STV6889 [STMICROELECTRONICS]

HIGH-END IC CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR; 高端IC可控弯曲处理器的MultiSync显示器
STV6889
型号: STV6889
厂家: ST    ST
描述:

HIGH-END IC CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR
高端IC可控弯曲处理器的MultiSync显示器

显示器 消费电路 商用集成电路 偏转集成电路 光电二极管 监视器 信息通信管理
文件: 总56页 (文件大小:1382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV6889  
HIGH-END I²C CONTROLLED DEFLECTION PROCESSOR  
FOR MULTISYNC MONITOR  
PRODUCT PREVIEW  
FEATURES  
• Compensation of horizontal breathing with EHT  
variation, I2C-bus gain adjustment  
General  
• Advanced I2C-bus controlled deflection  
Dynamic correction section  
processor dedicated for high-end CRT monitors  
• Single supply voltage 12V  
• Generates vertical waveform for dynamic  
corrections like focus, brightness uniformity, ...  
• 1 output with vertical dynamic correction  
waveform, both polarities, tracking with vertical  
size and position  
• Very low jitter  
• DC/DC converter controller  
• Advanced EW drive  
• Advanced asymmetry corrections  
• Automatic multistandard synchronization  
• Vertical dynamic correction waveform output  
• X-ray protection and Soft-start & stop on  
horizontal and DC/DC drive outputs  
• I2C-bus status register  
DC/DC controller section  
• Step-up and step-down conversion modes  
• External sawtooth configuration  
• I2C-bus-controlled output voltage  
• Synchronized on hor. frequency with phase  
selection  
• Selectable polarity of drive signal  
• Protection at H unlock condition  
Horizontal section  
• 150 kHz maximum frequency  
• Corrections of geometric asymmetry: Pin  
cushion asymmetry, Parallelogram, separate  
Top/Bottom corner asymmetry  
• Tracking of asymmetry corrections with vertical  
size and position  
DESCRIPTION  
The STV6889 is a monolithic integrated circuit as-  
sembled in a 32-pin shrink dual-in-line plastic  
package. This IC controls all the functions related  
to horizontal and vertical deflection in multimode  
or multi-frequency computer display monitors.  
• Fully integrated horizontal moiré cancellation  
Combined with other ST components dedicated  
for CRT monitors (microcontroller, video preampli-  
fier, video amplifier, OSD controller), the STV6889  
allows fully I2C bus-controlled computer display  
monitors to be built with a reduced number of ex-  
ternal components.  
Vertical section  
• 200 Hz maximum frequency  
• Vertical ramp for DC-coupled output stage with  
adjustments of: C-correction, S-correction for  
super-flat CRT, Vertical size, Vertical position  
• Vertical size and position prescales for factory  
adjustment  
• Vertical moiré cancellation through vertical  
ramp waveform  
• Compensation of vertical breathing with EHT  
variation; I2C-bus gain adjustment  
EW section  
• Symmetrical geometry corrections: Pin cushion,  
Keystone, Top/Bottom corners separately, S-  
and W-corrections  
SDIP 32 (Shrink DIP package)  
ORDER CODE: STV6889  
• Horizontal size adjustment  
• Tracking of EW waveform with Vertical size and  
position, horizontal size and frequency  
Version 1.1  
1/56  
May 2004  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
1
Table of Contents  
1
2
3
4
5
6
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PIN FUNCTION REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
QUICK REFERENCE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ELECTRICAL PARAMETERS AND OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . 9  
6.1 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.2 Supply and Reference voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.3 Synchronization inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.4 Horizontal section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.5 Vertical section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.6 EW drive section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.7 Dynamic correction outputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.8 DC/DC controller section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.9 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
TYPICAL OUTPUT WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
8
9
I²C-BUS CONTROL REGISTER MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
OPERATING DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.1 Supply and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.1.1 Power supply and voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.1.2 I²C-bus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2 Synchronization processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.1 Synchronization signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.2 Sync. presence detection flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.2.3 MCU controlled sync. selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.2.4 Automatic sync. selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.3 Horizontal section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.3.2 PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.3.3 Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.3.4 PLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2/56  
1
STV6889  
9.3.5 Dynamic PLL2 phase control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.3.6 Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.3.7 Soft-start and soft-stop on H-drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.3.8 Horizontal moiré cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.4 Vertical section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4.2 S and C corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4.3 Vertical breathing compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4.4 Vertical after-gain and offset control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4.5 Vertical moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.4.6 Biasing of vertical booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.5 EW drive section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.6 Dynamic correction outputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.6.1 Vertical dynamic correction output VDyCor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.7 DC/DC controller section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.7.1 Synchronization of DC/DC controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.7.2 Soft-start and soft-stop on B-drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.8.1 Safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.8.2 Composite output HLckVBk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10 INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
12 GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3/56  
1
STV6889  
1 PIN CONFIGURATION  
H/HVSyn  
VSyn  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDyCor  
SDA  
1
2
HLckVBk  
HOscF  
HPLL2C  
CO  
3
SCL  
4
Vcc  
5
BOut  
GND  
6
HGND  
RO  
HOut  
7
XRay  
8
HPLL1F  
HPosF  
IC  
EWOut  
VOut  
9
10  
11  
12  
13  
14  
15  
16  
VCap  
VGND  
VAGCCap  
VOscF  
VEHTIn  
HEHTIn  
HFly  
RefOut  
BComp  
BRegIn  
BISense  
4/56  
2
STV6889  
2 BLOCK DIAGRAM  
5/56  
STV6889  
3 PIN FUNCTION REFERENCE  
Pin  
1
Name  
H/HVSyn  
VSyn  
Function  
TTL compatible Horizontal / Horizontal and Vertical Sync. input  
TTL compatible Vertical Sync. input  
2
3
HLckVBk  
HOscF  
HPLL2C  
CO  
Horizontal PLL1 Lock detection and Vertical early Blanking composite output  
High Horizontal Oscillator sawtooth threshold level Filter input  
Horizontal PLL2 loop Capacitive filter input  
Horizontal Oscillator Capacitor input  
4
5
6
7
HGND  
RO  
Horizontal section GrouND  
8
Horizontal Oscillator Resistor input  
9
HPLL1F  
HPosF  
IC  
Horizontal PLL1 loop Filter input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Horizontal Position Filter and soft-start time constant capacitor input  
Internally Connected (to be left open)  
HFly  
Horizontal Flyback input  
RefOut  
BComp  
BRegIn  
BISense  
HEHTIn  
VEHTIn  
VOscF  
VAGCCap  
VGND  
VCap  
Reference voltage Output  
B+ DC/DC error amplifier (Compensation) output  
Regulation feedback Input of the B+ DC/DC converter controller  
B+ DC/DC converter current (I) Sense input  
Input for compensation of Horizontal amplitude versus EHT variation  
Input for compensation of Vertical amplitude versus EHT variation  
Vertical Oscillator sawtooth low threshold Filter (capacitor to be connected to VGND)  
Input for storage Capacitor for Automatic Gain Control loop in Vertical oscillator  
Vertical section GrouND  
Vertical sawtooth generator Capacitor  
VOut  
Vertical deflection drive Output for a DC-coupled output stage  
E/W Output  
EWOut  
XRay  
X-Ray protection input  
HOut  
Horizontal drive Output  
GND  
Main GrouND  
BOut  
B+ DC/DC converter controller Output  
Vcc  
Supply voltage  
SCL  
I²C-bus Serial CLock Input  
SDA  
I²C-bus Serial DAta input/output  
VDyCor  
Vertical Dynamic Correction output  
6/56  
STV6889  
4 QUICK REFERENCE DATA  
Characteristic  
Value  
Unit  
General  
Package  
Supply voltage  
SDIP 32  
12  
V
Supply current  
65  
mA  
Application category  
Means of control • Maximum clock frequency  
EW drive  
High-end  
I²C-bus • 400  
Yes  
kHz  
kHz  
DC/DC converter controller  
Horizontal section  
Frequency range  
Autosync frequency ratio (can be enlarged in application)  
Positive • Negative polarity of horizontal sync signal • Automatic adaptation  
Duty cycle range of the drive signal  
Position adjustment range with respect to H period  
Soft start • Soft stop feature  
Yes  
15 to 150  
4.28  
Yes • Yes • Yes  
30 to 65  
±10  
%
%
Yes • Yes  
Yes • Yes  
Yes  
Hardware • Software PLL lock indication  
Parallelogram  
Pin cushion asymmetry correction (also called Side pin balance)  
Top • Bottom • Common corner asymmetry correction  
Tracking of asymmetry corrections with vertical size & position  
Horizontal moiré cancellation (int.) for Combined • Separated architecture  
Vertical section  
Yes  
Yes • Yes • No  
Yes  
Yes • Yes  
Frequency range  
35 to 200  
50 to 180  
Yes • Yes • Yes  
Yes • Yes • Yes  
Yes • Yes • Yes  
Yes  
Hz  
Hz  
Autosync frequency range (150nF at VCap and 470nF at VAGCCap)  
Positive • Negative polarity of vertical sync signal • Automatic adaptation  
S-correction • C-correction • Super-flat tube characteristic  
Vertical size • Vertical position • Prescale adjustments  
Vertical moiré cancellation (internal)  
EHT breathing compensation • With I²C-bus gain control  
EW section  
Yes • Yes  
Pin cushion correction  
Keystone correction  
Yes  
Yes  
Top • Bottom • Common corner correction  
S-correction • W-correction  
Horizontal size adjustment  
Yes • Yes • No  
Yes • Yes  
Yes  
Tracking of EW waveform with Frequency • Vertical size & position  
EHT breathing compensation • With I²C-bus gain control  
Dynamic correction section (dyn. focus, dyn. brightness,...)  
Vertical dynamic correction output VDyCor • Positive or negative polarity  
Horizontal dynamic correction output HDyCor  
Composite HV dynamic correction output HVDyCor • Positive or negative polarity  
Shape control on H waveform component of HVDyCor output  
Tracking of horizontal waveform component with Horizontal size • EHT  
Tracking of vertical waveforms (component) with V. size & position  
DC • DC controller section  
Yes • Yes  
Yes • Yes  
Yes • Yes  
No  
No • No  
No  
No • No  
Yes  
Step-up • Step-down conversion mode  
Internal • External sawtooth configuration  
Bus-controlled output voltage • Inhibition at H unlock  
Mute • Soft start • Soft stop feature  
Positive (N-MOS) • Negative(P-MOS) polarity of BOut signal  
Phase selection • Max current selection • Frequency selection  
Yes • Yes  
No • Yes  
Yes • Yes  
Yes • Yes • Yes  
Yes • Yes  
Yes • Yes • Yes  
7/56  
STV6889  
