STE2002DIE2 [STMICROELECTRONICS]

81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER; 81 X 128单芯片LCD控制器/驱动
STE2002DIE2
型号: STE2002DIE2
厂家: ST    ST
描述:

81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER
81 X 128单芯片LCD控制器/驱动

显示驱动器 驱动程序和接口 接口集成电路 控制器 CD
文件: 总51页 (文件大小:494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STE2002  
81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER  
104 x 128 bits Display Data RAM  
Low Power Consumption, suitable for battery  
operated systems  
Programmable MUX rate  
Logic Supply Voltage range from 1.7 to 3.6V  
Programmable Frame Rate  
X,Y Programmable Carriage Return  
Dual Partial Display Mode  
High Voltage Generator Supply Voltage range  
from 1.75 to 4.2V  
Display Supply Voltage range from 4.5 to 11V  
Backward Compatibility with STE2001  
Row by Row Scrolling  
Automatic data RAM Blanking procedure  
Selectable Input Interface:  
2
DESCRIPTION  
• I C Bus Fast and Hs-mode (read and write)  
• Parallel Interface (read and write)  
• Serial Interface (read and write)  
The STE2002 is a low power CMOS LCD controller  
driver. Designed to drive a 81 rows by 128 columns  
graphic display, provides all necessary functions in a  
single chip, including on-chip LCD supply and bias  
voltages generators, resulting in a minimum of exter-  
nals components and in a very low power consump-  
tion. The STE2002 features three standard interfaces  
Fully Integrated Oscillator requires no external  
components  
CMOS Compatible Inputs  
Fully Integrated Configurable LCD bias voltage  
2
generator with:  
• Selectable multiplication factor (up to 6X)  
(Serial, Parallel & I C) for ease of interfacing with the  
host  
mcontroller.  
• Effective sensing for High Precision Output  
• Eight selectable temperature compensation  
coefficients  
Type  
Ordering Number  
STE2002DIE1  
STE2002DIE2  
Bumped Wafers  
Bumped Dice on Waffle Pack  
Designed for chip-on-glass (COG) applications  
Figure 1. Block Diagram  
ICON  
CO to C127  
R0 to R80  
OSC_IN  
TIMING  
GENERATOR  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
OSC  
OSC_OUT  
CLOCK  
BIAS VOLTAGE  
GENERATOR  
VLCDIN  
DATA  
SHIFT  
LATCHES  
REGISTER  
VLCDSENSE  
VLCDOUT  
HIGH VOLTAGE  
GENERATOR  
104 x 128  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_1_14  
VSSAUX  
TEST  
VDD1,2  
VSS  
ICON_MODE  
EXT  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
BSY_FLG  
SEL1,2  
SOUT  
SA1  
2
I
CBUS  
PARALLEL  
SERIAL  
SAO  
SCL  
SDA_IN SDA_OUT DB0 to DB7 E  
PD/C SCE SDIN SCLK SD/C  
R/W  
September 2002  
1/51  
STE2002  
PIN DESCRIPTION  
N°  
Pad  
Type  
Function  
R0 to R80  
129-169  
282-322  
O
LCD Row Driver Output  
ICON  
C0 to C127  
VSS  
323  
O
O
ICON Row Driver  
1-128  
LCD Column Driver Output  
Ground pads.  
236-255  
188-199  
200-211  
261-270  
273-282  
271-272  
GND  
VDD1  
Supply IC Positive Power Supply  
VDD2  
Supply Internal Generator Supply Voltages.  
VLCDIN  
VLCDOUT  
Supply LCD Supply Voltages for the Column and Row Output Drivers.  
Supply Voltage Multiplier Output  
VLCDSENSE  
Supply Voltage Multiplier Regulation Input. V  
Sensing for Output Voltage Fine  
LCDOUT  
Tuning  
V
SSAUX  
180, 231,  
218  
O
Ground Reference for Selection Pins Configuration  
SEL1,2  
EXT  
184,185  
183  
I
I
Interface Mode Selection  
Extended Instruction Set Selection  
EXT PAD CONFIG  
VSS or VSSAUX  
INSTRUCTION SET SELECTED  
BASIC  
VDD1  
EXTENDED  
ICON_MO  
DE  
186  
I
ICON ROW Management  
ICON MODE PAD CONFIG  
VSS or VSSAUX  
VDD1  
ICON MODE STATUS  
DISABLED  
ENABLED  
2
SDA_IN  
SDA_OUT  
SCL  
234  
232  
235  
182  
181  
I
O
I
I C Bus Data In  
2
I C Bus Data Out  
2
I C bus Clock  
2
SA0  
I
I C Slave Address BIT 0  
2
SA1  
I
I C Slave Address BIT 1  
OSCIN  
OSCOUT  
RES  
187  
260  
I
External Oscillator Input  
O
Internal/External Oscillator Out  
Reset Input. Active Low.  
230  
I
DB0 to DB7  
R/W  
220-227  
219  
I/O  
Parallel Interface 8 Bit Data Bus  
I
I
I
I
Parallel Interface Read & Write Control Line  
Parallel Interface Data Latch Signal.  
Parallel Interface Data/Command Selector  
Serial Interface Data Input  
E
229  
PD/C  
228  
SDIN  
214  
2/51  
STE2002  
PIN DESCRIPTION (continued)  
N°  
SCLK  
SCE  
Pad  
217  
216  
215  
213  
212  
Type  
Function  
I
I
Serial Interface Clock  
Serial Interface ENABLE. When Low the Incoming Data are Clocked In.  
Serial Interface Data/Command Selector  
Serial Out  
SD/C  
I
SOUT  
BSYFLG  
O
O
Active Procedure Flag. Notice if There is an ongoing Internal Operation or an  
active reset. Active Low.  
T1 to T14  
170-179,  
256-259  
I/O  
Test Pads. - A 50kohm pull-down resistor is added on input pis.  
Test Num.  
Pin Configuration  
TEST_1  
TEST_2  
TEST_3  
TEST_4  
OPEN  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
TEST_10  
VSS / VSSAUX  
VSS / VSSAUX  
TEST_11  
TEST_12  
TEST_13  
TEST_14  
3/51  
STE2002  
Figure 2. Chip Mechanical Drawing  
MARK_1  
COL  
0
ROW 35  
ROW 39.  
STE2002  
VLCDOUT  
VLCDSENSE  
VLCDIN  
VLCDOUT  
VLCDSENSE  
VLCDIN  
MARK_3  
OSCOUT  
TEST_14  
TEST_13  
TEST_12  
TEST_11  
VSS  
SCL  
SDAIN  
SDAOUT  
VSSAUX  
COL 63  
COL 64  
RES  
(0,0)  
E
PD/C  
D0  
Y
D1  
D2  
D3  
D4  
D5  
D6  
X
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
MARK_4  
VDD2  
VDD1  
VDD2  
VDD1  
OSCIN  
ICON_MODE  
SEL1  
SEL2  
EXT_SET  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
ROW 80/ICON  
ROW 79  
COL 127  
ROW 76  
MARK_2  
4/51  
STE2002  
Figure 3. Improved ALTH & PLESKO Driving Method  
VLCD  
V2  
V3  
V1(t)  
V2(t)  
ROW 0  
R0 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
ROW 1  
R1 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
COL 0  
C0 (t)  
V4  
V5  
VSS  
VLCD  
V2  
V3  
COL 1  
C1 (t)  
V4  
V5  
VSS  
VLCD - VSS  
V3 - VSS  
VLCD - V2  
V4 - V5  
0V  
Vstate1(t)  
0V  
V3 - VSS  
VSS - V5  
V4 - VLCD  
VLCD - VSS  
V3 - VSS  
VSS - VLCD  
VLCD - V2  
0V  
V4 - V5  
0V  
Vstate2(t)  
V3 - VSS  
VSS - V5  
V4 - VLCD  
VSS - VLCD  
.......  
.......  
0
..... 64  
1
2
3
4
5
6
7
8
9
..... 64  
0
1
2
3
4
5
6
7
8
9
FRAME n  
FRAME n + 1  
D00IN1154  
V1(t) = C1(t) - R0(t)  
V2(t) = C1(t) - R1(t)  
5/51  
STE2002  
CIRCUIT DESCRIPTION  
Supplies Voltages and Grounds  
V
is supply voltages to the internal voltage generator (see below). If the internal voltage generator is  
DD2  
not used, this should be connected to V  
pad. V  
supplies the rest of the IC. V  
supply voltage  
DD1  
DD1  
DD1  
could be different form V  
.
DD2  
Internal Supply Voltage Generator  
The IC has a fully integrated (no external capacitors required) charge pump for the Liquid Crystal Display  
supply voltage generation. The multiplying factor can be programmed to be: Auto, X6, X5, X4, X3, X2, us-  
ing the ’set CP Multiplication’ Command. If Auto is set, the multiplying factor is automatically selected to  
have the lowest current consumption in every condition. This make possible to have an input voltage that  
changes over time and a constant V  
voltage. The output voltage (V  
) is tightly controlled through  
LCDOUT  
LCD  
the V  
pad. For this voltage, eight different temperature coefficients (TC, rate of change with tem-  
LCDSENSE  
perature) can be programmed using the bits TC1 and TC0 and T2,T1 & T0. This will ensure no contrast  
degradation over the LCD operating range. Using the internal charge pump, the V and V pads  
LCDIN  
LCDOUT  
must be connected together. An external supply could be connected to V  
to supply the LCD without  
LCDIN  
using the internal generator. In such event the V  
and V  
must be connected to GND and  
LDCOUT  
LCDSENSE  
the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset condition).  
Oscillator  
A fully integrated oscillator (requires no external components) is present to provide the clock for the Dis-  
play System. When used the OSC pad must be connected to V  
pad. An external oscillator could be  
DD1  
used and fed into the OSC pin. An oscillator out is provided on the OSCOUT Pad to cascade two or more  
drivers  
