
4,515.44  
4,585.44  
4,943.84  
5,013.84  
5,083.84  
5,153.84  
5,223.84  
5,293.84  
5,363.84  
5,433.84  
5,503.84  
5,573.84  
5,643.84  
5,713.84  
5,783.84  
5,853.84  
5,923.84  
5,993.84  
6,021.92  
5,951.92  
5,881.92  
5,811.92  
5,741.92  
5,671.92  
5,601.92  
5,531.92  
5,461.92  
5,391.92  
5,321.92  
5,251.92  
5,181.92  
5,111.92  
5,041.92  
4,971.92  
4,901.92  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
-898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
4,640.52  
4,500.68  
4,360.84  
4,221  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
4,151  
4,011.16  
3,871.32  
3,731.48  
3,661.48  
3,591.48  
3,521.48  
3,451.48  
3,381.48  
3,311.48  
3,223.08  
3,153.08  
3,083.08  
2,994.68  
2,924.68  
2,854.68  
2,784.68  
2,714.68  
2,644.68  
2,574.68  
2,033.84  
1,894  
SEL1  
OSC  
VDD1_1  
VDD1_2  
VDD1_3  
VDD1_4  
VDD1_5  
VDD1_6  
VDD3_1  
VDD3_2  
VDD3_3  
VDD2_1  
VDD2_2  
VDD2_3  
VDD2_4  
VDD2_5  
VDD2_6  
VDD2_7  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
BSY_FLAG  
SDIN  
1,754.16  
1,614.32  
1,474.48  
1,333.2  
1,193.36  
1,053.52  
913.68  
SD/C  
SCE  
SCLK  
D7  
773.84  
D6  
634  
D5  
494.16  
D4  
354.32  
33/36  
STE2001  
Table 9. Pad Coordinates  
Table 9. Pad Coordinates  
(continued)  
(continued)  
NAME  
D3  
PAD  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
X ( m)  
Y( m)  
NAME  
TEST_12  
TEST_13  
TEST_10  
TEST_11  
TEST_8  
R31  
PAD  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
X ( m)  
Y( m)  
µ
µ
µ
µ
214.48  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
-4,460.48  
-4,540.48  
-4,620.48  
-4,700.48  
-4,780.48  
-4,971.92  
-5,041.92  
-5,111.92  
-5,181.92  
-5,251.92  
-5,321.92  
-5,391.92  
-5,461.92  
-5,531.92  
-5,601.92  
-5,671.92  
-5,741.92  
-5,811.92  
-5,881.92  
-5,951.92  
-6,021.92  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
898.2  
D2  
74.64  
D1  
-65.2  
D0  
-205.04  
PD/C  
-344.88  
E
-484.72  
RES  
R30  
-624.56  
SDA_OUT  
SDA_IN  
SCL  
-764.4  
R29  
-904.24  
R28  
-1,044.08  
-1,183.92  
-1,722.04  
-1,795.48  
-1,865.48  
-1,935.48  
-2,075.88  
-2,145.88  
-2,215.88  
-2,356.28  
-2,426.28  
-2,496.28  
-2,636.68  
-2,706.68  
-2,776.68  
-3,545.64  
-3,615.64  
-3,685.64  
-3,755.64  
-3,825.64  
-3,895.64  
-3,968.08  
-4,040.48  
-4,110.48  
-4,180.48  
-4,250.48  
-4,320.48  
-4,390.48  
R27  
SA0  
R26  
TEST9  
R25  
VSS1_1  
VSS1_2  
VSS1_3  
VSS1_4  
VSS1_5  
VSS1_6  
VSS2_1  
VSS2_2  
VSS2_3  
VSS2_4  
VSS2_5  
VSS2_6  
VLCDOUT1  
VLCDOUT2  
VLCDOUT3  
VLCDOUT4  
VLCDOUT5  
VLCDOUT6  
VLCSENSE  
VLCDIN_1  
VLCDIN_2  
VLCDIN_3  
VLCDIN_4  
VLCDIN_5  
VLCDIN_6  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
Table 10. Alignment marks coordinates  
X
Y
MARKS  
mark1  
mark2  
mark3  
mark4  
4806.2  
-4876.2  
-6092.6  
6092.6  
901.8  
901.8  
-901.8  
-901.8  
Figure 38. Alignment marks dimensions  
34/36  
STE2001  
Figure 39.  
DIE IDENTIFICATION  
STE2001  
R16  
D01IN1249  
Figure 40. Tray Information  
0DIN1428  
2 . 3 9  
G m b H A R W E  
F L U O R O  
0 ± . 2 5 4 1 = . 4 7 3 . 1 x 9 1 3  
35/36  
STE2001  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights ofthird partieswhich may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
- Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
36/36  

相关型号:

STE2002

81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2002DIE1

81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2002DIE2

81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2002_06

81 x 128 single-chip LCD controller/driver
STMICROELECTR

STE2004

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE1

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE2

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004S

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2004SDIE2

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2007

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007DIE2

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007_06

96 x 68 Single-chip LCD controller/driver
STMICROELECTR