5 ABSOLUTE MAXIMUM RATINGS  
All voltages are given with respect to ground.  
Currents flowing from the device (sourced) are signed negative. Currents flowing to the device are signed  
positive.  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
V
Supply voltage (pin Vcc)  
-0.4  
13.5  
V
CC  
Pins HEHTIn, VEHTIn, XRay, HOut, BOut  
Pins H/HVSyn, VSyn, SCL, SDA  
Pins HLckVBk, CO, RO, HPLL1F, HPosF, BRegIn,  
BISense, VAGCCap, VCap, VDyCor, HOscF, VOscF  
Pin HPLL2C  
-0.4  
-0.4  
-0.4  
V
5.5  
V
V
V
CC  
V
RefO  
V
(pin)  
-0.4  
-0.4  
V
/2  
V
V
RefO  
Pin HFly  
V
RefO  
Latch-up current  
I
All pins except XRay  
Pin XRay  
-200  
-100  
200  
200  
mA  
mA  
latch(pin)  
ESD susceptibility  
(human body model: discharge of 100pF through 1.5k)  
V
ESD  
-2000  
-40  
2000  
150  
V
T
Storage temperature  
Junction temperature  
°C  
°C  
stg  
T
150  
j
8/56  
STV6889  
6 ELECTRICAL PARAMETERS AND OPERATING CONDITIONS  
Medium (middle) value of an I²C-bus control or adjustment register composed of bits D0, D1,...,Dn is the  
one having Dn at "1" and all other bits at "0". Minimum value is the one with all bits at 0, maximum value  
is the one with all at "1".  
Currents flowing from the device (sourced) are signed negative. Currents flowing to the device are signed  
positive.  
TH is period of horizontal deflection.  
6.1 Thermal data  
Value  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
T
Operating ambient temperature  
0
70  
°C  
amb  
R
Junction-ambience thermal resistance  
65  
°C/W  
th(j-a)  
6.2 Supply and Reference voltages  
Tamb = 25°C  
Value  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Typ.  
12  
Max.  
V
Supply voltage at Vcc pin  
10.8  
13.2  
V
mA  
V
CC  
I
Supply current to Vcc pin  
V
V
= 12V  
65  
CC  
CC  
CC  
V
Reference output voltage at RefOut pin  
Current capability of RefOut output  
= 12V, I  
= -2mA  
RefO  
7.65  
-5  
7.9  
8.2  
0
RefO  
RefO  
I
mA  
6.3 Synchronization inputs  
Vcc = 12V, Tamb = 25°C  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
0
Max.  
0.8  
5
V
LOW level voltage on H/HVSyn  
HIGH level voltage on H/HVSyn  
LOW level voltage on VSyn  
V
V
LoH/HVSyn  
V
2.2  
0
HiH/HVSyn  
V
0.8  
5
V
LoVSyn  
V
HIGH level voltage on VSyn  
2.2  
100  
0.5  
V
HiVSyn  
R
Internal pull-down on H/HVSyn, VSyn  
H sync. pulse duration on H/HVSyn pin  
Proportion of H sync pulse to H period  
V sync. pulse duration  
175  
250  
kꢀ  
s  
PdSyn  
PulseHSyn  
t
t
t
Pin H/HVSyn  
0.2  
750  
0.15  
/T  
PulseHSyn  
H
V
t
Pins H/HVSyn, VSyn  
Pins H/HVSyn, VSyn  
0.5  
s  
PulseVSyn  
Proportion of V sync pulse to V period  
/T  
PulseVSyn  
Proportion of H sync pulse length to H pe- Pin H/HVSyn,  
t
0.21  
0.75  
0.35  
/T  
extrV  
H
riod for extraction as V sync pulse  
cap. on pin CO = 820pF  
t
Polarity detection time (after change)  
Pin H/HVSyn  
ms  
HPolDet  
9/56  
STV6889  
6.4 Horizontal section  
Table 1. Horizontal section ( Vcc = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
PLL1  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
I
Current load on RO pin  
1.5  
mA  
pF  
RO  
C
Capacitance on CO pin  
390  
CO  
f
Frequency of hor. oscillator  
Free-running frequency of hor. oscill.  
150  
29.9  
122  
kHz  
kHz  
kHz  
HO  
(1)  
f
R
=5.23k, C =820pF 27  
28.5  
HO(0)  
RO  
CO  
(4)  
f
Hor. PLL1 capture frequency  
f
= 28.5kHz  
29  
HOCapt  
HO(0)  
fHO0ꢁ  
fHO0ꢄ ꢂT  
(3)  
--------------------------  
Temperature drift of free-running freq.  
-150  
20.2  
5.0  
ppm/°C  
f ꢃꢂV  
Average horizontal oscillator sensitivity  
H. oscill. control voltage on pin HPLL1F  
f
= 28.5kHz  
=8V  
kHz/V  
V
HO  
HO  
HO(0)  
V
V
1.4  
6.0  
HO  
RefO  
RefO  
Threshold on H. oscill. control voltage on  
HPLL1F pin for tracking of EW with freq.  
V
V
=8V  
V
HOThrfr  
HPOS (Sad01h):  
11111111b  
10000000b  
2.8  
3.4  
4.0  
V
V
V
V
Control voltage on HPosF pin  
HPosF  
00000000b  
(6)  
V
Bottom of hor. oscillator sawtooth  
1.6  
6.4  
V
V
HOThrLo  
(6)  
V
Top of hor. oscillator sawtooth  
HOThrHi  
PLL2  
(2)  
R
Input impedance on HFly input  
Current into HFly input  
V
>V  
ThrHFly  
300  
0.5  
500  
700  
5
mA  
V
In(HFly)  
(HFly)  
I
At top of H flyback pulse  
InHFly  
V
Voltage threshold on HFly input  
0.6  
4.0  
ThrHFly  
No PLL2 phase modula-  
tion  
(6)  
V
H flyback lock middle point  
V
S(0)  
(5)  
V
Low clamping voltage on HPLL2C pin  
1.6  
4.0  
V
V
BotHPLL2C  
(5)  
V
High clamping voltage on HPLL2C pin  
TopHPLL2C  
Min. advance of H-drive OFF before  
middle of H flyback  
t
(min)  
Null asym. correction  
Null asym. correction  
0
%
%
/T  
(7)  
ph  
H
Max. advance of H-drive OFF before  
t
(max)  
44  
/T  
(8)  
ph  
H
middle of H flyback  
H-drive output on pin HOut  
I
Current into HOut output  
Output driven LOW  
30  
mA  
HOut  
f
= 31kHz;  
H
HDUTY (Sad00h):  
x1111111b  
x0000000b  
t
Duty cycle of H-drive signal  
27  
65  
85  
%
%
%
/T  
Hoff  
H
Soft-start/Soft-stop value  
10/56  
STV6889  
Table 1. Horizontal section ( Vcc = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
Picture geometry corrections through PLL1 & PLL2  
HPOS (Sad01h):  
11111111b  
10000000b  
Hor. VCO phase vs. sync signal (via  
PLL1), see Figure 7  
+11  
0
-11  
%
%
%
t
/T  
Hph  
H
00000000b  
PCAC (Sad11h) full span  
(9)  
Contribution of pin cushion asymmetry  
correction to phase of H-drive vs. static  
phase (via PLL2), measured in corners  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
t
/T  
PCAC  
H
±0.9  
±1.6  
±2.6  
%
%
%
PARAL (Sad12h) full span  
(9)  
Contribution of parallelogram correction  
to phase of H-drive vs. static phase (via  
PLL2), measured in corners  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
t
/T  
ParalC  
H
±1.4  
±1.9  
±2.4  
%
%
%
TCAC (Sad13h) full span  
(9)  
Contribution of top corner asymmetry  
correction to phase of H-drive vs. static  
phase (via PLL2), measured in corners  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
t
/T  
TCAC  
BCAC  
H
H
±0.4  
±1.4  
±3.5  
%
%
%
BCAC (Sad14h) full span  
(9)  
Contribution of bottom corner asymmetry  
correction to phase of H-drive vs. static  
phase (via PLL2), measured in corners  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
t
/T  
±0.4  
±1.4  
±3.5  
%
%
%
Notes about horizontal section  
Note 1: Frequency at no sync signal condition. For correct operation, the frequency of the sync signal applied must  
always be higher than the free-running frequency. The application must consider the spread of values of real  
electrical components in R and C positions so as to always meet this condition. The formula to calculate  
RO  
CO  
the free-running frequency is f  
=0.122/(R  
C
)
HO(0)  
RO CO  
Note 2: Base of NPN transistor with emitter to ground is internally connected on pin HFly through a series resistance of  
about 500and a resistance to ground of about 20kꢀꢅ  
Note 3: Evaluated and figured out during the device qualification phase. Informative. Not tested on every single unit.  
Note 4: This capture range can be enlarged by external circuitry.  
Note 5: The voltage on HPLL2C pin corresponds to immediate phase of leading edge of H-drive signal on HOut pin with  
respect to internal horizontal oscillator sawtooth. It must be between the two clamping levels given. Voltage  
equal to one of the clamping values indicates a marginal operation of PLL2 or non-locked state.  
Note 6: Internal threshold. See Figure 6.  
Note 7: The t (min) parameter is fixed by the application. For correct operation of asymmetry corrections through  
ph  
dynamic phase modulation, this minimum must be increased by maximum of the total dynamic phase required  
in the direction leading to bending of corners to the left. Marginal situation is indicated by reach of V  
TopHPLL2C  
high clamping level by waveform on pin HPLL2C. Also refer to Note 5 and Figure 6.  
11/56  
STV6889  
Notes about horizontal section (continued)  
Note 8: The t (max) parameter is fixed by the application. For correct operation of asymmetry corrections through  
ph  
dynamic phase modulation, this maximum must be reduced by maximum of the total dynamic phase required in  
the direction leading to bending of corners to the right. Marginal situation is indicated by reach of V  
BotHPLL2C  
low clamping level by waveform on pin HPLL2C. Also refer to Note 5 and Figure 6.  
Note 9: All other dynamic phase corrections of picture asymmetry set to their neutral (medium) positions.  
6.5 Vertical section  
Table 2. Vertical section (Vcc = 12V, Tamb = 25°C)  
Value  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Typ.  
Max.  
AGC-controlled vertical oscillator sawtooth; V  
= 8V  
RefO  
Ext. load resistance on  
VAGCCap pin  
R
V  
/V (R=A) ?1%  
amp amp  
65  
Mꢀ  
V
(10)  
L(VAGCCap)  
Sawtooth bottom voltage on  
(11)  
V
No load on VOscF pin  
2
5
5
(11)  
VOB  
VCap pin  
Sawtooth top voltage internal ref-  
erence  
V
V
VOTref  
Sawtooth top voltage on VCap  
pin  
V
AGC loop stabilized  
V
VOT  
t
Sawtooth Discharge time  
Free-running frequency  
AGC loop capture frequency  
C
C
C
=150nF  
=150nF  
=150nF  
80  
s  
Hz  
Hz  
VODis  
VCap  
VCap  
VCap  
f
100  
VO(0)  
f
50  
185  
VOCapt  
VVOdev  
(12)(17)  
(12)  
Sawtooth non-linearity  
AGC loop stabilized  
0.5  
%
--------------------  
VVOamp  
VVOamp  
VOamp ꢄ ꢂfVO  
Frequency drift of sawtooth  
amplitude  
AGC loop stabilized  
---------------------------------  
(18)(19)  
ppm/Hz  
V
f
(min)?f ?f  
VO VOCapt  
(max)  
200  
3.5  
V
VOCapt  
Vertical output drive signal (on pin VOut); V  
= 8V  
RefO  
Internal reference for vertical  
sawtooth middle point  
V
midref  
(22)  
VPOS (Sad08h):  
x0000000b  
3.1  
3.45  
3.8  
3.3  
2.5  
V
V
V
x1000000b  
x1111111b  
3.65  
V
Middle point on VOut sawtooth  
mid(VOut)  
(21)  
(23)  
(20)  
VPOF (Sad1Eh):  
x0000000b  
x1000000b  
3.3  
3.45  
3.6  
V
V
V
x1111111b  
VSIZE (Sad07h):  
x0000000b  
x1000000b  
2.25  
3.0  
3.75  
V
V
V
x1111111b  
3.5  
Amplitude of VOut sawtooth  
(peak-to-peak voltage)  
V
amp  
VSAG (Sad1Dh):  
x0000000b  
x1000000b  
2
2.5  
3.0  
V
V
V
x1111111b  
V
Level on VOut pin at V-drive "off" I²C-bus bit VOutEn at 0  
4.0  
V
offVOut  
12/56  
STV6889  
Table 2. Vertical section (Vcc = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
0.25  
I
Current delivered by VOut output  
-5  
mA  
VOut  
(13)(20)(21)  
AGC loop stabilized  
V
V
/V  
S-correction range  
C-correction range  
SCor  
amp  
(15)  
t
t
=1/4 T  
=3/4 T  
-4.5  
+4.5  
%
%
VR  
VR  
VR  
VR  
(14)(20)(21)  
AGC loop stabilized  
(15)  
t
=1/2 T  
VR  
VR  
/V  
CCOR(Sad0Ah):  
CCor amp  
x0000000b  
x1000000b  
x1111111b  
-2.5  
0
+2.5  
%
%
%
Control input voltage range on-  
VEHTIn pin  
V
1
4
4.0  
0
6
V
V
VEHT  
Neutral point on breathing char-  
V
(16)  
VEHTnull  
acteristics  
V
V
ꢀꢁꢀV  
ꢀꢁꢀV  
VEHT CC  
RefO  
%/V  
?V  
?V  
(min)  
VEHT  
VEHT VE-  
(max):  
HT  
Vamp  
Breathing compensation  
VEHTG (Sad1Ch):  
x0000000b  
-----------------------------------  
5
0
-5  
%/V  
%/V  
%/V  
V
amp ꢄ ꢂVVEHT  
x1000000b  
x1111111b  
Notes about vertical section  
Note 10: Value of acceptable cumulated parasitic load resistance due to humidity, AGC storage capacitor leakage, etc.,  
for less than 1% of V change.  
amp  
Note 11: The threshold for V  
is generated internally and routed to VOscF pin. Any DC current on this pin will  
VOB  
influence the value of V  
.
VOB  
Note 12: Maximum of deviation from an ideally linear sawtooth ramp at null S-correction (SCOR at 0000000b) and null  
C-correction (CCOR at 1000000b). The same rate applies to V-drive signal on VOut pin, no effect on EWOut.  
Note 13: Maximum S-correction (SCOR at x1111111b), null C-correction (CCOR at 1000000b).  
Note 14: Null S-correction (SCOR at 0000000b).  