Bias Levels  
To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated.  
The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are  
established to be (Fig. 4):  
n + 3  
, ------------ V  
n + 4  
n + 2  
,------------ V  
n + 4  
2
1
V
,------------ V  
n + 4  
,------------ V  
n + 4  
,V  
LCD SS  
LCD  
LCD  
LCD  
LCD  
Figure 4. Bias level Generator  
VLCD  
R
R
n + 3  
·VLCD  
n + 4  
n + 2  
·VLCD  
n + 4  
nR  
R
2
·VLCD  
n + 4  
1
·VLCD  
n + 4  
R
VSS  
D00IN1150  
thus providing an 1/(n+4) ratio, with n calculated from:  
n= m 3  
For m = 81, n = 6 and an 1/10 ratio is set.  
For m = 65, n =5 and an 1/9 ratio is set.  
6/51  
STE2002  
The STE2002 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below:  
BS2  
0
BS1  
0
BS0  
0
n
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
The following table Bias Level for m = 65 and m = 81 are provided:  
Symbol  
V1  
m = 65 (1/9)  
m = 81 (1/10)  
V
V
LCD  
LCD  
V2  
8/9*V  
7/9*V  
9/10*V  
8/10*V  
2/10*V  
1/10*V  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
V3  
V4  
2/9*V V  
LCD  
V5  
1/9 *V  
LCD  
V6  
V
V
SS  
SS  
LCD Voltage Generation  
The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register content according to  
the following formula:  
V
LCD  
(T=To) = V  
o = (Ai+V · B)  
(i=0,1,2)  
LCD  
OP  
with the following values:  
Symbol  
Ao  
Value  
2.95  
Unit  
V
Note  
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
A1  
6.83  
V
A2  
10.71  
0.0303  
27  
V
B
V
To  
°C  
Note that the three PRS values produce three adjacent ranges for VLCD. If the V register and PRS bits are  
OP  
set to zero the internal voltage generator is switched off.  
The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Multiplexing  
Rate. A general expression for this is:  
1 +  
m
V
= ----------------------------------- V  
LCD  
th  
1
2
1 --------  
m
For MUX Rate m = 65 the ideal V  
than:  
is:  
LCD  
V
= 6.85 · V  
LCD(to)  
th  
(6.85 V A )  
th  
i
V
= ----------------------------------------  
op  
0.03  
7/51  
STE2002  
Temperature Coefficient  
As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there's the need  
to vary the LCD Voltage with temperature. The STE2002 provides the possibility to change the VLCD in a linear  
fashion against temperature with eight different Temperature Coefficient selectable through the T2, T1 and T0  
bits. Only four of them are available with basic instruction set (TC1 & TC0 Bits).  
NAME  
TC1  
TC0  
Value  
Unit  
-3  
-3  
TC0  
0
0
1/ °C  
-0.0· 10  
TC2  
TC3  
TC6  
0
1
1
1
0
1
1/°C  
1/°C  
1/°C  
-0.7 · 10  
-3  
-3  
-1.05· 10  
-2.1 · 10  
NAME  
TC2  
TC1  
TC0  
Value  
Unit  
-3  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
0
0
0
1
0
1
1
1
1
1
1/ °C  
-0.0· 10  
-3  
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
-0.35 · 10  
-3  
-0.7 · 10  
-1.05· 10  
-3  
-3  
-1.4 · 10  
-3  
-1.75· 10  
-3  
-2.1 · 10  
-3  
-2.3· 10  
Figure 5.  
LCD  
V
B
2
A
1
A
0
A + B  
0
A
00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh  
O
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
Finally, the V  
voltage at a given (T) temperature can be calculated as:  
LCD  
V (T) = V o · [1 + (T-To) · TC]  
LCD LCD  
8/51  
STE2002  
Display Data RAM  
The STE2002, provides an 104X128 bits Static RAM to store Display data. This is organized into 13  
(Bank0 to Bank12) banks with 128 Bytes. One of these banks (128 bits wide) can be used for Icons. RAM  
access is accomplished in either one of the Bus Interfaces provided (see below). Allowed addresses are  
X0 to X127 (Horizontal) and Y0 to Y12 (Vertical).  
When writing to RAM, four addressing mode are provided:  
• Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the mem-  
ory map. The X pointer is increased after each byte written. After the last column address (X=X-Car-  
riage), Y address pointer is set to jump to the following bank and X restarts from X=0. (Fig. 6)  
• Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory  
map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage),  
X address pointer is set to jump to next column and Y restarts from Y=0 (Fig. 7).  
• Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the  
memory map. The X pointer is increased after each byte written. After the last column address (X=X-  
Carriage), Y address pointer is set to jump to the next bank and X restarts from X=0 (fig. 8).  
• Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the mem-  
ory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Car-  
riage), the X pointer is set to jump to next column and Y restarts from Y=0 (fig. 9).  
After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jump to the  
cell with address (X;Y) = (0;0) (Fi. 10, 11, 12 & 13).  
Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.14) or on the bottom (D0=1, Fig.  
15).  
The STE2002 provides also means to alter the normal output addressing. A mirroring of the Display along  
the X axis is enabled setting to a logic one MY bit.This function doesn't affect the content of the memory  
RAM. It is only related to the visualization process.  
When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled. When ICON Mode=0 the  
Icon Row is like the other graphic lines and is mirrored and scrolled.  
Four are the multiplex ratio available when the partial display mode is disabled (MUX 33, MUX 49, MUX  
65 and MUX 81).  
Only a subset of writable rows are output on Row drivers.  
When Y-Carriage<MUX/8, if Mux 65 is selected only the first 65 memory rows are visualized, if Mux 49 is  
selected only the first 49 memory rows are visualized, if Mux 33 is selected only the first 33 memory rows  
are visualized. All unused Row and Column drivers must be left floating.  
When Y-Carriage<MUX/8, the icon Bank is located to BANK 10 in MUX 81 Mode, to BANK8 in MUX 65  
Mode, to BANK 6 in MUX 49 Mode and to BANK 4 in MUX 33 Mode.  
When Y-Carriage>MUX/8 lines only 33, 49, 65 or 81 lines are visualized but it is possible to select which  
lines of DDRAM are connected on the output drivers. The DDRAM rows to visualized can be selected in  
the 0-Y-Carriage*8 range using the scrolling function.  
When Y-Carriage>MUX lines, the icon row is moved in DDRAM to the first row of the Y-CARRIAGE Re-  
turn BANK even if it is always connected on the same output Driver.  
When MY=0, the icon Row is output on R80 in mux 81 mode, on R72 in MUX 65, on R64 in MUX49 and  
on R56 in MUX 33.  
When MY=1, and ICON MODE=1, the icon Row is output on R80 in mux 81 mode, on R72 in MUX 65, on  
R64 in MUX49 and on R56 in MUX 33.  
When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate.  
When ICON MODE =1, the Memory ICON Row content is output on ICON Pad.  
If Not Used ICON Pad must be left floating.  
9/51  
STE2002  
1
Figure 6. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
1
Figure 7. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
1
Figure 8. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
1
Figure 9. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
1. X Carriage=127; Y-Carriage = 12  
10/51  
STE2002  
Figure 10. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=0)  
X CARR  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 11. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=0)  
X CARR  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 12. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=1)  
X CARR  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 13. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=1)  
X CARR  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
11/51  
STE2002  
Figure 14. Data RAM Byte organization with D0 = 0  
MSB  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
LSB  
BANK 10  
BANK 11  
BANK 12  
Figure 15. Data RAM Byte organization with D0 = 1  
LSB  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
MSB  
BANK 10  
BANK 11  
BANK 12  
Figure 16. Memory Rows vs. Row drivers mapping with MY=0, MUX81, ICON MODE=0,1  
ROW DRIVER  
ICON MODE=1  
ROW DRIVER  
ICON MODE=0  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