Note 15: "t " is time from the beginning of vertical ramp of V-drive signal on VOut pin. "T " is the duration of this ramp,  
VR  
VR  
see Chapter 7 - page 21 and Figure 17.  
Note 16: If V  
=V  
or V  
=V  
, respectively, the influence of V on vertical drive amplitude or the  
VEHT  
VEHT  
VEHTnull  
HEHT  
HEHTnull  
influence of V  
on EW drive signal, respectively, is null.  
HEHT  
Note 17: V  
= V  
-V  
VOT VOB  
VOamp  
Note 18: Only the top of the saw tooth drifts. The same rate applies to V-drive signal on VOut pin.  
Note 19: Informative, not tested on each unit.  
Note 20: VSIZE at medium value 1000000b.  
Note 21: VPOS at medium value 1000000b.  
Note 22: VPOF at medium value 1000000b.  
Note 23: VSAG at maximum value 1111111b.  
13/56  
STV6889  
6.6 EW drive section  
Table 3. EW drive section (VCC = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
V
Output voltage on EWOut pin  
1.8  
6.5  
V
EW  
Current delivered by EWOut out-  
put  
I
-1.5  
1
0.1  
6
mA  
EWOut  
Control voltage range on HEH-  
TIn pin  
V
V
V
HEHT  
Neutral point on breathing char-  
V
4.0  
(16)  
HEHTnull  
acteristics. See Figure 15.  
(24)(25)(26)(27)(28)(36)(42)(43)  
EWTrHFr0 or V V  
HO HOThrfr  
DC component of the EW-drive HSIZE (Sad10h):  
V
(30)  
EW-DC  
signal on EWOut pin  
00000000b  
10000000b  
11111111b  
2
3.25  
4.5  
V
V
V
DC reference for the EW-drive  
signal on EWOut pin  
V
2
V
EW-base  
(24)(25)(26)(27)(42)(43)  
V
V
ꢀꢁꢀV  
ꢀꢁꢀV  
HEHT  
RefO  
CC  
?V  
0
V/V  
(min)?V  
HEHT  
HEHT HE-  
Breathing compensation on DC  
component of the EW-drive sig-  
nal  
VEWDC  
-----------------------  
VHEHT  
(max):  
HT  
0
V/V  
V/V  
V/V  
V/V  
HEHTG (Sad1Bh):  
x0000000b  
x1000000b  
x1111111b  
(30)  
-0.25  
0
+0.25  
24 25 26 27 28 36 42 43  
)( )( )( )( )( )( )(  
(
(
)
VEWDC  
VEWDC ꢄ ꢂT  
Temperature drift of DC compo-  
nent of the EW-drive signal  
100  
ppm/°C  
-------------------------------  
44  
)
(30)  
(24)(25)(26)(28)(29)(31)  
(32)(36)(42)(43)  
VSIZE at maximum  
PCC (Sad0Ch):  
x0000000b  
x1000000b  
x1111111b  
0
0.75  
1.5  
V
V
V
Pin cushion correction compo-  
nent of the EW-drive signal  
V
EW-PCC  
Tracking with VSIZE:  
PCC at x1000000b  
VSIZE (Sad07h):  
x0000000b  
0.25  
0.5  
V
V
x1000000b  
24 25 26 29 33 35 36 42 43  
)( )( )( )( )( )( )( )(  
(
)
Tracking of PCC component of PCC at x1111111b  
the EW-drive signal with vertical VPOS (Sad08h):  
V
EWPCCtvr= 0ꢇ  
--------------------------------------------  
EWPCCtvr= TVRꢇ  
V
position adjustment  
x0000000b  
x1111111b  
0.5  
2.0  
25 26 27 28 29 33 34 36 42  
)( )( )( )( )( )( )( )( )(  
(
43  
)
Keystone correction component  
of the EW-drive signal  
V
KEYST (Sad0Dh):  
x0000000b  
x1111111b  
EW-Key  
0.4  
-0.4  
V
V
14/56  
STV6889  
Table 3. EW drive section (VCC = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
24 26 27 28 29 31 33 36 42  
)( )( )( )( )( )( )( )(  
(
(
)
)
)
)
43  
)
Top corner correction compo-  
nent of the EW-drive signal  
TCC (Sad0Eh):  
x0000000b  
x1000000b  
x1111111b  
V
-1.4  
0
+1.4  
V
V
V
EW-TCor  
24 25 27 28 29 32 33 36 42  
)( )( )( )( )( )( )( )(  
(
43  
)
(
Bottom corner correction compo- BCC (Sad0Fh):  
V
-1.4  
0
+1.4  
V
V
V
EW-BCor  
nent of the EW-drive signal  
x0000000b  
x1000000b  
x1111111b  
24 25 26 27 28 29 33 36 41  
)( )( )( )( )( )( )( )(  
(
(
43  
)
Pin Cushion S correction compo- EWSC (Sad19h):  
V
-0.3  
0
0.3  
V
V
V
EW-S  
nent of EW-drive signal  
x0000000b  
x1000000b  
x1111111b  
24 25 26 27 28 29 33 36 41  
)( )( )( )( )( )( )( )(  
(
(
42  
)
Pin Cushion W correction com- EWWC (Sad1Ah):  
V
-0.1  
0
0.1  
V
V
V
EW-W  
ponent of EW-drive signal  
x0000000b  
x1000000b  
x1111111b  
Tracking of AC component of  
I²C bit EWTrHFr=1  
VEWAC  
----------------------------------------------------- EW-drive signal with horizontal  
V
V
V  
0
20  
%/V  
%/V  
HO  
HO  
HOThrfr  
V
EWACfmaxꢇ ꢄ ꢂVHO  
(37)(38)(39)  
frequency  
(min)?V ?V  
HO  
HOThrfr  
Tracking of DC component of  
I²C bit EWTrHFr=1  
VEWDC  
---------------------------------------------------- EW-drive signal with horizontal  
V
V
V  
0
20  
%/V  
%/V  
HO  
HO  
HOThrfr  
V
EWDCspanꢇ ꢄ ꢂVHO  
(30)(38)(39)  
frequency  
(min)?V ?V  
HO  
HOThrfr  
I²C bit EWTrHSize=1  
HSIZE (Sad10h):  
00000000b  
10000000b  
11111111b  
Tracking of AC component of  
EW-drive signal with horizontal  
size  
VEWAC  
--------------------------------------------------  
V
138  
119  
100  
%
%
%
(37)  
EWACHSIZEmaxꢇ  
V
V
ꢀꢁꢀV  
ꢀꢁꢀV  
HEHT  
RefO  
CC  
?V  
0
%/V  
(min)?V  
HEHT  
HEHT HE-  
Breathing compensation on AC  
(max):  
HT  
VEWAC  
------------------------------------------  
EWAC ꢄ ꢂVHEHT  
component of the EW-drive sig- HEHTG (Sad1Bh):  
3.5  
0
-3.5  
%/V  
%/V  
%/V  
V
(37)  
nal  
0000000b  
1000000b  
1111111b  
15/56  
STV6889  
Notes about EW drive section  
Note 24: KEYST at medium (neutral) value.  
Note 25: TCC at medium (neutral) value.  
Note 26: BCC at medium (neutral) value.  
Note 27: PCC at minimum value.  
Note 28: VPOS at medium (neutral) value.  
Note 29: HSIZE I²C field at maximum value.  
Note 30: V  
is defined as voltage at t =1/2 T  
.
VR  
EW-DC  
VR  
Note 31: Defined as difference of (voltage at t =0) minus (voltage at t =1/2 T ).  
VR  
VR  
VR  
Note 32: Defined as difference of (voltage at t =T ) minus (voltage at t =1/2 T ).  
VR  
VR  
VR  
VR  
Note 33: VSIZE at maximum value.  
Note 34: Difference (voltage at t =0) minus (voltage at t =T ).  
VR  
VR  
VR  
Note 35: Ratio "A/B"of parabola component voltage at t =0 versus parabola component voltage at t =T .  
VR  
VR  
VR  
See Figure 2.  
Note 36: V  
Note 37: V  
V  
, V  
V  
VEHT RefO  
HEHT  
RefO  
is defined as overall peak-to-peak value between t =0 and t =T of all components other than V  
EW-  
EW-AC  
VR  
VR  
VR  
(contribution of PCC, keystone correction, corner corrections and S- and W-corrections).  
DC  
Note 38: More precisely tracking with voltage on HPLL1F pin which itself depends on frequency at a rate given by  
external components on PLL1 pins  
Note 39: V  
[span] = V  
[V V  
] - V  
[HSIZE=0000000b].  
EW-DC  
EW-DC  
EW-DC HO  
HOThrfr  
V
[f  
] = V  
[V V  
].  
HOThrfr  
EW-AC max  
EW-AC HO  
Note 40: Defined as difference of (voltage at t =1/4 T ) minus (voltage at t =3/4 T ).  
VR  
VR  
VR  
VR  
Note 41: Defined as difference of (voltage at t =1/2 T ) minus (voltage at t =1/4 T ).  
VR  
VR  
VR  
VR  
Note 42: EWSC at medium (neutral) value.  
Note 43: EWWC at medium (neutral) value.  
Note 44: Informative, not tested on each unit.  
16/56  
STV6889  
6.7 Dynamic correction outputs section  
Table 4. Dynamic correction outputs section (VCC = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
Vertical Dynamic Correction output VDyCor  
I
Current delivered by VDyCor output  
-1.5  
0.1  
mA  
V
VDyCor  
DC component of the drive signal  
on VDyCor output  
V
R
=10kꢀ  
4
VD-DC  
L(VDyCor)  
(28)  
VSIZE at medium  
VDC-AMP (Sad15h):  
x0000000b  
0
0.5  
1
V
V
V
Amplitude ofV-parabola onVDyCor x1000000b  
V
VD-V  
output  
x1111111b  
VDC-AMP at maximum  
VSIZE (Sad07h):  
x0000000b  
0.6  
1.6  
V
V
x1111111b  
VDC-AMP at maximum  
Tracking of V-parabola on VDyCor VPOS (Sad08h):  
VVDVtVR=0ꢇ  
-------------------------------------------------------  
(45)  
output with vertical position  
x0000000b  
x1111111b  
0.5  
2.0  
VVDVtVR=TVR  
Notes about dynamic output section  
Note 45: Ratio "A/B"of vertical parabola component voltage at t =0 versus vertical parabola component voltage at  
VR  
t
=T  
.
VR  
VR  
17/56  
STV6889  
6.8 DC/DC controller section  
Table 5. DC/DC controller section (VCC = 12V, Tamb = 25°C)  
Value  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Typ.  
Max.  
Ext. resistance applied between  
BComp output and BRegIn input  
R
5
kꢀ  
B+FB  
Open loop gain of error amplifier on  
BRegIn input  
(19)  
A
Low frequency  
100  
dB  
OLG  
Unity gain bandwidth of error amplifier  
on BRegIn input  
(19)  
f
6
MHz  
UGBW  
I
Bias current delivered by BRegIn  
-0.2  
A  
RI  
Output current capability of BComp out- BOut enabled  
-0.5  
2.0  
mA  
mA  
I
(46)  
BComp  
put.  
BOut disabled  
0.5  
3
A
Voltage gain on BISense input  
BISense  
Threshold voltage on BISense input  
corresponding to current limitation  
ThrBlsense = 0  
ThrBlsense = 1  
TBD  
TBD  
2.1  
1.2  
V
V
ThrBIsCurr  
I
Bias current delivered by BISense  
Conduction time of the power transistor  
Output current capability of BOut output  
-1  
A  
BISense  
t
T - 300ns  
H
BOn  
I
0
10  
mA  
BOut  
Saturation voltage of the internal output  
transistor on BOut  
V
I
=10mA  
BOut  
0.25  
V
BOSat  
V
=8V  
RefO  
BREF (Sad03h):  
x0000000b  
x1000000b  
Regulation reference for BRegIn volt-  
age  
V
3.8  
4.9  
6.0  
V
V
V
(47)  
BReg  
x1111111b  
Delay of BOut “Off-to-On” edge after  
middle of flyback pulse  
BOutPh = 0 and BO-  
HEdge = 0  
t
16  
%
/T  
(48)  
BTrigDel  
H
Note 46: A current sink is provided by the BComp output while BOut is disabled.  
Note 47: Internal reference related to V  
. The same values to be found on pin BRegIn, while regulation loop is  
RefO  
stabilized.  
Note 48: Only applies to configuration specified in "Test conditions" column, i.e. synchronization of BOut “Off-to-On”  
edge with horizontal fly-back signal. Refer to chapter "DC/DC controller" for more details.  
18/56  
STV6889  
6.9 Miscellaneous  
Table 6. Miscellaneous (VCC = 12V, Tamb = 25°C)  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
Vertical blanking and horizontal lock indication composite output HLckVBk  
(49)  
I
Sink current to HLckVBk pin  
100  
A  
SinkLckBk  
V. blank  
No  
H. lock  
Yes  
Yes  
No  
0.1  
1.1  
5
V
V
V
V
Yes  
V
Output voltage on HLckVBk output  
OLckBk  
No  
Yes  
No  
6
Horizontal moiré canceller  
HMoiréMode = 0  
HMOIRE (Sad02h):  
x0000000b  
x1111111b  
0
0.02  
%
%
T  
H Hmoire  
TH  
----------------------------  
Modulation of T by H. moiré function  
H
HMoiréMode = 1  
HMOIRE (Sad02h):  
x0000000b  
0
0.04  
%
%
x1111111b  
Vertical moiré canceller  
VMOIRE (Sad0Bh):  
x0000000b  
x1111111b  
Amplitude of modulation of V-drive sig-  
nal on VOut pin by vertical moiré.  
V
0
3
mV  
mV  
V-moiré  
Protection functions  
Input threshold on XRay input  
V
V
RefO  
+10mV  
(50)  
RefO  
V
V
RefO  
ThrXRay  
-10mV  
Delay time between XRay detection  
event and protection action  
t
T
H
2T  
XRayDelay  
H
Minimum V value for operation of  
XRay detection and protection  
CC  
V
10.2  
8.0  
10.8  
V
V
V
(53)  
CCXRayEn  
V
value for start of operation at V  
CC  
CC  
CC  
V
(51)  
CCEn  
ramp-up  
V
value for stop of operation at V  
CC  
V
6.8  
(51)  
CCDis  
ramp-down  
(19)(52)  
Control voltages on HPosF pin and V for Soft start/stop operation  
CC  
Threshold for start/stop of H-drive sig-  
nal  
V
1
V
V
HOn  
BOn  
Threshold for start/stop of B-drive sig-  
nal  
V
1.7  
2.4  
Threshold for full operation duty cycle  
of H-drive and B-drive signals  
V
HBNorm  
Minimum supply voltage when voltage  
V
on HPosF pin reaches V  
old  
thresh-  
4.8  
CCStop  
HOn  
(54)  
19/56  
STV6889  
Notes about Miscellaneous section  
Note 49: Current sunk by the pin if the external voltage is higher than one the circuit tries to force.  
Note 50: See V  
in Section 6.2.  
RefO  
Note 51: In the regions of V where the device's operation is disabled, the H-drive, V-drive and B+-drive signals on  
CC  
HOut, VOut and BOut pins, resp., are inhibited, the I²C-bus does not accept any data and the XRayAlarm flag  
is reset. Also see Figure 10.  
Note 52: See Figure 10.  
Note 53: When V is below V  
XRay detection and protection are disabled.  
CCXRayEn  
CC  
Note 54: Minimum momentary supply voltage to ensure a correct performance of Soft stop function at V fall down is  
CC  
defined at the moment when the voltage on HPosF pin reaches V  
threshold.  