R 1  
R 2  
R 3  
R 0  
R 1  
R 2  
R 3  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 79  
R 80  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
Figure 17. Memory Rows vs. Row drivers mapping with MY=0, MUX 81, SCROLL POINTER = +3, ICON MODE=1  
ROW DRIVER  
PHYSICAL MEMORY ROW  
ICON MODE=1  
0
1
2
3
124 125 126 127  
ROW 0  
ROW 1  
R 0  
R 1  
R 2  
R 3  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 76  
R 77  
R 78  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
12/51  
STE2002  
Figure 18. Memory Rows vs. Row drivers mapping with MY=0, MUX 81, SCROLL POINTER=+3, ICON MODE=0  
ROW DRIVER  
ICON MODE=0  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
R 1  
R 2  
R 3  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 76  
R 77  
R 78  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
Figure 19. Memory Rows vs. Row drivers mapping with MUX 65 Y-CARRIAGE<=8 SCROLL POINTER=0, ICON MODE=1  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
ROW 1  
R 0  
R 30  
R 31  
ROW 31  
ROW 32  
N.C.  
N.C.  
R 40  
Y-CARRIAGE  
ICON ROW  
R 71  
R 72  
ROW 63  
ROW 64  
R 79  
R 80  
ROW 96  
ICON  
Figure 20. Memory Rows vs. Row drivers mapping with MUX65, Y-CARRIAGE>8, SCROLL POINTER=0, ICON MODE=1  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
ROW 31  
ROW 32  
R 31  
R 32  
N.C.  
R 40  
ROW 63  
R 71  
R 72  
ICON ROW  
ROW 75  
ROW 76  
Y-CARRIAGE  
N.C.  
R 79  
R 80  
ROW 96  
ICON  
13/51  
STE2002  
Figure 21. Memory Rows vs. Row drivers mapping with MUX65, Y-CARRIAGE>8, SCROLL POINTER=3, ICON MODE=1,  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
ROW 1  
ROW 2  
R 30  
R 31  
ROW 33  
ROW 34  
N.C.  
R 40  
R 71  
R 72  
ROW 66  
ICON ROW  
ROW 75  
ROW 76  
Y-CARRIAGE  
N.C.  
R 79  
R 80  
ROW 96  
ICON  
Figure 22. Memory Rows vs. Row drivers mapping with MY=1, MUX81, ICON MODE 0,1 SCROLL POINTER=0  
ROW DRIVER  
ICON MODE=1  
ROW DRIVER  
ICON MODE=0  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 79  
R 78  
R 80  
R 79  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 2  
R 1  
R 3  
R 2  
R 1  
R 0  
ROW 79  
ROW 80  
R 0  
ICON ROW  
R 80  
ICON  
ICON  
Figure 23. Memory Rows vs. Row drivers mapping with MY=1, MUX81, SCROLL OFFSET= +3, ICON MODE =0  
ROW DRIVER  
PHYSICAL MEMORY ROW  
ICON MODE=0  
0
1
2
3
124 125 126 127  
ROW 0  
R 80  
R 78  
R 79  
R 77  
R 76  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
ROW 79  
ROW 80  
R 1  
R 0  
ICON ROW  
ICON  
14/51  
STE2002  
Figure 24. Memory Rows vs. Row drivers mapping with MY=1, MUX81, SCROLL OFFSET= +3, ICON MODE =1  
ROW DRIVER  
ICON MODE=1  
SCROLL OFFSET +3  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 79  
R 78  
R 77  
ROW 1  
ROW 2  
R 76  
ROW 3  
Y-CARRIAGE  
R 1  
R 0  
ROW 79  
ROW 80  
R 80  
ICON ROW  
ICON  
Figure 25. Row Drivers vs. LCD Panel Interconnection in MUX81 Mode  
ICON  
81x128  
MUX 81 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
STE2002  
LR0012  
15/51  
STE2002  
Figure 26. Row Drivers vs. LCD Panel Interconnection in MUX65 Mode  
ICON  
65x128  
MUX 65 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
ROW DRIVERS  
ROW DRIVERS  
STE2002  
LR0014  
Figure 27. Row Drivers vs. LCD Panel Interconnection in MUX49 Mode  
ICON  
49x128  
MUX 49 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
ROW DRIVERS  
ROW DRIVERS  
STE2002  
LR0013  
16/51  
STE2002  
Figure 28. Row Drivers vs. LCD Panel Interconnection in MUX33 Mode  
ICON  
33x128  
MUX 33Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
STE2002  
LR0106  
Instruction Set  
Two different instructions formats are provided:  
- With D/C set to LOW  
commands are sent to the Control circuitry.  
- With D/C set to HIGH  
the Data RAM is addressed.  
Two different instruction set are embedded: the STE2001-like instruction set and the extended instruction  
set. To select the STE2001-like instruction set the EXT pad has to be connected to a logic LOW (connect  
to VSS). To select the extended instruction the EXT pad has to be connected to a logic HIGH (connect to  
VDD1).  
The instructions have the syntax summarized in Table 1 (basic-set) and Table 2 (extended set)  
Reset (RES)  
At power-on, all internal registers are configured with the default value. The RAM content is not defined.  
A Reset pulse on RES pad (active low) re-initialize the internal registers content (see Tables 3,4,5,&6).  
Applying a reset pulse, every on-going communication with the host controller is interrupted. After the  
power-on, the Software Reset instruction can be used to re-load the reset configuration into the internal  
registers  
The Default configurations is: .  
- Horizontal addressing (V = 0)  
- Bias system (BS[2: 0] = 0)  
- Multiplexing Ratio (M[1:0]=0)  
- Frame Rate (FR[1:0]=”75Hz”)  
- Power Down (PD = 1)  
- Normal instruction set (H[1:0] = 0)  
- Normal display (MX = MY = 0)  
- Display blank (E = D = 0)  
- Address counter X[6: 0] = 0 and Y[4: 0] = 0  
- Temperature coefficient (TC[1: 0] = 0)  
- Dual Partial Display Disabled (PE=0)  
- V =0  
OP  
A MEMORY BLANK instruction can be executed to clear the RAM content.  
17/51  
STE2002  
Power Down (PD = 1)  
When at Power Down, all LCD outputs are kept at V (display off). Bias generator and V  
generator  
LCD  
SS  
are OFF (V  
output is discharged to V , and then is possible to disconnect V  
). The internal  
LCDOUT  
SS  
LCDOUT  
Oscillator is in off state. An external clock can be provided. The RAM contents is not cleared.  
Memory Blanking Procedure  
This instruction allows to fill the memory with "blank" patterns, in order to delete patterns randomly gener-  
ated in memory when starting up the device. This instruction substitutes (128X13) single "write" instruc-  
tions. It is possible to program "Memory Blanking Procedure" only under the following conditions:  
- PD bit  
= 0  
The end of the procedure will be notified on the BSY_FLG pad going HIGH (while LOW the procedure is  
running). Any instruction programmed with BSY_FLG LOW will be ignored that is, no instruction can be  
programmed for a period equivalent to 128X13 internal write cycles (128X13X1/fclock). The start of Mem-  
ory blanking procedure will be between one and two fclock cycles from the last active edge (E rising edge  
2
for the parallel interface, last SCLK rising edge for the Serial interface, last SCL rising edge for the I C  
interface).  
Checker Board Procedure  
This instruction allows to fill the memory with "checker-board" pattern. It is mainly intended to developers, who  
can now simply obtain complex module test configuration by means of a single instruction. It is possible to pro-  
gram "Checker Board Procedure" only under the following conditions:  
- PD bit  
= 0  
The end of the procedure will be notified on the BSY_FLG pad going HIGH, while LOW the procedure is running.  
Any instruction programmed with BSY_FLG LOW will be ignored, that is, no instruction can be programmed for  
a period equivalent to 128X13 internal write cycles (128X13X1/fclock). The start of Memory blanking procedure  
will be between one and two fclock cycles from the last active edge (E rising edge for the parallel interface, last  
2
SCLK rising edge for the Serial interface, last SCL rising edge for the I C interface).  
Scrolling function  
The STE2002 can scroll the graphics display in units of raster-rows. The scrolling function is achieved  
changing the correspondence between the rows of the logical memory map and the output row drivers.  
The scroll function doesn't affect the data ram content. It is only related to the visualization process. The  
information output on the drivers is related to the row reading sequence (the 1st row read is output on R0,  
the 2nd on R1 and so on). Scrolling means reading the matrix starting from a row that is sequentially in-  
creased or decreased. After every scrolling command the offset between the memory address and the  
memory scanning pointer is increased or decreased by one. The offset range changes in accordance with  