HOn  
20/56  
STV6889  
7 TYPICAL OUTPUT WAVEFORMS  
Table 7. Typical output waveforms - Note 55  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
V
x0000000  
amp  
V
mid(VOut)  
VOut  
(23)  
Vertical Size  
07  
V
V
V
amp  
x1111111  
x0000000  
V
mid(VOut)  
amp  
V
mid(VOut)  
Vertical Size  
After Gain  
VOut  
(23)  
1D  
x1111111  
x0000000  
x1000000  
x1111111  
x0000000  
x1000000  
x1111111  
amp  
V
mid(VOut)  
V
midref  
V
mid(VOut)  
Vertical  
Position  
VOut  
(23)  
08  
V
midref  
V
mid(VOut)  
V
mid(VOut)  
V
V
midref  
midref  
V
mid(VOut)  
Vertical  
Position  
Offset  
VOut  
(23)  
V
1E  
midref  
V
mid(VOut)  
V
mid(VOut)  
V
midref  
V
V
amp  
x0000000:  
Null  
0
½
T
T
VR  
VR  
t
VR  
VOut  
(23)  
S-correction  
09  
V
SCor  
x1111111:  
Max.  
amp  
0
¼
T
¾T  
T
VR  
VR  
VR  
t
VR  
21/56  
STV6889  
Table 7. Typical output waveforms - Note 55  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
V
amp  
V
x0000000  
CCor  
0
½
T
T
VR  
VR  
t
VR  
V
amp  
VOut  
(23)  
x1000000 :  
Null  
C-correction  
0A  
0
½
T
T
T
VR  
VR  
t
VR  
V
amp  
V
CCor  
x1111111  
0
½
T
VR  
VR  
t
VR  
V
amp  
x0000000:  
Null  
(n-1)T  
nT  
(n+1)T  
V
V
V
t
Vertical moiré  
amplitude  
VOut  
(23)  
0B  
V
V-moiré  
V
x1111111: amp  
Max.  
(n-1)T  
nT  
(n+1)T  
T
V
V
V
t
V
00000000  
11111111  
EW-DC  
0
½T  
VR  
VR  
t
VR  
EWOut  
(24)  
Horizontal size 10h  
V
EW-DC  
0
½
T
T
T
VR  
VR  
VR  
t
VR  
V
V
EW-DC  
EW-Key  
x0000000  
x1111111  
0
½
T
VR  
t
VR  
Keystone  
0D  
EWOut  
(24)  
correction  
V
EW-Key  
V
EW-DC  
V
EW-PCC  
x0000000  
x1111111  
0
½T  
T
VR  
VR  
t
VR  
Pin cushion  
0C  
EWOut  
(24)  
correction  
V
EW-PCC  
0
½
T
T
VR  
VR  
t
VR  
22/56  
STV6889  
Table 7. Typical output waveforms - Note 55  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
V
EW-TCor  
x1111111  
0
½
T
T
VR  
Top corner  
correction  
EWOut  
(24)  
VR  
t
VR  
0E  
V
EW-TCor  
x0000000  
x1111111  
0
½
T
T
T
VR  
VR  
t
VR  
V
EW-BCor  
0
½T  
Bottom corner  
correction  
EWOut  
(24)  
VR  
VR  
t
VR  
0F  
V
EW-BCor  
x0000000  
x1111111  
0
½
T
T
VR  
VR  
VR  
t
VR  
V
V
EW-S  
EW-S  
0
0
½T  
T
t
VR  
VR  
Pin Cushion  
S-correction  
EWOut  
(24)  
19  
x0000000  
T
½
T
t
VR  
VR  
VR  
V
EW-W  
x1111111  
x0000000  
x0000000  
0
0
½
T
T
VR  
Pin Cushion  
W-correction  
EWOut  
(24)  
t
VR  
VR  
1A  
V
t
EW-W  
½
T
T
VR  
t
VR  
VR  
VR  
VR  
static H-phase  
ParalC  
0
½
T
T
VR  
VR  
t
Parallelogram  
correction  
12h  
t
ParalC  
static H-phase  
x1111111  
x0000000  
x1111111  
0
½
T
T
VR  
VR  
t
static  
H-phase  
t
PCAC  
0
½T  
T
VR  
VR  
t
VR  
Pin cushion  
asymmetry  
correction  
11h  
t
PCAC  
static  
H-phase  
0
½T  
T
VR  
VR  
t
VR  
23/56  
STV6889  
Table 7. Typical output waveforms - Note 55  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
t
TCAC  
static  
H-phase  
x0000000  
0
½
T
T
T
Top corner  
asymmetry  
correction  
VR  
VR  
t
VR  
13h  
static  
H-phase  
t
x1111111  
TCAC  
0
½T  
VR  
VR  
t
VR  
t
BCAC  
static  
H-phase  
x0000000  
x1111111  
01111111  
Bottom corner  
asymmetry  
correction  
0
½
T
T
VR  
VR  
t
VR  
14h  
static  
H-phase  
t
BCAC  
0
½T  
T
VR  
VR  
t
VR  
VDyCorPol=0  
V
V
VD-V  
V
VD-DC  
0
0
½
T
T
VR  
VR  
V
t
VR  
Vertical  
dynamic  
correction  
amplitude  
VDyCor  
(32)  
VD-V  
VD-DC  
15h  
Application dependent  
x0000000  
11111111  
½
T
T
VR  
VR  
t
VR  
VDyCorPol=1  
V
V
VD-DC  
VD-V  
0
½
T
T
VR  
VR  
t
VR  
Note 55: For any H and V correction component of the waveforms on EWOut and VOut pins and internal waveform for  
corrections of H asymmetry, displayed in the table, the weight of the other relevant components is nullified  
(minimum for parabola, S-correction, medium for keystone, all corner corrections, C-correction, S- and W-pin  
cushion corrections, parallelogram, pin cushion asymmetry correction, written in corresponding registers).  
24/56  
STV6889  
8 I²C-BUS CONTROL REGISTER MAP  
The device slave address is 8C in write mode and 8D in read mode. The control register map is given in  
Table .  
Bold weight denotes default value at Power-On-Reset.  
I²C-bus data in the adjustment register is buffered and internally applied with discharge of the vertical os-  
)
56  
cillator (  
.
In order to ensure compatibility with future devices, all “Reserved” bits should be set to 0.  
Table 8. I²C-bus control registers  
Sad  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
WRITE MODE (SLAVE ADDRESS = 8C)  
HDutySyncV  
HDUTY Horizontal duty cycle  
00  
01  
02  
03  
1: Synchro.  
0: Asynchro.  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HPOS Horizontal position  
1
0
0
0
HMoiréMode  
1: Separated  
0: Combined  
HMOIRE Horizontal moiamplitude  
0
0
0
BREF B+reference  
B+SyncV  
0: Asynchro.  
0
0
0
04  
05  
Reserved  
Reserved  
BOutPol  
0: Type N  
06  
Reserved  
BOutPh  
VSIZE Vertical size  
07  
0: H-flyback  
1: H-drive  
1
0
0
0
0
0
0
VPOS Vertical position  
EWTrHFr  
0: No tracking  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCOR S-correction  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
CCOR C-correction  
0
0
VMOIRE Vertical moiamplitude  
0
0
0
PCC Pin cushion correction  
0
0
0
KEYST Keystone correction  
0
0
0
0
0
TCC Top corner correction  
0
0
BCC Bottom corner correction  
0
0
HSIZE Horizontal size  
1
0
0
0
25/56  
STV6889  
Table 8. I²C-bus control registers  
Sad  
D7  
D6  
1
D5  
D4  
D3  
D2  
D1  
D0  
0
PCAC Pin cushion asymmetry correction  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
PARAL Parallelogram correction  
1
0
0
0
0
0
TCAC Top corner asymmetry correction  
1
0
0
0
0
0
0
BCAC Bottom corner asymmetry correction  
Reserved  
1
0
0
0
0
0
0
0
VDC-AMP Vertical dynamic correction  
VDyCorPol  
0: ”"  
1
0
0
0
0
0
PLL1Pump  
1,1: Fastest  
XRayReset  
0: No effect  
VSyncAuto VSyncSel  
SDetReset  
0: No effect  
PLL1InhEn  
HLockEn  
1: On  
16  
1: On  
0:Comp  
1: On  
1: Reset  
1:Sep  
1: Reset  
0,0: Slowest  
TV  
TH  
0: Off  
TVM  
0: Off  
THM  
0: Off  
BOHEdge  
0: Falling  
HBOutEn  
0: Disable  
VOutEn  
0: Disable  
BlankMode  
1: Perm.  
17  
18  
19  
(58)  
(58)  
(58)  
(58)  
0: Off  
Reserved  
EWSC East-West S-correction  
Reserved  
0:  
1
1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
EWWC East-West W-correction  
Reserved  
1A  
1B  
1C  
1D  
1E  
1F  
0:  
0
0
0
HEHTG Horizontal EHT compensation gain  
Reserved  
0:  
0
0
0
0
VEHTG Vertical EHT compensation gain  
Reserved  
0:  
0
0
0
0
0
VSAG Vertical size after-gain  
Reserved  
0:  
1
0
0
VPOF Vertical position offset  
Reserved  
0:  
1
0
0
0
0
0
BMute  
0: Off  
BSafeEn  
0: Disable  
EWTrHSize  
0: Tracking 0: No effect 0: Slow  
Ident  
HLockSpeed  
ThrBlsense  
0: High  
Reserved  
Reserved  
READ MODE (SLAVE ADDRESS = 8D)  
Polarity detection  
Sync detection  
HLock  
0: Locked  
VLock  
0: Locked  
XRayAlarm  
1: On  
57  
XX(  
HVPol  
VPol  
VExtrDet  
HVDet  
VDet  
)
1: Not locked 1: Not lock. 0: Off  
1: Negative 1: Negative 0: Not det. 0: Not det. 0: Not det.  
Note 56: With exception of HDUTY and BREF adjustments data that can take effect instantaneously if switches  
HDutySyncV and B+SyncV are at 0, respectively.  
Note 57: In Read Mode, the device always outputs data of the status register, regardless of sub address previously  
selected.  
Note 58: The TV, TH, TVM and THM bits are for testing purposes and must be kept at 0 by application.  
26/56  
STV6889  
DESCRIPTION OF I²C-BUS SWITCHES AND FLAGS  
Write-to bits  
Sad00h/D7 - HDutySyncV  
Sad16h/D0 - HLockEn  
Synchronization of internal application of Hori-  
zontal Duty cycle data, buffered in I²C-bus latch,  
with internal discharge of Vertical oscillator.  
Enable of output of Horizontal PLL1 Lock/unlock  
status signal on pin HLckVBk  
0: Disabled, vertical blanking only on the pin  
HLckVBk  
1: Enabled  
0: Asynchronous mode, new data applied  
with ACK bit of I²C-bus transfer on this sub  
address  
1: Synchronous mode  
Sad16h/D1 - PLL1InhEn  
Enable of Inhibition of horizontal PLL1 during  
extracted vertical synchronization pulse  
0: Disabled, PLL1 is never inhibited  
1: Enabled  
Sad02h/D7 - HMoiréMode  
Horizontal Moiré characteristics.  
0: Adapted to an architecture with EHT gener-  
ated in deflection section  
1: Adapted to an architecture with separated  
deflection and EHT sections  
Sad16h/D2 and D3- PLL1Pump  
Horizontal PLL1 charge Pump current  
Sad03h/D7 - B+SyncV  
Same as HDutySyncV, applicable for B+ refer-  
ence data  
D3  
0
D2  
0
Time Constant  
Slowest PLL1, lowest current  
Moderate Slow PLL1, low current  
Moderate Fast PLL1, high current  
Fastest PLL1, highest current  
1
0
0
1
Sad06h/D7 - BOutPol  
Polarity of B+ drive signal on BOut pin.  
1
1
0: adapted to N type of power MOS - high  
Sad16h/D4 - SDetReset  
level to make it conductive  
Reset to 0 of Synchronization Detection flags  
VDet, HVDet and VExtrDet of status register ef-  
fected with ACK bit of I²C-bus data transfer into  
register containing the SDetReset bit. Also see  
description of the flags.  
1: adapted to P type of power MOS - low level  
to make it conductive  
Sad07h/D7 - BOutPh  
Phase of start of B+ drive signal on BOut pin  
0: No effect  
0: End of horizontal flyback or horizontal fre-  
quency divided by 2, see BOHEdge bit.  
1: With one of edges of line drive signal on  
HOut pin, selected by BOHEdge bit  
1: Reset with automatic return of the bit to 0  
Sad16h/D5 - VSyncSel  
Vertical Synchronization input Selection be-  
tween the one extracted from composite HV sig-  
nal on pin H/HVSyn and the one on pin VSyn. No  
effect if VSyncAuto bit is at 1.  
Sad08h/D7 - EWTrHFr  
Tracking of all corrections contained in wave-  
form on pin EWOut with Horizontal Frequency  
0: Not active  
0: V. sync extracted from composite signal on  
H/HVSyn pin selected  
1: V. sync applied on VSyn pin selected  
1: Active  
Sad15h/D7 - VDyCorPol  
Sad16h/D6 - VSyncAuto  
Polarity of Vertical Dynamic Correction wave-  
form (parabola)  
Vertical Synchronization input selection Auto-  
matic mode. If enabled, the device automatically  
selects between the vertical sync extracted from  
composite HV signal on pin H/HVSyn and the one  
on pin VSyn, based on detection mechanism. If  
both are present, the one coming first is kept.  
0: Concave (minimum in the middle of the pa-  
rabola)  
1: Convex (maximum in the middle of the pa-  
rabola)  
0: Disabled, selection done according to bit  
VSyncSel  
1: Enabled, the bit VSyncSel has no effect  
27/56  
STV6889  
Sad16h/D7 - XRayReset  
If the bit BOutPh is at 0, selection of signal to  
phase B+ drive output on BOut pin:  
Reset to 0 of XRay flag of status register effect-  
ed with ACK bit of I²C-bus data transfer into reg-  
ister containing the XRayReset bit. Also see de-  
scription of the flag.  
1: Horizontal frequency divided by 2 signal,  
top of horizontal VCO  
0: End of horizontal flyback  
0: No effect  
1: Reset with automatic return of the bit to 0  
Sad17h/D4,D5,D6,D7 - THM, TVM, TH, TV  
Test bits. They must be kept at 0 level by appli-  
cation S/W.  
Sad17h/D0 - BlankMode  
Blanking operation Mode.  
Sad1Fh/D2 - HLockSpeed  
Response Speed of lock-to-unlock transition of  
H-lock component on HLock output and HLock  
I²C-bus flag at signal change.  
0: Blanking pulse starting with detection of  
vertical synchronization pulse and ending  
with end of vertical oscillator discharge  
(start of vertical sawtooth ramp on the VOut  
pin)  
1: Permanent blanking - high blanking level in  
composite signal on pin HLckVBk is perma-  
nent  
0: Low  
1: High  
Sad1Fh/D3 - Ident  
Device Identification bit.  
If HBOutEn is at 1, the bit has no effect.  
If HBOutEn is at 0, then  
Sad17h/D1 - VOutEn  
Vertical Output Enable.  
0: Disabled, VoffVOut on VOut pin (see Section  
6.5 Vertical section)  
1: Enabled, vertical ramp with vertical position  
offset on VOut pin  
0: The value of Hlock status bit is 1  
1: The value of Hlock status bit is 0  
Sad1Fh/D4 - EWTrHSize  
Tracking of all corrections contained in wave-  
form on pin EWOut with Horizontal Size I²C-bus  
register HSIZE.  
Sad17h/D2 - HBOutEn  
Horizontal and B+ Output Enable.  
0: Disabled, levels corresponding to “power  
transistor off” on HOut and BOut pins (high  
for HOut, high or low for BOut, depending on  
BOutPol bit).  
1: Enabled, horizontal deflection drive signal  
on HOut pin providing that it is not inhibited  
by another internal event (activated XRay  
protection). B+ drive signal on BOut pin if not  
inhibited by another internal event.  
0: Active  
1: Not active  
Sad1Fh/D5 - BSafeEn  
B+ Output Safety Enable.  
0: Disabled  
1: Enabled, BOut goes off as soon as HLock  
status of Horizontal PLL1 indicates “unlock”  
state. Retrieval of “lock” state will initiate  
soft start mechanism of DC/DC controller  
on BOut output.  
Programming the bit to 1 after prior value of 0,  
will initiate soft start mechanism of horizontal  
drive and, if this is not inhibited by another inter-  
nal event, also the soft start of B+ DC/DC con-  
vertor controller. See also bits BMute and BSa-  
feEn.  
Sad1Fh/D6 - BMute  
B+ Output Mute.  
0: Disabled  
Sad17h/D3 - BOHEdge  
1: Enabled, BOut goes unconditionally off.  
Programming this bit back to 0 will initiate  
soft start mechanism of DC/DC controller  
on BOut output.  
If the bit BOutPh is at 1, selection of Edge of Hor-  
izontal drive signal to phase B+ drive Output sig-  
nal on BOut pin.  
1: Rising edge  
0: Falling edge  
Sad1Fh/D7 - ThrBlsense  
Threshold on BISense input corresponding to  
current limitation.  
0: High  
1: Low  
28/56  
STV6889  
Read-out flags  
)
SadXX/D0 - VDet(59  
SadXX/D4 - HVPol  
Flag indicating Detection of V synchronization  
pulses on VSyn pin.  
Flag indicating Polarity of H or HV synchroniza-  
tion pulses applied on H/HVSyn pin with respect  
to mean level of the sync signal.  
0: Positive  
0: Not detected  
1: Detected  
1: Negative  
)
59  
SadXX/D1 - HVDet (  
SadXX/D5 - XRayAlarm  
Flag indicating Detection of H or HV synchroni-  
zation pulses applied on H/HVSyn pin. Once the  
sync pulses are detected, the flag is set and  
latched. Disappearance of the sync signal will  
not lead to reset of the flag.  
Alarm indicating that an event of excessive volt-  
age has passed on XRay pin. Can only be reset  
to 0 through I²C-bus bit XRayReset or by power-  
on reset.  
0: Not detected  
1: Detected.  
0: No excess since last reset of the bit  
1: At least one event of excess appeared  
since the last reset of the bit, HOut inhibited  
SadXX/D2 - VExtrDet (  
Flag indicating Detection of Extracted Vertical  
synchronization signal from composite H+V sig-  
nal applied on H/HVSyn pin.  
)
59  
SadXX/D6 - VLock  
Status of “Locking” or stabilizing of Vertical oscil-  
lator amplitude to an internal reference by AGC  
regulation loop.  
0: Not detected  
1: Detected  
0: Locked (amplitude stabilized)  
1: Not locked (amplitude non-stabilized)  
SadXX/D3 - VPol  
SadXX/D7 - HLock  
Lock status of Horizontal PLL1.  
0: Locked  
Flag indicating Polarity of V synchronization  
pulses applied on VSyn pin with respect to mean  
level of the sync signal.  
0: Positive  
1: Not locked  
1: Negative  
See also bit Ident (Sad1Fh/D3)  
Note 59: This flag, by its value of 1, indicates an event of detection of at least one synchronization pulse since its last  
reset (by means of the SDetReset I²C-bus bit). This is to be taken into account by application S/W in a way that  
enough time (at least the period between 2 synchronization pulses of analyzed signal) must be provided  
between reset of the flag through SDetReset bit and validation of information provided in the flag after read-out  
of status register.  
29/56  
STV6889  
9 OPERATING DESCRIPTION  
9.1 Supply and control  
9.1.1 Power supply and voltage references  
Internal thresholds in all parts of the circuit are de-  
rived from a common internal reference supply  
RefO that is lead out to RefOut pin for external filter-  
ing against ground as well as for external use with  
load currents limited to IRefO. The filtering is neces-  
sary to minimize interference in output signals,  
causing adverse effects like e.g. jitter.  
The device is designed for a typical value of power  
supply voltage of 12 V.  
V
In order to avoid erratic operation of the circuit at  
power supply ramp-up or ramp-down, the value of  
V
CC is monitored. See Figure 1 and electrical spec-  
ifications. At switch-on, the device enters a “nor-  
mal operation” as the supply voltage exceeds V  
9.1.2 I²C-bus control  
C-  
and stays there until it decreases bellow V  
The I²C-bus is a 2 line bidirectional serial commu-  
nication bus introduced by Philips. For its general  
description, refer to corresponding Philips I²C-bus  
specification.  
CEn . The two thresholds provide, by their diffeCr--  
CDis  
ence, a hysteresis to bridge potential noise. Out-  
side the “normal operation”, the signals on HOut,  
BOut and VOut outputs are inhibited and the I²C-  
bus interface is inactive (high impedance on SDA,  
SCL pins, no ACK), all I²C-bus control registers be-  
ing reset to their default values (see Chapter 8 -  
page 25). The stop of HOut and BOut drive signals  
when the V falls from normal operation below  
This device is an I²C-bus slave, compatible with  
fast (400kHz) I²C-bus protocol, with write mode  
slave address of 8Ch (read mode slave address  
8Dh). Integrators are employed at the SCL (Serial  
Clock) input and at the input buffer of the SDA (Se-  
rial Data) input/output to filter off the spikes up to  
50ns.  
V
CCDis is notCinCstantaneous. It is only a trigger point  
of Soft Stop mechanism (see Subsection 9.3.7- page  
35).  
The device supports multiple data byte messages  
(with automatic incrementing of the I²C-bus subad-  
dress) as well as repeated Start Condition for I²C-  
bus subaddress change inside the I²C-bus mes-  
sages. All I²C-bus registers with specified I²C-bus  
subaddress are of WRITE ONLY type, whereas  
the status register providing a feedback informa-  
tion to the master I²C-bus device has no attributed  
I²C-bus subaddress and is of READ ONLY type.  
The master I²C-bus device reads this register  
sending directly, after the Start Condition, the  
READ device I²C-bus slave address (8Dh) fol-  
lowed by the register read-out, NAK (No Acknowl-  
edge) signal and the Stop Condition.  
Figure 1. Supply voltage monitoring  
V
CC  
V
(Vcc)  
V
CCEn  
hysteresis  
V
CCDis  
Disabled  
Normal operation  
Disabled  
t
For the I²C-bus control register map, refer to Chap-  
ter 8 - page 25.  
9.2 Synchronization processor  
9.2.1 Synchronization signals  
part and to an extractor of vertical sync. pulses,  
working on principle of integration, see Figure 3.  
The vertical sync. signal applied to the vertical de-  
flection processor is selected between the signal  
extracted from the composite signal on H/HVSyn in-  
put and the one applied on VSyn input. The selec-  
tor is controlled by VSyncSel I²C-bus bit.  
The device has two inputs for TTL-level synchroni-  
zation signals, both with hysteresis to avoid erratic  
detection and with a pull-down resistor. On H/  
HVSyn input, pure horizontal or composite horizon-  
tal/vertical signal is accepted. On VSyn input, only  
pure vertical sync. signal is accepted. Both posi-  
tive and negative polarities may be applied on ei-  
ther input, see Figure 2. Polarity detector and pro-  
grammable inverter are provided on each of the  
two inputs. The signal applied on H/HVSyn pin, af-  
ter polarity treatment, is directly lead to horizontal  
Besides polarity detection, the device is capable of  
detecting presence of sync. signals on each of the  
inputs and at the output of vertical sync. extractor.  
The information from all detectors is provided in  
the I²C-bus status register (5 flags: VDet, HVDet,  
30/56  
STV6889  
VExtrDet, VPol, HVPol). The device is equipped  
with an automatic mode (switched on or off by  
VSyncAuto I²C-bus bit) that also uses the detec-  
tion information.  
9.2.2 Sync. presence detection flags  
The sync. signal presence detection flags in the  
status register (VDet, HVDet, VExtrDet) do not  
show in real time the presence or absence of cor-  
responding sync. signal. They are latched to 1 as  
soon as a single sync. pulse is detected. In order  
to reset them to 0 (all at once), a 1 must be written  
into SDetReset I²C-bus bit, the reset action taking  
effect with ACK bit of the I²C-bus transfer to the  
register containing SDetReset bit. The detection  
circuits are ready to capture another event (pulse).  
See Note 59.  
Figure 2. Horizontal sync signal  
Positive  
t
T
PulseHSyn  
H
Negative  
Figure 3. Extraction of V-sync signal from H/V-sync signal  
H/V-sync  
T
t
PulseHSyn  
H
Internal  
Integration  
t
extrV  
Extracted  
V-sync  
9.2.3 MCU controlled sync. selection mode  
9.2.4 Automatic sync. selection mode  
I²C-bus bit VSyncAuto is set to 0. The MCU reads  
the polarity and signal presence detection flags,  
after setting the SDetReset bit to 1 and an appro-  
priate delay, to obtain a true information of the sig-  
nals applied, reads and evaluates this information  
and controls the vertical signal selector according-  
ly. The MCU has no access to polarity inverters,  
they are controlled automatically.  
I²C-bus bit VSyncAuto is set to 1. In this mode, the  
device itself controls the I²C-bus bits switching the  
polarity inverters (HVPol, VPol) and the vertical  
sync. signal selector (VSyncSel), using the infor-  
mation provided by the detection circuitry. If both  
extracted and pure vertical sync. signals are  
present, the one already selected is maintained.  
No intervention of the MCU is necessary.  
See also chapter Chapter 8 - page 25.  
31/56  
STV6889  
9.3 Horizontal section  
9.3.1 General  
sync. signal change. In locked state, the currents  
are much higher, four different values being se-  
lectable via PLL1Pump I²C-bus bits to provide a  
means to control the PLL1 speed by S/W. Lower  
value make the PLL1 slower, but more stable.  
Higher values make it faster and less stable. In  
general, the PLL1 speed should be higher for high  
deflection frequencies. The response speed and  
stability (jitter level) depend on the choice of exter-  
nal components making up the loop filter. A “CRC”  
filter is generally used (see Figure 4).  
The horizontal section consists of two PLLs with  
various adjustments and corrections, working on  
horizontal deflection frequency, then phase shift-  
ing and output driving circuitry providing H-drive  
signal on HOut pin. Input signal to the horizontal  
section is output of the polarity inverter on H/HVSyn  
input. The device ensures automatically that this  
polarity be always positive.  
9.3.2 PLL1  
The PLL1 block diagram is in Figure 5. It consists of  
a voltage-controlled oscillator (VCO), a shaper  
with adjustable threshold, a charge pump with inhi-  
bition circuit, a frequency and phase comparator  
and timing circuitry. The goal of the PLL1 is to  
make the VCO ramp signal match in frequency the  
sync. signal and to lock this ramp in phase to the  
sync. signal. On the screen, this offset results in  
the change of horizontal position of the picture.  
The loop, by tuning the VCO accordingly, gets and  
maintains in coincidence the rising edge of input  
sync. signal with signal REF1, deriving from the  
VCO ramp by a comparator with threshold adjust-  
able through HPOS I²C-bus control. The coinci-  
dence is identified and flagged by lock detection  
circuit on pin HLckVBk as well as by HLock I²C-bus  