MUX Rate. After 80th/81th scrolling commands in MUX 81 mode, or after the 64th/65th scrolling com-  
mands in mux 65 mode, or after 48nd/49rd scrolling command in MUX 49 mode, or after 32nd/33rd scroll-  
ing command in MUX 33 mode, the offset between the memory address and the memory scanning pointer  
is again zero (Cyclic Scrolling).  
A Reset Scrolling Pointer instruction can be executed to force to zero the offset between the memory ad-  
dress and the memory scanning pointer  
The Icon Row is not scrolled if ICON MODE =1. If ICON MODE=0 the last row is like a general purpose  
row and it is scrolled as other rows.  
If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is scrolled from top  
down. If the DIR Bit is set to a logic one the offset register is decreased by one and the raster is scrolled  
from bottom-up.  
18/51  
STE2002  
OFFSET  
RANGE  
ICON Row Driver with  
MY=0  
MUX RATE  
ICON MODE  
DESCRIPTION  
MUX 33  
MUX 33  
MUX 49  
MUX 49  
MUX 65  
MUX 65  
MUX 81  
MUX 81  
1
0
1
0
1
0
1
0
0-31  
0-32  
0-47  
0-48  
0-63  
0-64  
0-79  
0-80  
ICON ROW NOT SCROOLED  
33 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
49 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
65 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
81 LINE GRAPHIC MATRIX  
R56  
R56  
R64  
R64  
R72  
R72  
R80  
R80  
Dual Partial Display  
If the PE Bit is set to a logic one the dual partial display mode is enabled.  
Eight partial display modes are available. The offset of the two partial display zones is row by row programma-  
ble. The Icon row is accessed last in each partial display frame.  
Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0], BS[2:0], CP[2:0].).  
This allows switching from normal mode to partial display mode applying one instruction. The HV generator is  
automatically re configured using the parameters related to the enabled mode. The parameters of the two sets  
of registers with the same function are located in the same position of the instruction set. The registers related  
to the normal mode are accessible when normal mode (PE=0) is selected, the others are accessible when the  
partial display mode is enabled (PE=1). To Setup PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] values the instruction  
flow proposed in Fig.46 must be followed. To setup Partial Display Sectors Start Address and Partial Dis-  
play Mode no particular instruction flow has to be followed.  
.
PD2 PD1 PD0  
SECTION 1  
SECTION2  
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
RESET STATE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8
0
000  
16  
8
16  
16  
19/51  
STE2002  
Bus Interfaces  
To provide the widest flexibility and ease of use the STE2002 features three different methods for interfacing  
the host Controller. To select the desired interface the SEL1 and SEL2 pads need to be connected to a logic  
LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused interfaces must be  
connected to GND.  
All interfaces are working while the STE2002 is in Power Down  
.
SEL2  
SEL1  
Interface  
Note  
2
0
0
Read and Write; Fast and  
High Speed Mode  
I C  
0
1
1
1
0
1
Serial  
Read and Write  
Read and Write  
Not Used  
Parallel  
2
I C Interface  
2
2
The I C interface is a fully complying I C bus specification, selectable to work in both Fast (400kHz Clock) and  
High Speed Mode (3.4MHz).  
This bus is intended for communication between different Ics. It consists of two lines: one bi-directional for data  
signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a positive  
supply voltage via an active or passive pull-up.  
The following protocol has been defined:  
- Data transfer may be initiated only when the bus is not busy.  
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line  
while the clock line is high will be interpreted as control signals.  
Accordingly, the following bus conditions have been defined:  
BUS not busy: Both data and clock lines remain High.  
Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, define the  
START condition.  
Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock signal is High,  
defines the STOP condition.  
Data Valid: The state of the data line represents valid data when after a start condition, the data line is stable  
for the duration of the High period of the clock signal. The data on the line may be changed during the Low period  
of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data  
bytes transferred between the start and the stop conditions is not limited. The information is transmitted byte-  
wide and each receiver acknowledges with the ninth bit.  
By definition, a device that gives out a message is called "transmitter", the receiving device that gets the signals  
is called "receiver". The device that controls the message is called "master". The devices that are controlled by  
the master are called "slaves"  
Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level  
put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a  
master receiver must generate an acknowledge after the reception of each byte that has been clocked out of  
the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the acknowledge  
clock pulse. Of course, setup and hold time must be taken into account. A master receiver must signal an end-  
of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of  
the slave. In this case, the transmitter must leave the data line High to enable the master to generate the STOP  
20/51  
STE2002  
condition.  
Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the ac-  
knowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass  
(COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system  
SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin  
Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2002 will not be able  
to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode  
that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is nec-  
essary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid  
LOW level.  
2
To be compliant with the I C-bus Hs-mode specification the STE2002 is able to detect the special sequence  
"S00001xxx". After this sequence no acknowledge pulse is generated.  
Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode without  
detecting the master code.  
Figure 29. Bit transfer and START,STOP conditions definition  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
D00IN1151  
2
Figure 30. Acknowledgment on the I C-bus  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
D00IN1152  
Communication Protocol  
2
The STE2002 is an I C slave. The access to the device is bi-directional since data write and status read are allowed.  
Four are the device addresses available for the device. All have in common the first 5 bits (01111). The two least sig-  
nificant bit of the slave address are set by connecting the SA0 and SA1 inputs to a logic 0 or to a logic 1.  
To start the communication between the bus master and the slave LCD driver, the master must initiate a START con-  
dition. Following this, the master sends an 8-bit byte, shown in Fig. 30, on the SDA bus line (Most significant bit first).  
This consists of the 7-bit Device select Code, and the 1-bit Read/Write Designator (R/W).  
2
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C-bus transfer.  
Writing Mode.  
If the R/W bit is set to logic 0 the STE2002 is set to be a receiver. After the slaves acknowledge one or more  
command word follows to define the status of the device.  
A command word is composed by two bytes. The first is a control byte which defines the Co and D/C values,  
21/51  
STE2002  
the second is a data byte (fig 31). The Co bit is the command MSB and defines if after this command will follow  
one data byte and an other command word or if will follow a stream of data (Co = 1 Command word, Co = 0  
Stream of data). The D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/  
C = 0 Command).  
If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following  
data byte will be stored in the data RAM at the location specified by the data pointer.  
Every byte of a command word must be acknowledged by all addressed units.  
After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2002 Display  
RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every  
byte written and in the end points to the last RAM location written.  
Every byte must be acknowledged by all addressed units.  
Reading Mode.  
If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If the D/C bit sent  
during the last write access, is set to a logic 0, the byte read is the status byte.  
Figure 31. Communication Protocol  
WRITE MODE  
STE2002 ACK  
S S  
STE2002 ACK  
STE2002 ACK  
STE2002 ACK  
STE2002 ACK  
S 0 1 1 1 1 A A 0 A 1 DC Control Byte  
1 0  
A
DATA Byte  
A 0 DC Control Byte  
A
DATA Byte A P  
R/W Co  
Co  
LAST  
N> 0 BYTE  
SLAVE ADDRESS  
COMMAND WORD  
CONTROL BYTE  
MSB........LSB  
READ MODE  
STE2002 ACK  
MASTER ACK  
P
S S  
S 0 1 1 1 1 A A 1 A  
1 0  
S S R  
0 1 1 1 1 A A /  
1 0 W  
C D  
o C  
0 0 0 0 0 0 A  
R/W  
STE2002  
CONTROL BYTE  
SLAVE ADDRESS  
SERIAL INTERFACE  
The STE2002 serial Interface is a bidirectional link between the display driver and the application supervisor.  
It consists of five lines: two for data signals (SDIN, SOUT), one for clock signals (SCLK), one for the peripheral  
enable (SCE) and one for mode selection (SD/C).  
The serial interface is active only if the SCE line is set to a logic 0. When SCE line is high the serial peripheral  
power consumption is zero. While SCE pin is high the serial interface is kept in reset.  
The STE2002 is always a slave on the bus and receive the communication clock on the SCLK pin from the mas-  
ter.  
Information are exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge.  
SD/C line status indicates whether the byte is a command (SD/C =0) or RAM data (SD/C =1);it is read on the  
eighth SCLK clock pulse during every byte transfer.  
22/51  
STE2002  
If SCE stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte  
at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal  
registers are cleared.  
If SCE is low after the positive edge of RES, the serial interface is ready to receive data.  
2
Throughout SOUT can be read only the driver I C slave address. The Command sequence that allows to read  
2
I C slave address is reported in Fig. 34 & 35. SOUT is in High impedance in steady state and during data write.  
It is possible to short circuit DOUT and SDIN and read I2C address without any additional lines.  
Figure 32. Serial bus protocol - one byte transmission  
SCE  
D/C  
SCLK  
SDIN  
MSB  
LSB  
D00IN1159  
Figure 33. Serial bus protocol - several byte transmission  
SCE  
D/C  
SCLK  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
D00IN1160  
Figure 34. Serial bus protocol - several byte transmission  
SCE  
D/C  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
D00IN1160  
High-Z  
High-Z  
SOUT  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Command Write  
I2C Address Read  
23/51  
STE2002  
Figure 35. Reading Sequence  
READING SEQUENCE  
Write a "00000000" Instruction  
SOUT Buffer becomes active (Low Impedence)  
Source 8 pulses on SCLK and  
1
Read the I2C Address or Status Byte On SOUT  
SOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0078  
Parallel Interface  
The STE2002 parallel Interface is a bidirectional link between the display driver and the application supervisor.  
It consists of eleven lines: eight data lines (from DB7 to DB0) and three control lines. The control lines are: en-  
able (E) for data latch, PD/C for mode selection and R/W for reading or writing.  
The data lines and the control line values are internally latched on E rising edge (fig. 50).  
When the parallel interface is selected, if R/W line is set to “one”, D0-D7 lines are configured as output drivers  
2
(low impedence) and it is possible to read the driver I C address (Fig. 51)  
24/51  
STE2002  
Table 1. STE2001-like instruction Set  
Instruction  
D/C  
R/W  
Description  
B7 B6 B5 B4 B3  
B2 B1 B0  
H=0 or H=1  
2
0
0
0
0
0
0
0
0
0
0
0
0
Read I C Address  
(with Serial Interface only)  
Function Set  
0
0
1
MX MY PD  
V
H[0] Power Down Management; Entry  
Mode;  
2
Read Status Byte  
0
1
1
0
PD  
A1  
A2  
D
E
MX MY DO  
D2 D1 D0  
(I C interface only)  
Writes data to RAM  
Write Data  
H=0  
D7 D6 D5 D4 D3  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
Starts Memory Blank Procedure  
DIR Scrolls by one Row UP or DOWN  
V
Range Setting  
PRS  
[0]  
V
LDC  
programming range selection  
LCD  
Display Control  
Set CP Factor  
0
0
0
0
0
0
0
0
0
0
0
1
1
0
D
0
E
Select Display Configuration  
S2  
S1  
S0  
Charge Pump Multiplication  
factor  
Set RAM Y  
Set RAM X  
H=1  
0
0
0
0
0
1
1
0
0
Y3  
X3  
Y2  
X2  
Y1  
X1  
Y0 Set Horizontal (Y) RAM Address  
X6  
X5  
X4  
X0  
Set Vertical (X) RAM Address  
Checker Board  
Multiplex Select  
TC Select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
X
0
0
0
0
1
X
0
0
0
1
0
X
0
0
1
0
1
1
Starts Checker Board Procedure  
Selects MUX factor  
MUX  
TC1 TC0 Set Temperature Coefficient for V  
LDC  
Output Address  
Bias Ratios  
Reserved  
DO A1  
A2  
No function  
Set desired Bias Ratios  
Not to be used  
BS2 BS1 BS0  
X
X
X
Set V  
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
V
OP  
register Write instruction  
OP  
25/51  
STE2002  
Table 2. Extended Instruction Set  
Instruction  
D/C R/W  
Description  
B7 B6 B5  
B4 B3 B2 B1 B0  
H Independent Instructions  
2
NOP  
0
0
0
0
0
0
0
0
0
0
0
0
Read I C Address  
(with Serial Interface only)  
Function Set  
0
0
0
1
0
MX MY PD H[1] H[0]  
Power Down Management; Entry  
Mode; Extended Instruction Set  
2
Read Status Byte  
Write Data  
0
1
1
0
PD  
D
E
MX MY DO  
D4 D3 D2 D1 D0  
H=[0;0] RAM Commands  
(I C interface only)  
D7 D6 D5  
Writes data to RAM  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
Starts Memory Blank Procedure  
Scrolls by one Row UP or DOWN  
0
0
0
0
DIR  
V
Range Setting  
0
0
0
1
PRS PRS  
V
LDC  
programming range selection  
LCD  
[1]  
[0]  
Display Control  
Set CP Factor  
Set RAM Y  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
D
0
E
Select Display Configuration  
S2  
Y2  
X2  
S1  
Y1  
X1  
S0  
Y0  
X0  
Charge Pump Multiplication factor  
Set Horizontal (Y) RAM Address  
Set Vertical (X) RAM Address  
1
0
0
Y3  
X3  
Set RAM X  
X6  
X5  
X4  
H=[0;1]  
Checker Board  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
X
0
0
0
0
1
X
0
0
0
1
0
X
0
0
0
1
1
Starts Checker Board Procedure  
Vertical Addressing Mode  
V
TC Select  
Data Format  
Bias Ratios  
1
TC1 TC0 Set Temperature Coefficient for V  
LDC  
DO  
0
0
MSB Position  
Set desired Bias Ratios  
Reserved  
BS2 BS1 BS0  
X
X
X
Set V  
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
V
OP  
register Write instruction  
OP  
H=[1;0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
Software RESET  
Partial Enable  
PE  
FR1 FR0  
M[1] M[0]  
Frame rate Control  
Mux Ratio  
Partial Mode  
PD2 PD1 PD0  
Partial Display Config  
st  
PD PD PD PD PD PDY  
Y5 Y4 Y2 Y1  
1
Sector Start Address  
Y3  
0
nd  
0
0
1
PD PD PD PD PD PD PD  
2
Sector Start Address  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
H=[1;1]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
X
0
0
0
1
1
X
X
Scrolling Pointer Reset  
Not Used  
1
X
Not Used  
T2  
X
T1  
X
T0 Set Temperature Coefficient for V  
LDC  
X
Not Used  
YC-3 YC-2 YC-1 YC-0  
Y-CARRIAGE RETURN  
X CARRIAGE RETURN  
XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0  
26/51  
STE2002  
Table 3. Explanations of Table 2 symbols  
RESET  
STATE  
BIT  
0
1
DIR  
PD  
Scroll by one down  
Device fully working  
Horizontal addressing  
Normal X axis addressing  
Image is displayed not vertically mirrored  
MSB on TOP  
Scroll by one up  
Device in power down  
Vertical addressing  
1
0
0
0
0
0
0
0
V
MX  
MY  
DO  
PE  
X axis address is mirrored.  
Image is displayed vertically mirrored  
MSB on BOTTOM  
Partial Display disabled  
Select page 0  
Partial Display enabled  