flag.  
Figure 4. H-PLL1 filter configuration  
HPLL1F  
9
R
2
C
1
C
2
The PLL1 is internally inhibited during extracted  
vertical sync. pulse (if any) to avoid taking into ac-  
count missing or wrong pulses on the phase com-  
parator. Inhibition is obtained by forcing the charge  
pump output to high impedance state. The inhibi-  
tion mechanism can be disabled through  
PLL1InhEn I²C-bus bit.  
The charge pump provides positive and negative  
currents charging the external loop filter on HPLL1F  
pin. The loop is independent of the trailing edge of  
sync. signal and only locks to its leading edge. By  
design, the PLL1 does not suffer from any dead  
band even while locked. The speed of the PLL1  
depends on current value provided by the charge  
pump. While not locked, the current is very low, to  
slow down the changes of VCO frequency and  
thus protect the external power components at  
The Figure 7, in its upper part, shows the position of  
the VCO ramp signal in relation to input sync.  
pulse for three different positions of adjustment of  
horizontal position control HPOS.  
32/56  
STV6889  
Figure 5. Horizontal PLL1 block diagram  
PLL1InhEn  
(I²C)  
V-sync (extracted)  
HLckVBk  
3
HLock  
(I²C)  
Blank  
PLL1  
HPLL1F RO CO HOscF  
9
8
6
4
Sync  
Polarity  
LOCK  
DETECTOR  
PLL  
INHIBITION  
High  
Low  
H/HVSyn  
1
INPUT  
INTERFACE  
CHARGE  
PUMP  
VCO  
HOSC  
COMP  
REF1  
HPosF  
10  
Extracted  
V-sync  
PLL1Pump  
(I²C)  
HPOS  
(I²C)  
SHAPER  
Figure 6. Horizontal oscillator (VCO) schematic diagram  
HOscF  
4
I
0
+
-
I
V
2
0
(PLL1 filter)  
HPLL1F  
HOThrHi  
V
RS  
Flip-Flop  
HO  
9
+
-
-
+
V
HOThrLo  
4 I  
0
RO 8  
VCO discharge  
control  
CO  
6
from charge pump  
V
HOThrHi  
HOThrLo  
V
9.3.3 Voltage controlled oscillator  
At no signal condition, the V tuning voltage is  
HO  
clamped to its minimum (see section 6.4 - page  
10), which corresponds to the free-running VCO  
frequency fHO(0). Refer to subsection 9.3.1 for formu-  
la to calculate this frequency using external com-  
ponents values. The ratio between the frequency  
corresponding to maximum VHO and the one corre-  
The VCO makes part of both PLL1 and PLL2  
loops, being an “output” to PLL1 and “input” to  
PLL2. It delivers a linear sawtooth. Figure 6 ex-  
plains its principle of operation. The linears are ob-  
tained by charging and discharging an external ca-  
pacitor on pin CO, with currents proportional to the  
current forced through an external resistor on pin  
RO, which itself depends on the input tuning volt-  
sponding to minimum V (free-running frequen-  
HO  
cy) is about 4.5. This range can easily be in-  
creased in the application. The PLL1 can only lock  
to input frequencies falling inside these two limits.  
age V (filtered charge pump output). The rising  
HO  
and falling linears are limited by VHOThrLo and V  
HO-  
ThrHi thresholds filtered through HOscF pin.  
33/56  
STV6889  
9.3.4 PLL2  
rabola of 2nd order for Pin cushion asymmetry cor-  
rection and half-parabolas of 4th order for corner  
corrections independently at the top and at the  
bottom) are generated from the output vertical de-  
flection drive waveform, they all track with real ver-  
tical amplitude and position, thus being fixed on  
the screen. Refer to Chapter 8 - page 25 for details  
on I²C-bus controls.  
The goal of the PLL2 is, by means of phasing the  
signal driving the power deflection transistor, to  
lock the middle of the horizontal flyback to a cer-  
tain threshold of the VCO sawtooth. This internal  
threshold is affected by geometry phase correc-  
tions, like e.g., parallelogram. The PLL2 is fast  
enough to be able to follow the dynamism of phase  
modulation, this speed is strongly related to the  
value of the capacitor on HPLL2C. The PLL2 con-  
trol current (see Figure 7) is significantly increased  
during discharge of vertical oscillator (during verti-  
cal retrace period) to be able to make up for the  
difference of dynamic phase at the bottom and at  
the top of the picture. The PLL2 control current is  
integrated on the external filter on pin HPLL2C to  
obtain smoothed voltage, used, in comparison  
with VCO ramp, as a threshold for H-drive rising  
edge generation.  
Figure 7. Horizontal timing diagram  
t
Hph  
min max  
HPOS  
(I²C)  
H-sync  
(polarized)  
max.  
med.  
min.  
PLL1  
lock  
REF1  
(internal)  
V
HOThrHi  
V
HPosF  
max.  
med.  
As both leading and trailing edges of the H-drive  
signal in the Figure 7 must fall inside the rising part  
of the VCO ramp, an optimum middle position of  
the threshold has been found to provide enough  
margin for horizontal output transistor storage time  
as well as for the trailing edge of H-drive signal  
with maximum duty cycle. Yet, the constraints  
thereof must be taken into account while consider-  
ing the application frequency range and H-flyback  
duration. The Figure 7 also shows regions for rising  
and falling edges of the H-drive signal on HOut pin.  
As it is forced high during the H-flyback pulse and  
low during the VCO discharge period, no edge  
during these two events takes effect.  
V
S(0)  
H-Osc  
(VCO)  
min.  
V
HOThrLo  
7/8T  
H
T
H
V
ThrHFly  
H-fly-back  
t
S
PLL2  
control  
current  
+
t
-
ON  
ON  
OFF  
H-drive  
(on HOut)  
Hoff  
forced high forced low  
H-drive  
region  
The flyback input configuration is in Figure 8.  
t
(max)  
9.3.5 Dynamic PLL2 phase control  
ph  
H-drive  
region  
The dynamic phase control of PLL2 is used to  
compensate for picture asymmetry versus vertical  
axis across the middle of the picture. It is done by  
modulating the phase of the horizontal deflection  
with respect to the incoming video (synchroniza-  
tion). Inside the device, the threshold VS(0) is com-  
pared with the VCO ramp, the PLL2 locking the  
middle of H-flyback to the moment of their match.  
The dynamic phase is obtained by modulation of  
the threshold by correction waveforms. Refer to  
Figure 14 and Chapter 7 - page 21. The correction  
waveforms have no effect in vertical middle of the  
screen (for middle vertical position). As they are  
summed, their effect on the phase tends to reach  
maximum span at top and bottom of the picture.  
As all the components of the resulting correction  
waveform (linear for parallelogram correction, pa-  
inhibited  
t : HOT storage time  
S
Figure 8. HFly input configuration  
~500ꢀ  
HFly  
12  
~20kꢀ  
ext. int.  
GND  
34/56  
STV6889  
9.3.6 Output Section  
9.3.8 Horizontal moiré cancellation  
The H-drive signal is inhibited (high level) during  
flyback pulse, and also when VCC is too low, when  
X-ray protection is activated (XRayAlarm I²C-bus  
flag set to 1) and when I²C-bus bit HBOutEn is set  
to 0 (default position).  
The horizontal moiré canceller is intended to blur a  
potential beat between the horizontal video pixel  
period and the CRT pixel width, which causes vis-  
ible moiré patterns in the picture.  
It introduces a microscopic indent on horizontal  
scan lines by injecting little controlled phase shifts  
to output circuitry of the horizontal section. Their  
amplitude is adjustable through HMOIRE I²C-bus  
control.  
The duty cycle of the H-drive signal is controlled  
via I²C-bus register HDUTY. This is overruled dur-  
ing soft-start and soft-stop procedures (see Section  
9.3.7 and Figure 10).  
The PLL2 is followed by a rapid phase shifting  
which accepts the signal from H-moiré canceller  
(see Section 9.3.8)  
The behaviour of horizontal moiré is to be opti-  
mized for different deflection design configurations  
using HMoiréMode I²C-bus bit. This bit is to be  
kept at 0 for common architecture (B+ and EHT  
common regulation) and at 1 for separated archi-  
tecture (B+ and EHT each regulated separately).  
The maximum amplitude adjustable though HMOI-  
RE I²C-bus control is optimized according to selec-  
tion by HMoiréMode I²C-bus bit: larger when B+  
and EHT are each regulated separately, smaller  
when B+ and EHT are common regulation.  
The output stage consists of a NPN bipolar tran-  
sistor, the collector of which is routed to HOut pin  
(see Figure 9).  
Figure 9. HOut configuration  
HOut  
26  
int. ext.  
9.3.7 Soft-start and soft-stop on H-drive  
The soft-start and soft-stop procedure is carried  
out at each switch-on or switch-off of the H-drive  
signal, either via HBOutEn I²C-bus bit or after re-  
set of XRayAlarm I²C-bus flag, to protect external  
power components. By its second function, the ex-  
ternal capacitor on pin HPosF is used to time out  
this procedure, during which the duty cycle of H-  
drive signal starts at its maximum (t  
for soft  
start/stop in electrical specifications) Haonffd slowly  
decreases to the value determined by the control  
I²C-bus register HDUTY (vice versa at soft-stop).  
This is controlled by voltage on pin HPosF. In case  
of supply voltage switch off, the transients on HOut  
and BOut have different characteristics. See  
Figure 10, Figure 11 and Section 9.8.1.  
35/56  
STV6889  
Figure 10. Control of HOut and BOut at start/stop at nominal V  
CC  
minimum value  
V
(HPosF)  
HPOS range  
V
HPosF  
(I²C)  
maximum value  
V
HBNorm  
V
BOn  
Soft start  
Normal operation  
Soft stop  
V
HOn  
Stop Stop  
B-drv H-drv  
Start Start  
H-drv B-drv  
t
HOut  
100%  
H-duty cycle  
BOut (positive)  
B-duty cycle  
0%  
Figure 11. Events triggering Soft start and Soft stop  
maximum V fall down speed  
CC  
for correct operation  
V[HPosF]  
Soft start  
V[HPosF]  
V
CCDis  
Soft stop  
event  
event  
V
V
CC  
CCStop  
V
(HPosF)  
V
(HPosF)  
V
V
HPosF  
HPosF  
HBOutEn=1  
V
V
HBNorm  
HBNorm  
XRayAlarm=0  
V
V
HBNorm  
V
BOn  
BOn  
V
BOn  
V
V
HOn  
HOn  
V
HOn  
t
t
100%  
100%  
HOut duty cycle  
BOut duty cycle  
HOut duty cycle  
BOut duty cycle  
0%  
0%  
NOMINAL V  
FALLING V  
CC  
CC  
36/56  
STV6889  
9.4 Vertical section  
9.4.1 General  
The goal of the vertical section is to drive vertical  
deflection output stage. It delivers a sawtooth  
waveform with an amplitude independent of de-  
flection frequency, on which vertical linearity cor-  
rections of C- and S-type are superimposed (see  
Chapter 7 - page 21).  
150nF  
C(VCap)  
.
100Hz  
f
=
VO(0)  
The frequency range in which the AGC loop can  
regulate the amplitude also depends on this ca-  
pacitor.  
Block diagram is in Figure 12. The sawtooth is ob-  
tained by charging an external capacitor on pin  
VCap with controlled current and by discharging it  
via transistor Q1. This is controlled by the CON-  
TROLLER. The charging starts when the voltage  
The vertical sawtooth with regulated amplitude is  
lead to amplitude control stage. The discharge ex-  
ponential is replaced by V  
level, which, under  
VOB  
control of the CONTROLLER, creates a rapid fall-  
ing edge and a flat part before beginning of new  
ramp.  
across the capacitor drops below V  
threshold.  
The discharging starts either when itVeOxBceeds V  
threshold (free run mode) or a short time afterVaOrT-  
rival of synchronization pulse. This time is neces-  
sary for the AGC loop to sample the voltage at the  
top of the sawtooth. The VVOB reference is routed  
out onto VOscF pin in order to allow for further filtra-  
tion.  
The AGC output signal passes through gain and  
position adjustment stages controlled through  
VSIZE and VPOS I²C-bus registers. The resulting  
signal serves as input to all geometry correction  
circuitry including EW-drive signal, horizontal  
phase modulation and dynamic correction outputs.  
9.4.2 S and C corrections  
The charging current influences amplitude of the  
sawtooth. Just before the discharge, the voltage  
across the capacitor on pin VCap is sampled and  
compared to VVOTref. The comparison error voltage  