Select page 1  
H[0]  
MUX  
MUX 65  
MUX 33  
Table 4. PAGE NUMBER  
H[1]  
H[0]  
DESCRIPTION  
RESET STATE  
0
0
1
1
0
1
0
1
Page 0  
Page 1  
Page 2  
Page 3  
Page 0  
Table 5. DISPLAY MODE  
D
0
0
1
1
E
0
1
0
1
DESCRIPTION  
RESET STATE  
display blank  
all display segments on  
normal mode  
D=0  
E=0  
inverse video mode  
Table 6. FRAME RATE CONTROL  
FR[1]  
FR[0]  
DESCRIPTION  
65Hz  
RESET STATE  
0
0
1
1
0
1
0
1
70Hz  
75Hz  
75Hz  
80Hz  
Table 7. VLCD RANGE SELECTION  
PRS[1]  
PRS[0]  
DESCRIPTION  
2.94  
RESET STATE  
0
0
1
1
0
1
0
1
6.78  
10.62  
Not Used  
27/51  
STE2002  
Table 8. MULTIPLEXING RATIO  
M[1]  
M[0]  
DESCRIPTION  
RESET STATE  
0
0
1
1
0
1
0
1
49  
65  
01  
81  
Not Used  
Table 9. TEMPERATURE COEFFICIENT  
T2  
0
T1  
0
T0  
0
DESCRIPTION  
RESET STATE  
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 1  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 4  
VLCD temperature Coefficient 5  
VLCD temperature Coefficient 6  
VLCD temperature Coefficient 7  
0
0
1
0
1
0
0
1
1
000  
1
0
0
1
0
1
1
1
0
1
1
1
Table 10.  
TC1  
0
TC0  
DESCRIPTION  
RESET STATE  
0
1
0
1
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 6  
0
00  
1
1
Table 11. CHARGE PUMP MULTIPLICATION FACTOR  
CP2  
CP1  
CP0  
DESCRIPTION  
RESET STATE  
0
0
0
Multiplication Factor X2  
Multiplication Factor X3  
0
0
0
0
1
1
1
0
1
Multiplication Factor X4  
Multiplication Factor X5  
Multiplication Factor X6  
NOT USED  
000  
1
1
1
1
0
0
1
1
0
1
0
1
NOT USED  
AUTOMATIC  
Table 12. BIAS RATIO  
BS2  
0
BS1  
0
BS0  
0
DESCRIPTION  
RESET STATE  
Bias Ratio equal to 7  
Bias Ratio equal to 6  
Bias Ratio equal to 5  
Bias Ratio equal to 4  
Bias Ratio equal to 3  
Bias Ratio equal to 2  
Bias Ratio equal to 1  
Bias Ratio equal to 0  
0
0
1
0
1
0
0
1
1
000  
1
0
0
1
0
1
1
1
0
1
1
1
28/51  
STE2002  
Table 13. Y CARRIAGE RETURN REGISTER  
Y-C[3] Y-C[2] Y-C[1] Y-C[0]  
DESCRIPTION  
RESET STATE  
0
0
0
0
0
0
.
0
0
0
0
1
1
.
0
0
1
1
0
0
.
0
1
0
1
0
1
.
Y-CARRIAGE =1  
Y-CARRIAGE =2  
Y-CARRIAGE =3  
Y-CARRIAGE =4  
Y-CARRIAGE =5  
1000  
1
1
1
0
0
1
1
1
0
0
1
0
Y-CARRIAGE =10  
Y-CARRIAGE =11  
Y-CARRIAGE =12  
Table 14. PARTIAL DISPLAY CONFIGURATION  
PD2  
0
PD1  
0
PD0  
0
SECTION 1  
SECTION2  
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
RESET STATE  
0
8
0
0
1
0
1
0
8
0
1
1
0
000  
1
0
0
16  
8
1
0
1
1
1
0
16  
16  
1
1
1
29/51  
STE2002  
Figure 36. Host Processor Interconnection with I2C Interface  
SCL  
SDAIN  
SDAOUT  
µP  
STE2002  
VSSAUX  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
VDD1 / GND / VSSAUX  
ICON_MODE  
SEL1  
SEL2  
GND / VSSAUX  
VDD1  
EXT_SET  
SA0  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
Figure 37. Host Processor Interconnection with Serial Interface  
SCL  
SDAIN  
SDAOUT  
µP  
STE2002  
VSSAUX  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
VDD1 / GND / VSSAUX  
ICON_MODE  
SEL1  
VDD1  
GND / VSSAUX  
VDD1  
SEL2  
EXT_SET  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
30/51  
STE2002  
Figure 38. Host Processor Interconnection with Parallel Interface  
SCL  
SDAIN  
SDAOUT  
µP  
STE2002  
VSSAUX  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
ICON_MODE  
SEL1  
VDD1 / GND / VSSAUX  
GND / VSSAUX  
VDD1  
SEL2  
EXT_SET  
VDD1  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
Figure 39. Application Schematic Using an External LCD Voltage Generator  
I/O  
VDD2  
VDD  
40  
128  
41  
VDD1  
100nF  
VSS  
81x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
VLCD  
31/51  
STE2002  
Figure 40. Application Schematic using the Internal LCD Voltage Generator and two separate supplies  
I/O  
VDD2  
VDD2  
VDD1  
40  
128  
41  
VDD1  
100nF  
VSS  
100nF  
81x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
Figure 41. Application Schematic using the Internal LCD Voltage Generator and a single supply  
I/O  
VDD  
VDD2  
VDD1  
40  
128  
41  
100nF  
VSS  
81 x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
32/51  
STE2002  
Figure 42. Power-Up sequence  
T
vdd  
Tw(res) TLogic (res)  
VDD2  
VDD1  
RES  
SCE  
SCLK  
SDIN  
SD/C  
PD/C  
E
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SCL  
SDAIN  
SOUT  
SDA OUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET POWER ON  
BOOSTER  
OFF  
TABLE  
INTERNAL  
RESET  
LR0116  
LOADED  
33/51  
STE2002  
Figure 43. Power-OFF Sequence  
T
w(res)  
VDD2  
VDD1  
RES  
SCLK  
SDIN  
SD/C  
PD/C  
E
SCE  
SCl  
SDAIN  
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SOUT  
SDA OUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET  
TABLE  
LOADED  
LR0117  
34/51  
STE2002  
Figure 44. Initialization with built-in Booster  
SETUP NORMAL DISPLAY MODE CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Normal Display Mode (PE=0)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0], FR[1:0],  
TC, M[1:0] for Normal Display Operation  
Switch "ON" Booster and Display Control Logic  
(PD=0)  
END OF NORMAL DISPLAY MODE CONFIG.  
Figure 45. Dual Partial Display Enabling Instruction Flow  
ENABLE DUAL PARTIAL DISPLAY  
SET 1st Sector Start Address  
SET 2nd Sector Start Address  
OPTIONAL1  
SET PE=1  
END OF ENABLING DUAL PARTIAL DISPLAY  
35/51  
STE2002  
Figure 46. Dual Partial Display Mode configuration or Duty Change  
SETUP PARTIAL DISPLAY CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Partial Display Mode (PE=1)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]  
for Partial Display Operation  
SET Partial Display Configuration (PD[2:0])  
SET 1st Sector Start Address  
OPTIONAL  
SET 2nd Sector Start Address  
SET Driver in Normal Mode (PE=0)  
END OF PARTIAL DISPLAY CONFIG.  
36/51  
STE2002  
Figure 47. DATA RAM to display Mapping  
DISPLAY DATA RAM  
bank  
0
GLASS  
TOP VIEW  
bank  
1
DISPLAY DATA RAM = "1"  
DISPLAY DATA RAM = "0"  
bank  
2
LCD  
bank  
3
bank  
7
bank  
8
ICOR ROW  
D00IN1155  
Table 15. Test Pin Configuration  
Test Numb.  
Pin Configuration  
TEST_1  
TEST_2  
TEST_3  
TEST_4  
OPEN  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
TEST_10  
GND  
GND  
TEST_11  
TEST_12  
TEST_13  
TEST_14  
37/51  
STE2002  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V
V
V
Supply Voltage Range  
Supply Voltage Range  
LCD Supply Voltage Range  
Supply Current  
- 0.5 to + 5  
- 0.5 to + 7  
- 0.5 to + 12  
- 50 to +50  
DD1  
DD2  
LCD  
V
V
I
mA  
V
SS  
V
Input Voltage (all input pads)  
DC Input Current  
-0.5 to V  
+ 0.5  
i
DD2  
I
in  
- 10 to + 10  
mA  
mA  
mW  
mW  
°C  
I
DC Output Current  
- 10 to + 10  
300  
out  
P
Total Power Dissipation (T = 85°C)  
tot  
j
P
Power Dissipation per Output  
Operating Junction Temperature  
Storage Temperature  
30  
o
T
-40 to + 85  
- 65 to 150  
j
T
stg  
°C  
ELECTRICAL CHARACTERISTICS  
DC OPERATION  
(V  
DD1  
= 1.7 to 3.6 V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11 V; T  
=-40 to 85°C; unless otherwise specified)  
DD2  
ss1,2  
LCD  
amb  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Voltages  
V
Supply Voltage  
Supply Voltage  
note 9  
1.7  
3.6  
4.2  
V
V
DD1  
DD2  
V
LCD Voltage Internally  
generated  
1.75  
V
LCD Supply Voltage  
LCD Supply Voltage  
Supply Current  
LCD Voltage Supplied externally  
Internally generated; note 1  
4.5  
4.5  
15  
11  
11  
30  
V
V
LCDIN  
V
LCDOUT  
I(V  
)
V
= 2.8V; V = 7.6V;  
LCD  
20  
µA  
DD1  
DD1  
f
= 0;T  
= 25°C; note 3.  
sclk  
amb  
V
= 2.8V; V  
= 7.6V;  
120  
150  
µA  
DD1  
LCD  
f
= 1Mhz;T  
= 25°C; note 3,  
sclk  
amb  
8. OSC_IN=GND; parallel port  
I(V  
)
Voltage Generator Supply  
Current  
with V = 0 and PRS = [0:0]  
1
µA  
µA  
DD2  
OP  
with external V  
LCD  
V
= 2.8V;V  
=7.6V; f = 0;  
10  
25  
35  
DD2  
LCD  
sclk  
T
amb  
= 25°C; no display load; 4x  
charge pump; note 2,3,6,  
I(V  
I(V  
)
Total Supply Current  
V
V
= 2.8V; V = 7.6V;  
65  
µA  
DD1,2  
DD1, DD2  
LCD  
4x charge pump; f  
= 0;T  
=
sclk  
amb  
25°C; no display load; note 2,3,6  
Power down Mode with internal  
or External VLCD. Note 4  
3
5
µA  
µA  
)
External LCD Supply Voltage  
Current  
V
=2.8V; V =7.6V;no  
LCD  
5
10  
15  
LDCIN  
DD  
display load; f  
25°C; note 3.  
= 0; T  
=
sclk  
amb  
Logic Outputs  
V
V
High logic Level Output Voltage IOH=-500µA  
Low logic Level Output Voltage IOL=500µA  
0.8V  
V
DD1  
V
V
0H  
OL  
DD1  
V
0.2V  
DD1  
SS  
38/51  
STE2002  
ELECTRICAL CHARACTERISTICS (continued)  
DC OPERATION  
(V  
DD1  
= 1.7 to 3.6 V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11 V; T =-40 to 85°C; unless otherwise specified)  
amb  
DD2  
ss1,2  
LCD  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Logic Inputs  
V
Logic LOW voltage level  
Logic HIGH Voltage Level  
Input Current  
V
0.3V  
DD1  
V
V
IL  
IH  
in  
SS  
V
0.7V  
V
DD2  
DD1  
I
V
in  
= V  
or V  
DD1  
-1  
1
µA  
SS1  
Logic Inputs/Outputs  
V
Logic LOW voltage level  
Logic HIGH Voltage Level  
V
0.3V  
DD1  
V
V
IL  
SS  
V
0.7V  
V
DD1  
IH  
DD1  
+0.5V  
Column and Row Driver  
R
ROW Output Resistance  
Column Output resistance  
Column Bias voltage accuracy  
Row Bias voltage accuracy  
V
V
= 10V;  
= 10V;  
3K  
5K  
5K  
kohm  
kohm  
mV  
row  
LCD  
LCD  
R
10K  
+50  
+50  
col  
col  
V
No load  
-50  
V
row  
-50  
mV  
LCD Supply Voltage  
V
LCD  
LCD Supply Voltage accuracy;  
Internally generated  
V
T
amb  
= 2.8V; V  
=25°C;  
= 10V; fsclk=0;  
LCD  
-1.5  
1.5  
%
DD  
no display load; note 2, 3, 6 & 7;  
VOP = 61h, PRS = 2hex  
-3  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
Temperature coefficient  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
-0.0·10  
-3  
-0.35·10  
-3  
-0.7·10  
-3  
-1.05·10  
-3  
-1.4 ·10  
-3  
-1.75·10  
-3  
-2.1·10  
-2.3·10  
-3  
Notes: 1. The maximum possible V  
2. Internal clock  
voltage that can be generated is dependent on voltage, temperature and (display) load.  
LCD  
3. When f  
= 0 there is no interface clock.  
sclk  
4. Power-down mode. During power-down all static currents are switched-off.  
5. f external V , the display load current is not transmitted to I  
LCD  
DD  
6. Tolerance depends on the temperature; (typically zero at T  
ature range limit.  
= 27°C), maximum tolerance values are measured at the temper-  
amb  
7. For TC0 to TC7  
8. Data Byte Writing Mode  
9.V  
V  
DD1  
DD2  
39/51  
STE2002  
ELECTRICAL CHARACTERISTICS  
AC OPERATION  
(V  
DD1  
= 1.7 to 3.6V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11V; T  
=-40 to 85°C; unless otherwise specified)  
DD2  
ss1,2  
LCD  
amb  
Symbol  
INTERNAL OSCILLATOR  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
F
Internal Oscillator frequency  
V
= 2.8V;  
64  
20  
72  
80  
kHz  
OSC  
DD  
Tamb = -20 to +70 °C  
F
External Oscillator frequency  
Frame frequency  
100  
kHz  
Hz  
µs  
EXT  
F
T
fosc or fext = 72 kHz; note 1  
75  
FRAME  
w(RES)  
RES LOW pulse width  
Reset Pulse Rejection  
Internal Logic Reset Time  
5
1
5
µs  
T
µs  
LOGIC  
(RES)  
T
V
vs. V Delay  
DD2  
0
µs  
VDD  
DD1  
Figure 48. RESET timing diagram  
Tlogic(res)  
Tw(res)  
VDD2  
VDD1  
RES  
INPUTS  
I/O  
(HOST)  
I/O  
(DRIVER)  
Hi-Z  
Hi-Z  
INTERFACE  
OUTPUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET  
TABLE  
LOADED  
LR0118  
40/51  
STE2002  
ELECTRICAL CHARACTERISTICS  
AC OPERATION  
(V  
DD1  
= 1.7 to 3.6V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11V; T =-40 to 85°C; unless otherwise specified)  
amb  
DD2  
ss1,2  
LCD  
Symbol  
Parameter  
I C BUS INTERFACE (See note 4)  
SCL Clock Frequency  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
2
F
Fast Mode  
DC  
DC  
400  
3.4  
kHz  
SCL  
High Speed Mode; Cb=100pF  
(max);VDD1=2  
MHz  
High Speed Mode; Cb=400pF  
(max); VDD1=2  
DC  
1.7  
MHz  
Fast Mode; VDD1=1.7V  
Note 2, 3, Cb=100pF  
400  
KHz  
ns  
T
T
Set-up time (repeated) START  
condition  
160  
160  
SU;STA  
HD;STA  
Hold time (repeated) START  
condition  
Note 2, 3, Cb=100pF  
Note 2, 3, Cb=100pF  
ns  
T
LOW period of the SCLH clock  
160  
60  
ns  
ns  
ns  
ns  
LOW  
T
HIGH period of the SCLH clock Note 2, 3, Cb=100pF  
HIGH  
T
T
Data set-up time  
Data hold time  
Note 2, 3, Cb=100pF  
Note 2, 3; Cb=100pF  
10  
SU;DAT  
HD;DAT  
40  
10  
10  
T
r;CL  
Rise time of SCLH signal  
Note 2, 3; Cb=100pF  
ns  
ns  
T
Rise time of SCLH signal after a Note 2, 3, Cb=100pF  
repeated START condition and  
rCL1  
after an acknowledge bit  
T
Fall time of SCLH signal  
Rise time of SDAH signal  
Fall time of SDAH signal  
Rise time of SDAH signal  
Fall time of SDAH signal  
Note 2, 3, Cb=100pF  
Note 2, 3, 4, Cb=100pF  
Note 2, 3, 4, Cb=100pF  
Note 2, 3, 4, Cb=400pF  
Note 2, 3, 4, Cb=400pF  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
fCL  
rDA  
fDA  
rDA  
fDA  
T
T
T
T
10  
80  
20  
20  
160  
T
Set-up time for STOP condition Note 2, 3, Cb=100pF  
160  
100  
SU;STO  
C
Capacitive load for SDAH and  
SCLH  
400  
400  
b
C
Capacitive load for SDAH + SDA  
line and SCLH + SCL line  
pF  
b
2
Figure 49. I C-bus timings  
Sr  
Sr P  
t
t
rDA  
fDA  
SDAH  
SCLH  
t
HD;DAT  
t
HD;STA  
t
SU;DAT  
t
SU;STA  
t
fCL  
t
t
t
rCL1  
rCL  
rCL1  
(1)  
(1)  
t
t
t
t
LOW HIGH  
HIGH LOW  
D00IN1153  
= MCS current source pull-up  
= Rp resistor pull-up  
41/51  
STE2002  
ELECTRICAL CHARACTERISTICS (continued)  
AC OPERATION  
(V  
DD1  
= 1.7 to 3.6V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11V; T  
=-40 to 85°C; unless otherwise specified)  
DD2  
ss1,2  
LCD  
amb  
Symbol  
PARALLEL INTERFACE  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
T
Enable Cycle Time  
Enable Pulse width  
Address Set-up Time  
Address Hold Time  
Data Set-Up Time  
Data Hold Time  
V
= 1.7V; Write; note 2, 6  
DD1  
150  
60  
30  
40  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CY(EN)  
T
W(EN)  
T
SU(A)  
T
H(A)  
T
SU(D)  
T
H(D)  
SU(D)  
HU(D)  
T
T
Data Set-Up Time in read Mode  
Data Hold Time In Read mode  
100  
100  
Figure 50. Parallel interface Write timing  
PD/C  
t
t
W(en)  
SU(A)  
t
h(A)  
E
t
t
SU(D) HO(D)  
t
CY(en)  
DB0-DB7  
R/W  
WRITE  
Figure 51. Parallel interface Read timing  
PD/C  
Don't Care  
t
t
W(en)  
SU(A)  
t
h(A)  
E
t
HOR(D)  
t
SUR(D)  
t
CY(en)  
DB0-DB7  
R/W  
READ  
42/51  
STE2002  
ELECTRICAL CHARACTERISTICS (continued)  
AC OPERATION  
(V  
DD1  
= 1.7 to 3.6V; V  
= 1.75 to 4.2V; V  
= 0V; V  
= 4.5 to 11V; T =-40 to 85°C; unless otherwise specified)  
amb  
DD2  
ss1,2  
LCD  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SERIAL INTERFACE  
T
Clock Cycle SCLK  
V
DD1  
= 1.7V; Write; note 2, 6  
150  
60  
60  
30  
50  
50  
30  
40  
30  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CYC  
T
SCLK pulse width HIGH  
SCLK Pulse width LOW  
SCE setup time  
PWH1  
T
PWL1  
T
T
S2  
SCE hold time  
H2  
T
PWH2  
SCE minimum high time  
SD/C setup time  
T
T
T
T
T
T
T
S3  
H3  
S4  
H4  
S5  
H5  
H6  
SD/C hold time  
SDIN setup time  
SDIN hold time  
SOUT Access Time  
100  
100  
100  
SOUT Disable Time vs. SCLK  
SOUT Disable Time vs. SCE  
Figure 52. Serial interface Timing  
t
t
t
PWH2  
S2  
H2  
CS  
t
t
S3  
H3  
D/C  
t
CYC  
t
t
WH1  
PWL1  
t
S2  
SCLK  
SDIN  
SOUT  
t
t
H4  
S4  
t
H6  
t
t
H5  
S5  
LR0001  
fosc  
Notes: 1. Fframe = ---------  
960  
2. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to V and V with  
IL  
IH  
an input voltage swing of V to V  
SS  
DD  
3. Cb is the capacitive load for each bus line.  
4. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated  
5. C  
is the filtering Capacitor on VLCDOUT  
VLCD  
6. T  
and T (30%-70%) = 10 ns  
rise  
fall  
43/51  
STE2002  
Table 16. Pad Coordinates  
Table 16. Pad Coordinates (continued)  
NAME  
C0  
PAD  
1
X (µm)  
-3275.0  
-3225.0  
-3175.0  
-3125.0  
-3075.0  
-3025.0  
-2975.0  
-2925.0  
-2875.0  
-2825.0  
-2775.0  
-2725.0  
-2675.0  
-2625.0  
-2575.0  
-2525.0  
-2475.0  
-2425.0  
-2375.0  
-2325.0  
-2275.0  
-2225.0  
-2175.0  
-2125.0  
-2075.0  
-2025.0  
-1975.0  
-1925.0  
-1875.0  
-1825.0  
-1775.0  
Y(µm)  
-946.5  
-946.11  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
NAME  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C60  
C61  