is stored on a storage capacitor connected on pin  
VAGCCap. This voltage tunes gain of the transcon-  
ductance amplifier providing the charging current  
in the next vertical period. Speed of this AGC loop  
depends on the storage capacitance on pin  
VAGCCap. The VLock I²C-bus flag is set to 1 when  
the loop is stabilized, i.e. when the tops of saw  
For the sake of vertical picture linearity, the S- and  
C-corrections are now superimposed on the linear  
ramp signal. They both track with VSIZE and  
VPOS adjustments to ensure unchanged linearity  
on the screen at changes of vertical size or vertical  
position. As these corrections are not included in  
the AGC loop, their adjustment via CCOR and  
SCOR I²C-bus registers, controlling shape of verti-  
cal output sawtooth affects by principle its peak-to-  
peak amplitude. However, this stage is conceived  
in a way that the amplitude be independent of  
these adjustments if VSIZE and VPOS registers  
are set to their medium values.  
tooth on pin VCap match V  
value. On the  
VOT  
screen, this corresponds to stabilized vertical size  
of picture. After a change of frequency on the  
sync. input, the stabilization time depends on the  
frequency difference and on the capacitor value.  
The lower its value, the shorter the stabilization  
time, but on the other hand, the lower the loop sta-  
bility. A practical compromise is a capacitance of  
470nF. The leakage current of this capacitor re-  
sults in difference in amplitude between low and  
high frequencies. The higher its parallel resistance  
9.4.3 Vertical breathing compensation  
The signal provided with the linearity corrections is  
amplitude affected in a gain control stage, ruled by  
the voltage on VEHTIn input and its I²C-bus control  
VEHTG.  
9.4.4 Vertical after-gain and offset control  
Another gain control is applied via VSAG I²C-bus  
register. Then an offset is added, its amount corre-  
sponding to VPOF I²C-bus register value. These  
two controls result in size and position changes  
with no effect on shape of output vertical sawtooth  
or any geometry correction signal.  
R
L(VAGCCap), the lower this difference.  
When the synchronization pulse is not present, the  
charging current is fixed. As a consequence, the  
free-running frequency fVO(0) only depends on the  
value of the capacitor on pin VCap. It can be rough-  
ly calculated using the following formula  
37/56  
STV6889  
9.4.5 Vertical moiré  
9.4.6 Biasing of vertical booster  
To blur potential moiré patterns due to interaction  
of deflection lines with CRT mask grid, the picture  
position is to be slightly alternated at frame fre-  
quency. For this purpose, a square waveform at  
half-frame frequency is superimposed on the out-  
put waveform. Its amplitude is adjustable through  
VMOIRE I²C-bus control.  
The biasing voltage for external DC-coupled verti-  
cal power amplifier is to be derived from VRefO volt-  
age provided on pin RefOut, using a resistor divid-  
er, this to ensure the same temperature drift of  
mean (DC) levels on both differential inputs and to  
compensate for spread of V  
value (and so  
mean output value) between pRaerftOicular devices.  
Figure 12. Vertical section block diagram  
Trans-conductance amplifier  
Charge current  
V
VOTref  
OSC  
VCap  
22  
Cap.  
Sampling  
20  
VAGCCap  
Discharge  
Q1  
Sampling  
Capacitance  
VSyn  
Synchro  
Polarity  
2
Controller  
R
V
V
midref  
midref  
To geometry processing  
R
sawtooth  
discharge  
Internal  
V-ramp  
V
midref  
V
VOB  
(I²C)  
(I²C)  
VSIZE  
VPOS  
19  
VOscF  
VEHTIn  
18  
V
VEHTnull  
VEHTG (I²C)  
(
)
SCOR I²C  
VMOIRE (I²C)  
S-correction  
VOut  
23  
VPOF (I²C)  
VSAG (I²C)  
(
)
CCOR I²C  
(I²C)  
VPOS  
C-correction  
38/56  
STV6889  
9.5 EW drive section  
The goal of the EW drive section is to provide, on  
pin EWOut, a waveform which, used by an external  
DC-coupled power stage, serves to compensate  
for those geometry errors of the picture that are  
symmetric versus vertical axis across the middle  
of the screen.  
rections, by prescale adjustments (VSAG and  
VPOF), by vertical breathing compensation and by  
vertical moire cancellation. The sum of compo-  
nents other than DC is conditionally affected by  
value in HSIZE I²C-bus control in reversed sense.  
Refer to electrical specifications for value. This  
tracking with HSIZE can be switched off by  
EWTrHSize I²C-bus bit. The DC value, adjusted  
via HSIZE control, is also affected by voltage on  
HEHTIn input, thus providing a horizontal breathing  
compensation. The effect of this compensation is  
controlled by HEHTG. The resulting waveform is  
conditionally multiplied with voltage on HPLL1F,  
which depends on frequency. Refer to electrical  
specifications for values. This tracking with fre-  
quency provides a rough compensation of varia-  
tion of picture geometry with frequency and allows  
to fix the adjustment ranges of I²C-bus controls  
throughout the operating range of horizontal fre-  
quencies. It can be switched off by EWTrHFr I²C-  
bus bit (off by default). The functionality is ex-  
plained in Figure 13. The upper part gives the influ-  
ence on DC component, the lower part on AC  
component, showing also the tracking with HSIZE.  
Grey zones give the total span of breathing correc-  
tion using the whole range of input operating volt-  
age on HEHTIn input and whole range of adjust-  
ment of HEHTG register.  
The waveform consists of an adjustable DC value,  
corresponding to horizontal size, a parabola of 2nd  
order for “pin cushion” correction, a linear for “key-  
stone” correction, independent half-parabolas of  
4th order for top and bottom corner corrections, S-  
shape for “S” correction and W shape for “W” cor-  
rection. All of them are adjustable via I²C-bus, see  
Chapter 8 - page 25.  
Refer to Figure 14, Figure 15 and chapter Chapter 7 -  
page 21. The adjustments of these correction  
waveforms have no effect in the middle of the ver-  
tical scan period (if the VPOS control is adjusted to  
its medium value). As they are summed, the re-  
sulting waveform tends to reach its maximum span  
at top and bottom of the picture. The voltage at the  
EWOut is top and bottom limited (see parameter  
V
EW). According to Figure 15, especially the bottom  
limitation seems to be critical for maximum hori-  
zontal size (minimum DC). Actually it is not critical  
since the parabola component must always be ap-  
plied to obtain a picture without pin cushion distor-  
tion. As all the components of the resulting correc-  
tion waveform are generated from an internal line-  
ar vertical sawtooth waveform bearing VSIZE and  
VPOS adjustments, they all track with vertical am-  
plitude and position, thus being fixed vertically on  
the screen. They are not affected by C- and S-cor-  
The EW waveform signal is buffered by an NPN  
emitter follower, the emitter of which is directly  
routed to EWOut output. It is internally biased (see  
electrical specifications for current value).  
39/56  
STV6889  
Figure 13. Tracking of EWOut signal with frequency  
HSIZE=max  
breathing  
breathing  
breathing  
breathing  
HSIZE=min  
HSIZE=min  
V
V
EW-base  
EW-base  
min  
min  
EWTrHFr=0  
EWTrHFr=1  
min  
V
min  
V
HOThrfr  
max  
max  
HOThrfr  
V
V
HO  
HO  
breathing  
HSIZE=min  
HSIZE=max  
breathing  
breathing  
breathing  
x
a
m
=
E
Z
I
S
H
EWTrHSize=1  
EWTrHFr=0  
EWTrHSize=1  
EWTrHFr=1  
0
0
min  
V
min  
V
HOThrfr  
max  
max  
HOThrfr  
V
V
HO  
HO  
40/56  
STV6889  
Figure 14. Geometric corrections’ schematic diagram  
V
VDC-AMP  
VDyCorPol  
-1  
V
VD-DC  
midref  
VDyCor  
32  
2
4
X
H-size control  
X
Int. V-ramp  
(linear, before  
corrections)  
DC  
0...2.5V  
HSIZE  
Breathing  
KEYST  
PCC  
Keystone  
Pin cushion  
Top corner  
Bot. corner  
“W”  
HEHTG  
tracking  
V
HEHTnull  
17  
TCC  
HEHTIn  
V
(max)  
EW  
BCC  
0V  
EWOut  
24  
EWWC  
EWSC  
0V  
V
V
(min)  
EW-base  
EW  
“S”  
3
X
1
0
Tracking  
with hor.  
frequency  
9
HPLL1F  
PARAL  
PCAC  
TCAC  
BCAC  
0V  
Parallelogram  
EWTrHFr  
V
HOThrfr  
Pin cushion  
asymmetry  
To HPLL2  
Controls:  
Top corner  
asymmetry  
1-quadrant  
Internal dynamic  
phase waveform  
2-quadrant  
Bottom corner  
asymmetry  
41/56  
STV6889  
Figure 15. EWOut output waveforms  
max  
Tracking with frequency off. (EWTrHFr = 0)  
HEHTG (I²C)  
V
EW-Key  
V
00h  
V
EW-TCor  
V
EW-PCC  
V
EW-S  
EW-W  
max.  
mid.  
min.  
V
EW-BCor  
7Fh  
00h  
7Fh  
00h  
min  
7Fh  
Breathing  
compensation  
on DC  
Top  
Bottom  
Corners  
alone  
Keystone  
alone  
PCC  
alone  
S alone  
W alone  
0
VHEHT  
Vertical sawtooth  
t
VR  
0
T
0
T
0
T
0
T
VR  
0
TVR  
VR  
VR  
VR  
42/56  
STV6889  
9.6 Dynamic correction outputs section  
9.6.1 Vertical dynamic correction output  
and S-corrections or breathing compensation. It  
does not track with Vertical size after-gain  
(Sad1Dh) nor with Vertical position offset  
(Sad1Eh) adjustments.  
VDyCor  
A parabola at vertical deflection frequency is avail-  
able on pin VDyCor. Its amplitude is adjustable via  
VDC-AMP I²C-bus control and polarity controlled  
via VDyCorPol I²C-bus bit. It tracks with real verti-  
cal amplitude and position. It is not affected by C-  
The use of both correction waveforms is up to the  
application (e.g. dynamic focus, dynamic bright-  
ness control).  
9.7 DC/DC controller section  
The section is designed to control a switch-mode  
DC/DC converter. A switch-mode DC/DC conver-  
tor generates a DC voltage from a DC voltage of  
different value (higher or lower) with little power  
losses. The DC/DC controller is synchronized to  
horizontal deflection frequency to minimize poten-  
tial interference into the picture.  
BOut. Refer to Figure 10. Another condition for reset  
of the R-S flip-flop, OR-ed with the one described  
before, is that the voltage on pin BISense exceeds  
the voltage VC2, which depends on the voltage ap-  
plied on input BRegIn of the error amplifier O1. The  
two voltages are compared, and the reset signal  
generated by the comparator C1. The error ampli-  
fier amplifies (with a factor defined by external  
components) the difference between the input  
voltage proportional to DC/DC convertor output  
voltage and internal reference VBReg. The internal  
reference and so the output voltage is I²C-bus ad-  
justable by means of BREF I²C-bus control.  
Its operation is similar to that of standard UC3842.  
The schematic diagram of the DC/DC controller is  
in Figure 16. The BOut output controls an external  
switching circuit (a MOS transistor) delivering  
pulses synchronized on horizontal deflection fre-  
quency, the phase of which depends on H/W and  
I²C-bus configuration. See the table at the end of  
this chapter. Their duration depends on the feed-  
back provided to the circuit, generally a copy of  
DC/DC converter output voltage and a copy of cur-  
rent passing through the DC/DC converter circuitry  
(e.g. current through external power component).  
The polarity of the output can be controlled by  
BOutPol I²C-bus bit. A NPN transistor open-collec-  
tor is routed out to the BOut pin.  
Both step-up (DC/DC converter output voltage  
higher than its input voltage) and step-down (out-  
put voltage lower than input) can be built.  
9.7.1 Synchronization of DC/DC controller  
For sake of application flexibility, the output drive  
signal on BOut pin can be synchronized with one of  
four events in Table 9. For the first line case, the  
synchronization instant is every second top of hor-  
izontal VCO saw tooth. See Figure 7.  
During the operation, a sawtooth is to be found on  
pin BISense, generated externally by the applica-  
tion. According to BOutPh I²C-bus bit, the R-S flip-  
flop is set either at H-drive signal edge (rising or  
falling, depending on BOHEdge I²C-bus bit), or a  
certain delay (tBTrigDel) after middle of H-flyback, or  
at horizontal frequency divided by two (phase cor-  
responding to VHOThrHi on the VCO ramp). The out-  
put is set On at the end of the short pulse generat-  
ed by the monostable trigger.  
9.7.2 Soft-start and soft-stop on B-drive  
The soft-start and soft-stop procedure is carried  
out at each switch-on or switch-off of the B-drive  
signal, either via HBOutEn I²C-bus bit or after re-  
set of XRayAlarm I²C-bus flag, to protect external  
power component. See Figure 10 and sub chapter  
Safety functions on page 45.  
The drive signal on BOut pin can be switched off  
alone by means of BMute I²C-bus bit, without  
switching off the drive signal on pin HOut. The  
switch-off is quasi-immediate, without the soft-stop  
procedure. At switching back on, the soft-start of  
the DC/DC controller is performed, timed by an in-  
ternal timing circuit, see Figure 16.  
Timing of reset of the R-S flip-flop affects duty cy-  
cle of the output square signal and so the energy  
transferred from DC/DC converter input to its out-  
put. A reset edge is provided by comparator C2 if  
the voltage on pin BISense exceeds the internal  
threshold VThrBIsCurr. This represents current limita-  
tion if a voltage proportional to the current through  
the power component or deflection stage is availa-  
ble on pin BISense. This threshold is affected by  
voltage on pin HPosF, which rises at soft start and  
descends at soft stop. This ensures self-contained  
soft control of duty cycle of the output signal on pin  
When BSafeEn I²C-bus bit is enabled, the drive  
signal on BOut pin will go off as soon as the hori-  
zontal PLL1 indicates unlocked state, without the  
soft-stop. Resuming of locked state will initiate the  
soft-start mechanism of the DC/DC controller,  
timed by an internal timing circuit.  
43/56  
STV6889  
Table 9. IDC/DC controller Off-to-On edge timing  
BOutPh  
(Sad07h/D7)  
BOHEdge  
(Sad17h/D3)  
Timing of Off-to-On transition on BOut output  
0
0
1
1
1
0
0
1
VCO ramp top at Horizontal frequency divided by two  
Middle of H-flyback plus t  
BTrigDel  
Falling edge of H-drive signal  
Rising edge of H-drive signal  
Figure 16. DC/DC converter controller block diagram  
BOutPh  
(I²C)  
0
1
H-drive edge  
1
0
Monostable  
~500ns  
BOHEdge  
(I²C)  
H-fly-back  
I1  
V
(+delay)  
CC  
0
1
VCO  
I2  
T2  
N type  
V
BReg  
28  
BOut  
Feedback  
+
V
C2  
2R  
R
-
O1  
S
-
C1  
15  
BRegIn  
Q
+
I3  
P type  
R
BOutPol  
(I²C)  
-
14  
BComp  
V
C2  
+
B-drive inhibition  
(safety functions)  
ThrBIsCurr  
+
C3  
-
Safety block  
Soft start  
10  
HPosF  
B-drive protection at H-unlock  
(safety functions)  
timing  
16  
BISense  
44/56  
STV6889  
9.8 Miscellaneous  
9.8.1 Safety functions  
The soft stop at power down condition can be con-  
sidered as a special case. As at this condition the  
The safety functions comprise supply voltage  
monitoring with appropriate actions, soft start and  
soft stop features on H-drive and B-drive signals  
on HOut and BOut outputs, B-drive cut-off at unlock  
condition and X-ray protection.  
thresholds VHOn, V  
momentary level oBfOsnupply vHoBltNaogrme (marked VHOn’,  
BOn’, VHBNorm’ in Figure 11), the timing of soft stop  
and V  
depend on the  
V
mechanism depends, apart from the capacitance  
on HPosF, also on the falling speed of supply volt-  
age. The device is capable of performing a correct  
soft stop sequence providing that, at the moment  
the supply voltage reaches VCCStop, the voltage on  
HPosF has already fallen below VHOn (Section 9.8).  
For supply voltage supervision, refer to subsection  
9.1.1 and Figure 1. A schematic diagram putting to-  
gether all safety functions and composite PLL1  
lock and V-blanking indication is in Figure 17.  
9.8.1.1 Soft s tart and s oft s top function  
9.8.1.2 B-drive cut-off at unlock condition  
This function is described in subsection 9.7.2 .  
9.8.1.3 X-ray protection  
For soft start and soft stop features for H-drive and  
B-drive signal, refer to subsection 9.3.7 and subsec-  
tion 9.7 , respectively. See also the Figure 10 and  
Figure 11. Regardless why the H-drive or B-drive  
signal are switched on or off (I²C-bus command,  
power up or down, X-ray protection), the signals  
always phase-in and phase-out in the way drawn  
in the figures, the first to phase-in and last to  
phase-out being the H-drive signal, which is to bet-  
ter protect the power stages at abrupt changes like  
switch-on and off. The timing of phase-in and  
phase-out depends on the capacitance connected  
to HPosF pin which is virtually unlimited for this  
function. However, as it has a dual function (see  
subsection 9.3.2 ), a compromise thereof is to be  
found.  
The X-ray protection is activated if the voltage lev-  
el on XRay input exceeds VThrXRay threshold and if  
the VCC is higher than the voltage level V  
.
CCXRayEn  
As a consequence, the H-drive and B-drive signals  
on HOut and BOut outputs are inhibited (switched  
off) after a 2-horizontal deflection line delay provid-  
ed to avoid erratic excessive X-ray condition de-  
tection at short parasitic spikes. The XRayAlarm  
I²C-bus flag is set to 1 to inform the MCU.  
This protection is latched; it may be reset either by  
V
CC drop or by I²C-bus bit XRayReset  
(see Chapter 8 - page 25).  
45/56  
STV6889  
Figure 17. Safety functions - block diagram  
BSafeEn  
I²C  
B-drive protection at H-unlock  
HPosF  
BMute  
I²C  
H-lock detector  
0 = Off  
1 = On  
= start  
= stop  
10  
HBOutEn  
I²C  
(timing)  
PLL1  
PLL2  
DC/DC  
V
supervision  
SOFT  
START & STOP  
INHIBITION  
CONTROL  
CC  
V
CC  
+
_
V
V
CCEn  
CCDis  
H-VCO  
discharge  
control  
XRayAlarm  
I²C  
XRayReset  
I²C  
R
S
Q
:2  
In  
Out  
XRay  
25  
+
_
Enable  
B-drive inhibit  
H-drive inhibit  
V
ThrXRay  
H-drive inhibition  
(overrule)  
V
CC  
+
_
V
CCXRayEn  
HFly  
12  
V-drive inhibition  
B-drive inhibition  
+
_
V
ThrHFly  
VOutEn  
I²C  
BlankMode  
I²C  
HLockEn  
I²C  
HLckVBk  
L1=No blank/blank level  
L2=H-lock/unlock level  
3
L3=L1+L2  
H-lock detector  
HLock  
I²C  
R
Q
V-sawtooth  
discharge  
S
V-sync  
Int. signal  
X
Pin  
I²C I²C bit/flag  
46/56  
STV6889  
9.8.2 Composite output HLckVBk  
the leading edge of any of the two signals, which-  
ever comes first. The blanking pulse is ended with  
the trailing edge of vertical oscillator discharge  
pulse. The device has no information about the  
vertical retrace time. Therefore, it does not cover,  
by the blanking pulse, the whole vertical retrace  
period. By means of BlankMode I²C-bus bit, when  
at 1 (default), the blanking level (one of two ac-  
cording to PLL1 status) is made available on the  
HLckVBk permanently. The permanent blanking, ir-  
respective of the BlankMode I²C-bus bit, is also  
The composite output HLckVBk provides, at the  
same time, information about lock state of PLL1  
and early vertical blanking pulse. As both signals  
have two logical levels, a four level signal is used  
to define the combination of the two. Schematic di-  
agram putting together all safety functions and  
composite PLL1 lock and V-blanking indication is  
in Figure 17, the combinations, their respective lev-  
els and the HLckVBk configuration in Figure 18.  
The early vertical blanking pulse is obtained by a  
logic combination of vertical synchronization pulse  
and pulse corresponding to vertical oscillator dis-  
charge. The combination corresponds to the draw-  
ing in Figure 18. The blanking pulse is started with  
provided if the supply voltage is low (under V  
CCEn  
or VCCDis thresholds), if the X-ray protection is ac-  
tive or if the V-drive signal is disabled by VOutEn  
I²C-bus bit.  
Figure 18. Levels on HLckVBk composite output  
L1 - No blank/blank level  
L2 - H-lock/unlock level  
V
CC  
L1 +L2  
(H)  
(H)  
3
HLckVBk  
L1 +L2  
(L)  
(H)  
I
SinkLckBk  
V
L1 +L2  
OLckBk  
(H)  
(L)  
L1 +L2  
(L)  
(L)  
V-early blanking  
HPLL1 locked  
No  
Yes  
Yes  
Yes  
No  
No  
Yes  
No  
47/56  
STV6889  
Figure 19. Ground layout recommendations  
STV6889  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
General Ground  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48/56  
STV6889  
49/56  
STV6889  
10 INTERNAL SCHEMATICS  
Figure 20.  
Figure 23.  
V
CC  
V
RefO  
5V  
5
HPLL2C  
H/HVSyn  
1
200ꢀ  
Applies also for pin 2 (VSyn)  
Figure 21.  
Figure 24.  
V
CC  
V
CC  
V
RefO  
V
RefO  
CO  
6
HLckVBk  
3
Figure 22.  
Figure 25.  
V
CC  
V
RefO  
12V  
V
RefO  
RO  
8
HOscF  
4
50/56  
3
STV6889  
Figure 26.  
Figure 29.  
V
CC  
HPLL1F  
9
BComp  
14  
Figure 27.  
Figure 30.  
V
RefO  
12V  
V
CC  
HPosF  
BRegIn  
15  
10  
Figure 28.  
Figure 31.  
V
CC  
V
CC  
BISense  
16  
HFly  
12  
51/56  
3
STV6889  
Figure 32.  
Figure 35.  
V
CC  
22  
V
CC  
VCap  
HEHTIn  
17  
Applies also for pin 18 (VEHTIn)  
Figure 33.  
Figure 36.  
V
V
RefO  
CC  
V
CC  
VOut  
23  
VOscF  
19  
Figure 34.  
Figure 37.  
V
CC  
V
CC  
EWOut 24  
VAGCCap  
20  
Applies also for pin 32 (VDyCor)  
52/56  
3
STV6889  
Figure 38.  
V
CC  
XRay 25  
Figure 39.  
V
CC  
HOut 26  
Applies also for pin 28 (BOut)  
Figure 40.  
V
CC  
SCL 30  
Applies also for pin 31 (SDA)  
53/56  
3
STV6889  
11 PACKAGE MECHANICAL DATA  
32 PINS - PLASTIC SHRINK  
E
E1  
C
Stand-off  
e
B
B1  
eA  
eB  
D
32  
1
17  
16  
Millimeters  
Dimensions  
Inches  
Typ.  
Min.  
3.556  
0.508  
3.048  
0.356  
0.762  
.203  
Typ.  
Max.  
Min.  
0.140  
0.020  
0.120  
0.014  
0.030  
0.008  
1.080  
0.390  
0.300  
Max.  
A
A1  
A2  
B
3.759  
5.080  
0.148  
0.200  
3.556  
0.457  
1.016  
0.254  
27.94  
10.41  
8.890  
1.778  
10.16  
4.572  
0.584  
1.397  
0.356  
28.45  
11.05  
9.398  
0.140  
0.018  
0.040  
0.010  
1.100  
0.410  
0.350  
0.070  
0.400  
0.180  
0.023  
0.055  
0.014  
1.120  
0.435  
0.370  
B1  
C
D
27.43  
9.906  
7.620  
E
E1  
e
eA  
eB  
L
12.70  
3.810  
0.500  
0.150  
2.540  
3.048  
0.100  
0.120  
54/56  
4
STV6889  
12 GLOSSARY  
AC  
Alternate Current  
ACK  
AGC  
COMP  
CRT  
DC  
ACKnowledge bit of I²C-bus transfer  
Automatic Gain Control  
COMParator  
Cathode Ray Tube  
Direct Current  
EHT  
EW  
Extra High Voltage  
East-West  
H/W  
HOT  
I2C  
HardWare  
Horizontal Output Transistor  
Inter-Integrated Circuit  
Inter-Integrated Circuit  
Micro-Controller Unit  
Negated AND (logic operation)  
Negative-Positive-Negative  
OSCillator  
IIC  
MCU  
NAND  
NPN  
OSC  
PLL  
PNP  
REF  
RS, R-S  
S/W  
TTL  
Phase-Locked Loop  
Positive-Negative-Positive  
REFerence  
Reset-Set  
SoftWare  
Transistor Transistor Logic  
Voltage-Controlled Oscillator  
VCO  
55/56  
5
STV6889  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for  
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication  
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as  
critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel  
- Italy  
- Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
56/56  
6

相关型号:

STV7610

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7610A

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7610WAF

DC PLASMA DISPLAY DRIVER, UUC126, DIE-126
STMICROELECTR

STV7612

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7612/WAF

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7617

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7617D

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7617U

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7618

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7618/WAF

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7618WAF

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7619

DC PLASMA DISPLAY DRIVER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
STMICROELECTR