PAD  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
X (µm)  
-1725.0  
-1675.0  
-1625.0  
-1575.0  
-1525.0  
-1475.0  
-1425.0  
-1375.0  
-1325.0  
-1275.0  
-1225.0  
-1175.0  
-1125.0  
-1075.0  
-1025.0  
-975.0  
-925.0  
-875.0  
-825.0  
-775.0  
-725.0  
-675.0  
-625.0  
-575.0  
-525.0  
-475.0  
-425.0  
-375.0  
-325.0  
-275.0  
-225.0  
Y(µm)  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
C1  
2
C2  
3
C3  
4
C4  
5
C5  
6
C6  
7
C7  
8
C8  
9
C9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
44/51  
STE2002  
Table 16. Pad Coordinates (continued)  
Table 16. Pad Coordinates (continued)  
NAME  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
C87  
C88  
C89  
C90  
C91  
C92  
PAD  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
X (µm)  
-175.0  
Y(µm)  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
NAME  
C93  
PAD  
94  
X (µm)  
+1575.0  
+1625.0  
+1675.0  
+1725.0  
+1775.0  
+1825.0  
+1875.0  
+1925.0  
+1975.0  
+2025.0  
+2075.0  
+2125.0  
+2175.0  
+2225.0  
+2275.0  
+2325.0  
+2375.0  
+2425.0  
+2475.0  
+2525.0  
+2575.0  
+2625.0  
+2675.0  
+2725.0  
+2775.0  
+2825.0  
+2875.0  
+2925.0  
+2975.0  
+3025.0  
+3075.0  
Y(µm)  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-125.0  
C94  
95  
+125.0  
+175.0  
+225.0  
+275.0  
+325.0  
+375.0  
+425.0  
+475.0  
+525.0  
+575.0  
+625.0  
+675.0  
+725.0  
+775.0  
+825.0  
+875.0  
+925.0  
+975.0  
+1025.0  
+1075.0  
+1125.0  
+1175.0  
+1225.0  
+1275.0  
+1325.0  
+1375.0  
+1425.0  
+1475.0  
+1525.0  
C95  
96  
C96  
97  
C97  
98  
C98  
99  
C99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
C100  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C109  
C110  
C111  
C112  
C113  
C114  
C115  
C116  
C117  
C118  
C119  
C120  
C121  
C122  
C123  
45/51  
STE2002  
Table 16. Pad Coordinates (continued)  
Table 16. Pad Coordinates (continued)  
NAME  
C124  
C125  
C126  
C127  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
PAD  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
X (µm)  
+3125.0  
+3175.0  
+3225.0  
+3275.0  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
Y(µm)  
-946.5  
-946.5  
-946.5  
-946.5  
-875.0  
-825.0  
-775.0  
-725.0  
-675.0  
-625.0  
-575.0  
-525.0  
-475.0  
-425.0  
-375.0  
-325.0  
-275.0  
-225.0  
-175.0  
-125.0  
-75.0  
NAME  
R67  
PAD  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
X (µm)  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3275.0  
+3225.0  
+3175.0  
+3125.0  
+3075.0  
+2825.0  
+2775.0  
+2725.0  
+2675.0  
+2625.0  
+2575.0  
+2525.0  
+2475.0  
+2425.0  
+2375.0  
+2225.0  
+2175.0  
+2125.0  
+2075.0  
+2025.0  
+1975.0  
+1925.0  
Y(µm)  
+475.0  
+525.0  
+575.0  
+625.0  
+675.0  
+725.0  
+775.0  
+825.0  
+875.0  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R76  
R77  
R78  
R79  
R80/ICON  
TEST_1  
TEST_2  
TEST_3  
TEST_4  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
TEST_10  
VSSAUX  
SA1  
-25.0  
+25.0  
+75.0  
+125.0  
+175.0  
+225.0  
+275.0  
+325.0  
+375.0  
+425.0  
SA0  
EXT  
SEL2  
SEL1  
ICON_MODE  
46/51  
STE2002  
Table 16. Pad Coordinates (continued)  
Table 16. Pad Coordinates (continued)  
NAME  
OSC_IN  
VDD1_1  
VDD1_2  
VDD1_3  
VDD1_4  
VDD1_5  
VDD1_6  
VDD1_7  
VDD1_8  
VDD1_9  
VDD1_10  
VDD1_11  
VDD1_12  
VDD2_1  
VDD2_2  
VDD2_3  
VDD2_4  
VDD2_5  
VDD2_6  
VDD2_7  
VDD2_8  
VDD2_9  
VDD2_10  
VDD2_11  
VDD2_12  
BUSY_FLAG  
SDOUT  
SDIN  
PAD  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
X (µm)  
+1875.0  
+1825.0  
+1825.0  
+1775.0  
+1775.0  
+1725.0  
+1725.0  
+1675.0  
+1675.0  
+1625.0  
+1625.0  
+1575.0  
+1575.0  
+1525.0  
+1525.0  
+1475.0  
+1475.0  
+1425.0  
+1425.0  
+1375.0  
+1375.0  
+1325.0  
+1325.0  
+1275.0  
+1275.0  
+1125.0  
+975.0  
Y(µm)  
+946.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
NAME  
VSSAUX  
R/W  
PAD  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
X (µm)  
+625.0  
+575.0  
+525.0  
+475.0  
+425.0  
+375.0  
+325.0  
+275.0  
+225.0  
+175.0  
+125.0  
+75.0  
Y(µm)  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PD/C  
E
RES  
-75.0  
VSSAUX  
SDA_OUT  
SDA_OUT  
SDA_IN  
SCL  
-225.0  
-275.0  
-325.0  
-375.0  
-425.0  
-975.0  
-975.0  
-1025.0  
-1025.0  
-1075.0  
-1075.0  
-1125.0  
-1125.0  
-1175.0  
-1175.0  
-1225.0  
-1225.0  
-1275.0  
VSS_1  
VSS_2  
VSS_3  
VSS_4  
VSS_5  
VSS_6  
VSS_7  
VSS_8  
VSS_9  
VSS_10  
VSS_11  
VSS_12  
VSS_13  
+925.0  
SD/C  
+875.0  
SCE  
+825.0  
SCLK  
+775.0  
47/51  
STE2002  
Table 16. Pad Coordinates (continued)  
Table 16. Pad Coordinates (continued)  
NAME  
VSS_14  
PAD  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
X (µm)  
-1275.0  
-1325.0  
-1325.0  
-1375.0  
-1375.0  
-1425.0  
-1425.0  
-1475.0  
-1525.0  
-1575.0  
-1625.0  
-2175.0  
-2325.0  
-2325.0  
-2375.0  
-2375.0  
-2425.0  
-2425.0  
-2475.0  
-2475.0  
-2525.0  
-2525.0  
-2575.0  
-2575.0  
-2625.0  
-2625.0  
-2675.0  
-2675.0  
-2725.0  
-2725.0  
-2775.0  
Y(µm)  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
NAME  
VLCDOUT_8  
VLCDOUT_9  
VLCDOUT_10  
R39  
PAD  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
X (µm)  
-2775.0  
-2825.0  
-2825.0  
-3075.0  
-3125.0  
-3175.0  
-3225.0  
-3275.0  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
Y(µm)  
+839.5  
+946.5  
+839.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+875.0  
+825.0  
+775.0  
+725.0  
+675.0  
+625.0  
+575.0  
+525.0  
+475.0  
+425.0  
+375.0  
+325.0  
+275.0  
+225.0  
+175.0  
+125.0  
+75.0  
VSS_15  
VSS_16  
VSS_17  
VSS_18  
R38  
VSS_19  
R37  
VSS_20  
R36  
TEST_11  
R35  
TEST_12  
R34  
TEST_13  
R33  
TEST_14  
R32  
OSC_OUT  
VLCDIN_1  
VLCDIN_2  
VLCDIN_3  
VLCDIN_4  
VLCDIN_5  
VLCDIN_6  
VLCDIN_7  
VLCDIN_8  
VLCDIN_9  
VLCDIN_10  
VLCDSENSE_1  
VLCDSENSE_2  
VLCDOUT_1  
VLCDOUT_2  
VLCDOUT_3  
VLCDOUT_4  
VLCDOUT_5  
VLCDOUT_6  
VLCDOUT_7  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
+25.0  
R16  
-25.0  
R15  
-75.0  
R14  
-125.0  
-175.0  
-225.0  
R13  
R12  
48/51  
STE2002  
Table 16. Pad Coordinates (continued)  
Figure 54. Alignment marks dimensions  
NAME  
R11  
R10  
R9  
PAD  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
X (µm)  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
Y(µm)  
-275.0  
-325.0  
-375.0  
-425.0  
-475.0  
-525.0  
-575.0  
-625.0  
-675.0  
-725.0  
-775.0  
-825.0  
-875.0  
39 µm  
94 µm  
R8  
R7  
R6  
R5  
Table 17. Bumps  
R4  
Bump  
Number  
Dimensions  
R3  
Bumps on Single  
Row Size  
1-187  
30  
µ
m X 98  
µ
m X 17.5  
R2  
212-235  
256-260  
283-323  
R1  
R0  
Bumps on Two  
Rows Size  
188-211  
236-255  
261-282  
30µ  
m X 87  
µm X 17.5  
ICON  
Pad Size  
1-323  
1-323  
1-323  
43µm X 107µm  
Figure 53. Alignment marks coordinates  
Pad Pitch  
50µm  
X
Y
MARKS  
mark1  
mark2  
mark3  
mark4  
Spacing  
between Bumps  
20µm  
-3574.5  
+3574.5  
-2250  
-949.5  
-949.5  
+949.5  
+949.5  
Table 18. Die Mechanical Dimensions  
Die Size  
2.07mm x 7.32mm  
+1200  
Wafers Thickness  
500µm  
49/51  
STE2002  
Figure 55. DIE ORIENTATION IN TRAY  
DIE IDENTIFICATION  
Mark 3  
Mark 1  
Mark 4  
Mark 2  
STE2002  
Figure 56. TRAY INFORMATION  
A
A
Array Size = 13 x5 (65) Units  
50/51  
STE2002  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
51/51  

相关型号:

STE2002_06

81 x 128 single-chip LCD controller/driver
STMICROELECTR

STE2004

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE1

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE2

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004S

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2004SDIE2

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2007

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007DIE2

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007_06

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2028

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2028D3

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2102

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR