VNH3SP30TR-E [STMICROELECTRONICS]

Automotive fully integrated H-bridge motor driver; 汽车完全集成H桥电机驱动器
VNH3SP30TR-E
型号: VNH3SP30TR-E
厂家: ST    ST
描述:

Automotive fully integrated H-bridge motor driver
汽车完全集成H桥电机驱动器

驱动器 电机
文件: 总33页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNH3SP30-E  
Automotive fully integrated H-bridge motor driver  
Features  
Type  
RDS(on)  
Iout  
Vccmax  
45mmax  
(per leg)  
VNH3SP30-E  
30A  
40V  
MultiPowerSO-30™  
Output current: 30A  
5V logic level compatible inputs  
Undervoltage and overvoltage shutdown  
Overvoltage clamp  
The low-side switches are vertical MOSFETs  
manufactured using STMicroelectronics  
proprietary EHD (“STripFET™”) process.The  
three circuits are assembled in a MultiPowerSO-  
30 package on electrically isolated lead frames.  
This package, specifically designed for the harsh  
automotive environment, offers improved thermal  
performance thanks to exposed die pads.  
Thermal shut down  
Cross-conduction protection  
Linear current limiter  
Very low standby power consumption  
PWM operation up to 10 kHz  
Protection against loss of ground and loss of  
Moreover, its fully symmetrical mechanical design  
provides superior manufacturability at board level.  
The input signals IN and IN can directly  
A
B
V
CC  
interface with the microcontroller to select the  
motor direction and the brake condition. Pins  
®
Package: ECOPACK  
DIAG /EN or DIAG /EN , when connected to an  
A
A
B
B
Description  
external pull-up resistor, enable one leg of the  
bridge. They also provide a feedback digital  
diagnostic signal. The normal condition operation  
is explained in The speed of the motor can be  
controlled in all possible conditions by the PWM  
up to kHz. In all cases, a low level state on the  
The VNH3SP30-E is a full-bridge motor driver  
intended for a wide range of automotive  
applications. The device incorporates a dual  
monolithic high-side driver (HSD) and two low-  
side switches. The HSD switch is designed using  
STMicroelectronics proprietary VIPower™ M0-3  
technology that efficiently integrates a true Power  
MOSFET with an intelligent signal/protection  
circuit on the same die.  
PWM pin will turn off both the LS and LS  
A
B
switches. When PWM rises to a high level, LS or  
A
LS turn on again depending on the input pin  
B
state.  
Table 1.  
Device summary  
Package  
Tube  
VNH3SP30-E  
Tape & reel  
MultiPowerSO-30  
VNH3SP30TR-E  
November 2007  
Rev 6  
1/33  
www.st.com  
33  
Contents  
VNH3SP30-E  
Contents  
1
2
Block diagram and pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
3.3  
Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Open load detection in Off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1  
MultiPowerSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1.1  
Thermal calculation in clockwise and anti-clockwise operation in steady-  
state mode 26  
4.1.2  
Thermal resistances definition  
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . 26  
4.1.3  
4.1.4  
Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Single pulse thermal impedance definition  
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . 26  
5
6
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.1  
5.2  
5.3  
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
MultiPowerSO-30 package mechanical data . . . . . . . . . . . . . . . . . . . . . . 29  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/33  
VNH3SP30-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin functions description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic inputs (INA, INB, ENA, ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching (V = 13V, R  
= 1.1, unless otherwise specified) . . . . . . . . . . . . . . . . . . 10  
CC  
LOAD  
Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 26  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3/33  
List of figures  
VNH3SP30-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Definition of the low side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Definition of the high side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
On state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Off state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
High level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11. Input high level voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 12. Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 14. High level enable pin current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 15. Delay time during change of operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 16. Enable clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 17. High level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 18. Low level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 19. PWM high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 20. PWM low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 21. PWM high level current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 22. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 23. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 24. Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 25. On state high side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 26. On state low side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 27. On state high side resistance vs Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 28. On state low side resistance vs Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 29. Output voltage rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 30. Output voltage fall time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 31. Enable output low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 32. ON state leg resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 33. Typical application circuit for DC to 10 kHz PWM operation short circuit protection . . . . . 20  
Figure 34. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 35. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 36. Waveforms in full bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 37. Waveforms in full bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 38. MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 39. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 40. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 25  
Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 27  
Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse. . . . . . . . . . . . . 27  
Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 44. MultiPowerSO-30 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 45. MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 46. MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 47. MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4/33  
VNH3SP30-E  
Block diagram and pins description  
1
Block diagram and pins description  
Figure 1.  
Block diagram  
Table 2.  
Block description  
Name  
Description  
Allows the turn-on and the turn-off of the high side and the low side switches  
according to the truth table  
Logic control  
Overvoltage +  
undervoltage  
Shuts down the device outside the range [5.5V..36V] for the battery voltage  
High side and low  
side clamp voltage  
Protects the high side and the low side switches from the high voltage on the  
battery line in all configurations for the motor  
High side and low  
side driver  
Drives the gate of the concerned switch to allow a proper RDS(on) for the leg of  
the bridge  
Limits the motor current by reducing the high side switch gate-source voltage  
when short-circuit to ground occurs  
Linear current limiter  
Overtemperature  
protection  
In case of short-circuit with the increase of the junction’s temperature, shuts  
down the concerned high side to prevent its degradation and to protect the die  
Signals an abnormal behavior of the switches in the half-bridge A or B by  
pulling low the concerned ENx/DIAGx pin  
Fault detection  
5/33  
 
Block diagram and pins description  
VNH3SP30-E  
Figure 2.  
Configuration diagram (top view)  
Table 3.  
Pin No  
Pin definitions and functions  
Symbol  
Function  
1, 25, 30  
OUTA, Heat Slug2 Source of high side switch A / Drain of low side switch A  
2, 4, 7, 9, 12,  
14, 17, 22, 24, NC  
29  
Not connected  
3, 13, 23  
VCC, Heat Slug1  
Drain of high side switches and power supply voltage  
Status of high side and low side switches A; open drain output  
Clockwise input  
6
ENA/DIAGA  
INA  
5
8
PWM  
PWM input  
11  
INB  
Counter clockwise input  
10  
ENB/DIAGB  
Status of high side and low side switches B; open drain output  
15, 16, 21  
26, 27, 28  
18, 19, 20  
OUTB, Heat Slug3 Source of high side switch B / Drain of low side switch B  
GNDA  
GNDB  
Source of low side switch A(1)  
Source of low side switch B(1)  
1. GNDA and GNDB must be externally connected together.  
6/33  
 
VNH3SP30-E  
Block diagram and pins description  
Table 4.  
Name  
VCC  
Pin functions description  
Description  
Battery connection  
GNDA, GNDB Power grounds; must always be externally connected together  
OUTA, OUTB Power connections to the motor  
Voltage controlled input pins with hysteresis, CMOS compatible. These two pins  
INA, INB  
PWM  
control the state of the bridge in normal operation according to the truth table (brake  
to VCC, brake to GND, clockwise and counterclockwise).  
Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low side  
FETs are modulated by the PWM signal during their ON phase allowing speed  
control of the motor.  
Open drain bidirectional logic pins. These pins must be connected to an external pull  
up resistor. When externally pulled low, they disable half-bridge A or B. In case of  
fault detection (thermal shutdown of a high side FET or excessive ON state voltage  
drop across a low side FET), these pins are pulled low by the device (see truth table  
in fault condition).  
ENA/DIAGA,  
ENB/DIAGB  
7/33  
Electrical specifications  
VNH3SP30-E  
2
Electrical specifications  
Figure 3.  
Current and voltage conventions  
2.1  
Absolute maximum ratings  
Table 5.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Vcc  
Imax1  
IR  
Supply voltage  
-0.3...40  
30  
V
Maximum output current (continuous)  
Reverse output current (continuous)  
Input current (INA and INB pins)  
Enable input current (DIAGA/ENA and DIAGB/ENB pins)  
PWM input current  
A
-30  
IIN  
10  
IEN  
Ipw  
10  
mA  
10  
Electrostatic discharge (R = 1.5k, C = 100pF)  
– logic pins  
VESD  
4
5
kV  
kV  
– output pins: OUTA, OUTB, VCC  
Tj  
Junction operating temperature  
Case operating temperature  
Storage temperature  
Internally limited  
-40 to 150  
Tc  
°C  
TSTG  
-55 to 150  
8/33  
 
VNH3SP30-E  
Electrical specifications  
2.2  
Electrical characteristics  
Vcc = 9V up to 18V; -40°C < T < 150°C, unless otherwise specified.  
j
Table 6.  
Symbol  
Power section  
Parameter  
Test Conditions  
Min Typ Max Unit  
Operating supply  
voltage  
VCC  
5.5  
36  
V
Off state:  
INA = INB = PWM = 0; Tj = 25°C; VCC = 13V  
INA = INB = PWM = 0  
20  
30  
40  
µA  
µA  
IS  
Supply current  
On state:  
INA or INB = 5V, no PWM  
15 mA  
30  
IOUT = 12A; Tj = 25°C  
23  
11  
Static high side  
resistance  
RONHS  
IOUT = 12A; Tj = -40 to 150°C  
60  
mΩ  
15  
IOUT = 12A; Tj = 25°C  
Static low side  
resistance  
RONLS  
IOUT = 12A; Tj = -40 to 150°C  
30  
High side free-  
wheeling diode  
forward voltage  
Vf  
If = 12 A  
0.8 1.1  
V
High side off state  
IL(off) output current  
(per channel)  
Tj = 25°C; VOUTX = ENX = 0V; VCC = 13V  
Tj = 125°C; VOUTX = ENX = 0V; VCC = 13V  
3
5
µA  
Table 7.  
Symbol  
Logic inputs (IN , IN , EN , EN )  
A B A B  
Parameter  
Test conditions  
Min Typ Max Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
1.5  
Normal operation (DIAGX/ENX pin acts  
as an input pin)  
3.25  
VIHYST Input hysteresis voltage  
0.5  
6
V
IIN = 1mA  
IIN = -1mA  
VIN = 1.5V  
VIN = 3.25V  
6.8  
8
VICL  
Input clamp voltage  
-1 -0.7 -0.3  
IINL  
IINH  
Input low current  
Input high current  
1
µA  
V
10  
Enable output low level Fault operation (DIAGX/ENX pin acts as  
voltage an output pin); IEN = 1mA  
VDIAG  
0.4  
9/33  
Electrical specifications  
VNH3SP30-E  
Table 8.  
Symbol  
PWM  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Vpwl  
Ipwl  
Vpwh  
Ipwh  
PWM low level voltage  
1.5  
V
PWM low level pin  
current  
V
pw = 1.5V  
1
µA  
V
PWM high level voltage  
3.25  
PWM high level pin  
current  
Vpw = 3.25V  
10  
µA  
Vpwhhyst PWM hysteresis voltage  
0.5  
I
pw = 1mA  
VCC + 0.3 VCC + 0.7  
VCC + 1  
-2  
V
Vpwcl  
PWM clamp voltage  
Ipw = -1mA  
-5  
-3.5  
-2  
Test mode PWM pin  
voltage  
Vpwtest  
Ipwtest  
-3.5  
-0.5  
V
Test mode PWM pin  
current  
VIN = -2 V  
-2000  
-500  
µA  
Table 9.  
Symbol  
Switching (V = 13V, R  
= 1.1, unless otherwise specified)  
CC  
LOAD  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
f
PWM frequency  
0
10  
kHz  
Input rise time < 1µs  
(see Figure 6)  
td(on)  
Turn-on delay time  
Turn-off delay time  
100  
85  
300  
255  
Input rise time < 1µs  
(see Figure 6)  
td(off)  
µs  
tr  
tf  
Rise time  
Fall time  
(see Figure 5)  
(see Figure 5)  
1.5  
2
3
5
Delay time during change  
of operating mode  
tDEL  
(see Figure 4)  
600  
1800  
Table 10. Protection and diagnostic  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Unit  
VUSD  
VOV  
Undervoltage shut-down  
Overvoltage shut-down  
Current limitation  
5.5  
V
36  
30  
43  
45  
ILIM  
A
TTSD  
TTR  
Thermal shut-down temperature  
Thermal reset temperature  
Thermal hysteresis  
VIN = 3.25V  
150 170 200  
135  
°C  
THYST  
7
15  
10/33  
VNH3SP30-E  
Figure 4.  
Electrical specifications  
Definition of the delay times measurement  
V
INA  
t
V
INB  
t
PWM  
t
I
LOAD  
tDEL  
tDEL  
t
Figure 5.  
Definition of the low side switching times  
PWM  
t
V
OUTA, B  
90%  
80%  
tf  
tr  
t
10%  
20%  
11/33  
 
 
Electrical specifications  
Figure 6.  
VNH3SP30-E  
Definition of the high side switching times  
V
INA  
t
t
D(off)  
D(on)  
t
V
OUTA  
90%  
10%  
t
12/33  
 
VNH3SP30-E  
Electrical specifications  
Operating mode  
Table 11. Truth table in normal operating conditions  
INA INB  
DIAGA/ENA  
DIAGB/ENB  
OUTA  
OUTB  
1
H
L
Brake to VCC  
1
H
0
Clockwise (CW)  
1
1
1
H
L
Counterclockwise (CCW)  
Brake to GND  
0
L
0
Table 12. Truth table in fault conditions (detected on OUT )  
A
INA  
INB  
DIAGA/ENA  
DIAGB/ENB  
OUTA  
OUTB  
1
0
1
0
X
1
0
H
1
L
1
H
0
0
OPEN  
L
OPEN  
H
0
1
X
L
Fault Information  
Protection Action  
Note:  
Notice that saturation detection on the low side power MOSFET is possible only if the  
impedance of the short-circuit from the output to the battery is less than 100mwhen the  
device is supplied with a battery voltage of 13.5V.  
13/33  
Electrical specifications  
VNH3SP30-E  
Table 13. Electrical transient requirements  
ISO T/R - 7637/1 Test Level Test Level Test Level Test Level  
Test Levels  
Test Pulse  
I
II  
III  
IV  
Delays and Impedance  
1
2
-25V  
+25V  
-25V  
-50V  
+50V  
-50V  
-75V  
+75V  
-100V  
+75V  
-6V  
-100V  
+100V  
-150V  
+100V  
-7V  
2ms, 10Ω  
0.2ms, 10Ω  
3a  
3b  
4
0.1µs, 50Ω  
+25V  
-4V  
+50V  
-5V  
100ms, 0.01Ω  
400ms, 2Ω  
5
+26.5V  
+46.5V  
+66.5V  
+86.5V  
ISO T/R - 7637/1  
Test Pulse  
Test Levels  
Result I  
Test Levels  
Result II  
Test Levels  
Result III  
Test Levels  
Result IV  
1
2
3a  
3b  
4
C
E
C
E
C
E
C
5(1)  
1. For load dump exceeding the above value a centralized suppressor must be adopted  
Class  
Contents  
All functions of the device are performed as designed after exposure to  
disturbance.  
C
One or more functions of the device are not performed as designed after  
exposure to disturbance and cannot be returned to proper operation without  
replacing the device.  
E
14/33  
VNH3SP30-E  
Electrical specifications  
2.3  
Electrical characteristics curves  
Figure 7.  
On state supply current  
Figure 8.  
Off state supply current  
Figure 9.  
High level input current  
Figure 10. Input clamp voltage  
Figure 11. Input high level voltage  
Figure 12. Input low level voltage  
15/33  
 
 
 
 
 
 
Electrical specifications  
VNH3SP30-E  
Figure 13. Input hysteresis voltage  
Figure 14. High level enable pin current  
Figure 15. Delay time during change of  
operation mode  
Figure 16. Enable clamp voltage  
Figure 17. High level enable voltage  
Figure 18. Low level enable voltage  
16/33  
 
 
 
 
 
 
VNH3SP30-E  
Electrical specifications  
Figure 19. PWM high level voltage  
Figure 20. PWM low level voltage  
Figure 21. PWM high level current  
Figure 22. Overvoltage shutdown  
Figure 23. Undervoltage shutdown  
Figure 24. Current limitation  
17/33  
 
 
 
 
 
 
Electrical specifications  
VNH3SP30-E  
Figure 25. On state high side resistance vs  
Figure 26. On state low side resistance vs  
T
T
case  
case  
Figure 27. On state high side resistance vs  
Vcc  
Figure 28. On state low side resistance vs Vcc  
Figure 29. Output voltage rise time  
Figure 30. Output voltage fall time  
18/33  
 
 
 
 
 
 
VNH3SP30-E  
Electrical specifications  
Figure 31. Enable output low level voltage  
Figure 32. ON state leg resistance  
19/33  
 
 
Application information  
VNH3SP30-E  
3
Application information  
In normal operating conditions the DIAG /EN pin is considered as an input pin by the  
X
X
device. This pin must be externally pulled high.  
PWM pin usage: In all cases, a “0” on the PWM pin will turn off both LS and LS switches.  
A
B
When PWM rises back to “1”, LS or LS turn on again depending on the input pin state.  
A
B
Figure 33. Typical application circuit for DC to 10 kHz PWM operation short circuit  
protection  
µC  
Note:  
The value of the blocking capacitor (C) depends on the application conditions and defines voltage and  
current ripple onto supply line at PWM operation. Stored energy of the motor inductance may fly back  
into the blocking capacitor, if the bridge driver goes into tri-state. This causes a hazardous overvoltage  
if the capacitor is not big enough. As basic orientation, 500µF per 10A load current is recommended.  
In case of a fault condition the DIAG /EN pin is considered as an output pin by the device.  
X
X
The fault conditions are:  
overtemperature on one or both high sides  
short to battery condition on the output (saturation detection on the low side power  
MOSFET)  
20/33  
 
VNH3SP30-E  
Possible origins of fault conditions may be:  
Application information  
OUT is shorted to ground overtemperature detection on high side A.  
A
(a)  
OUT is shorted to VCC low side power MOSFET saturation detection  
.
A
When a fault condition is detected, the user can know which power element is in fault by  
monitoring the IN , IN , DIAG /EN and DIAG /EN pins.  
A
B
A
A
B
B
In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the  
respective output (OUT ) again, the input signal must rise from low to high level.  
X
3.1  
Reverse battery protection  
Three possible solutions can be considered:  
1. a Schottky diode  
D connected to V pin  
CC  
2. an N-channel MOSFET connected to the GND pin (see Figure 33: Typical application  
circuit for DC to 10 kHz PWM operation short circuit protection on page 20  
3. a P-channel MOSFET connected to the V pin  
CC  
The device sustains no more than -30A in reverse battery conditions because of the two  
body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of  
VNH3SP30-E will be pulled down to the V line (approximately -1.5V). A series resistor  
CC  
must be inserted to limit the current sunk from the microcontroller I/Os. If I  
maximum target reverse current through µC I/Os, the series resistor is:  
is the  
Rmax  
V
V  
IOs  
I
CC  
R = --------------------------------  
Rmax  
3.2  
Open load detection in Off mode  
It is possible for the microcontroller to detect an open load condition by adding a simply  
resistor (for example, 10k ohm) between one of the outputs of the bridge (for example,  
OUTB) and one microcontroller input. A possible sequence of inputs and enable signals is  
the following: INA = 1, INB = X, ENA = 1, ENB = 0.  
normal condition: OUTA = H and OUTB = H  
open load condition: OUTA = H and OUTB = L: In this case the OUTB pin is internally  
pulled down to GND. This condition is detected on OUTB pin by the microcontroller as  
an open load fault.  
a. An internal operational amplifier compares the Drain-Source MOSFET voltage with the internal reference (2.7V  
Typ.). The relevant low side power MOS is switched off when its Drain-Source voltage exceeds the reference  
voltage.  
21/33  
Application information  
VNH3SP30-E  
3.3  
Test mode  
The PWM pin can be used to test the load connection between two half-bridges. In the Test  
mode (Vpwm = -2V) the internal power MOS gate drivers are disabled. The INA or INB inputs  
can be used to turn on the high side A or B, respectively, in order to connect one side of the  
load at VCC voltage. The check of the voltage on the other side of the load can be used to  
verify the continuity of the load connection. In case of load disconnection, the DIADX/ENX  
pin corresponding to the faulty output is pulled down.  
Figure 34. Half-bridge configuration  
V
CC  
IN  
IN  
IN  
A
B
A
B
IN  
DIAG /EN  
DIAG /EN  
A
A
A
B
A
B
DIAG /EN  
DIAG /EN  
B
B
PWM  
PWM  
OUT  
OUT  
OUT  
OUT  
A
M
B
B
A
GND  
GND  
B
GND  
GND  
B
A
A
Note:  
The VNH3SP30-E can be used as a high power half-bridge driver achieving an On  
resistance per leg of 22.5m.  
Figure 35. Multi-motors configuration  
V
CC  
IN  
IN  
IN  
A
B
A
B
IN  
DIAG /EN  
DIAG /EN  
A
A
A
B
A
B
DIAG /EN  
DIAG /EN  
B
B
PWM  
PWM  
OUT  
OUT  
OUT  
OUT  
A
M2  
B
B
A
GND  
GND  
B
GND  
GND  
B
A
A
M1  
M3  
Note:  
The VNH3SP30-E can easily be designed in multi-motors driving applications such as seat  
positioning systems where only one motor must be driven at a time. DIAG /EN pins allow  
X
X
to put unused half-bridges in high impedance.  
22/33  
 
 
VNH3SP30-E  
Figure 36. Waveforms in full bridge operation  
Application information  
23/33  
 
Application information  
Figure 37. Waveforms in full bridge operation (continued)  
VNH3SP30-E  
24/33  
 
VNH3SP30-E  
Package and PCB thermal data  
4
Package and PCB thermal data  
4.1  
MultiPowerSO-30 thermal data  
Figure 38. MultiPowerSO-30™ PC board  
Note:  
Layout condition of R and Z measurements (PCB FR4 area = 58mm x 58mm, PCB  
th th  
thickness = 2mm, Cu thickness = 35µm, Copper areas: from minimum pad layout to  
2
16cm ).  
Figure 39. Chipset configuration  
HIGH SIDE  
CHIP  
HSAB  
LOW SIDE  
CHIP A  
LOW SIDE  
CHIP B  
LSB  
LSA  
Figure 40. Auto and mutual R  
condition  
vs PCB copper area in open box free air  
thj-amb  
45  
40  
35  
30  
25  
20  
15  
10  
5
RthHS  
RthLS  
RthHSLS  
RthLSLS  
0
0
5
10  
15  
20  
cm2 of Cu area (refer to PCB layout)  
25/33  
 
 
 
Package and PCB thermal data  
VNH3SP30-E  
4.1.1  
Thermal calculation in clockwise and anti-clockwise operation in  
steady-state mode  
Table 14. Thermal calculation in clockwise and anti-clockwise operation in steady-  
state mode  
HSA HSB LSA LSB  
TjHSAB  
TjLSA  
TjLSB  
PdHSA x RthHS + PdLSB PdHSA x RthHSLS  
+
PdHSA x RthHSLS + PdLSB  
ON OFF OFF ON  
x RthHSLS + Tamb  
PdLSB x RthLSLS + Tamb x RthLS + Tamb  
P
dHSB x RthHS + PdLSA PdHSB x RthHSLS  
+
PdHSB x RthHSLS + PdLSA  
x RthLSLS + Tamb  
OFF ON ON OFF  
x RthHSLS + Tamb  
PdLSA x RthLS + Tamb  
4.1.2  
Thermal resistances definition  
(values according to the PCB heatsink area)  
R
= R  
= R  
= High Side Chip Thermal Resistance Junction to Ambient (HS or  
thHS  
thHSA  
thHSB  
A
HS in ON state)  
B
R
R
= R  
= R  
thLSA  
= Low Side Chip Thermal Resistance Junction to Ambient  
thLS  
thLSB  
= R  
= R  
= Mutual Thermal Resistance Junction to Ambient  
thHSBLSA  
thHSLS  
thHSALSB  
between High Side and Low Side Chips  
R
= R  
= Mutual Thermal Resistance Junction to Ambient between Low Side  
thLSALSB  
thLSLS  
Chips  
(b)  
4.1.3  
4.1.4  
Thermal calculation in transient mode  
T
T
T
= Z  
x P  
+ Z  
x (P  
+ P  
) + T  
dLSB amb  
jHSAB  
thHS  
dHSAB  
thHSLS  
dLSA  
= Z  
x P  
x P  
+ Z  
+ Z  
x P  
+ Z  
x P  
x P  
+ T  
amb  
jLSA  
jLSB  
thHSLS  
thHSLS  
dHSAB  
dHSAB  
thLS  
dLSA  
thLSLS  
dLSB  
dLSB  
= Z  
x P  
+ Z  
+ T  
amb  
thLSLS  
dLSA  
thLS  
Single pulse thermal impedance definition  
(values according to the PCB heatsink area)  
Z
Z
Z
= High Side Chip Thermal Impedance Junction to Ambient  
thHS  
= Z  
= Z  
= Low Side Chip Thermal Impedance Junction to Ambient  
thLSB  
thLS  
thLSA  
= Z  
= Z  
= Mutual Thermal Impedance Junction to Ambient  
thHSLS  
thHSABLSA  
thHSABLSB  
between High Side and Low Side Chips  
Z
= Z = Mutual Thermal Impedance Junction to Ambient between Low Side  
thLSLS  
thLSALSB  
Chips  
b. Calculation is valid in any dynamic operating condition. Pd values set by user.  
26/33  
VNH3SP30-E  
Equation 1: pulse calculation formula  
Package and PCB thermal data  
Z
= R  
⋅ δ + Z  
(1 δ)  
THδ  
where  
TH  
δ = t T  
THtp  
p
Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse  
100  
Footprint  
4 cm2  
8 cm2  
ZthHS  
16 cm2  
Footprint  
4 cm2  
10  
8 cm2  
16 cm2  
ZthHSLS  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
time (sec)  
Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse  
100  
Footprint  
4 cm2  
8 cm2  
16 cm2  
Footprint  
4 cm2  
10  
8 cm2  
16 cm2  
1
0,1  
0,001  
0,01  
0,1  
time (sec)  
1
10  
100  
1000  
27/33  
 
 
Package and PCB thermal data  
Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30  
VNH3SP30-E  
(1)  
Table 15. Thermal parameters  
Area/island (cm2)  
Footprint  
4
8
16  
R1 = R7 (°C/W)  
0.05  
0.3  
R2 = R8 (°C/W)  
R3 (°C/W)  
0.5  
R4 (°C/W)  
1.3  
R5 (°C/W)  
14  
R6 (°C/W)  
44.7  
0.6  
39.1  
36.1  
31.6  
30.4  
23.7  
20.8  
R9 = R10= R15= R16 (°C/W)  
R11 = R17 (°C/W)  
R12 = R18 (°C/W)  
R13 = R19 (°C/W)  
R14 = R20 (°C/W)  
R21 = R22 = R23 (°C/W)  
C1 = C7 = C9 = C15 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 = (W.s/°C)  
0.8  
1.5  
20  
46.9  
115  
0.001  
0.005  
0.02  
0.3  
C4 = C13 = C19 (W.s/°C)  
C5 (W.s/°C)  
0.6  
C6 (W.s/°C)  
5
7
9
11  
C10 = C11= C16 = C17 (W.s/°C)  
C12 = C18 (W.s/°C)  
C14 = C20 (W.s/°C)  
0.003  
0.075  
2.5  
3.5  
4.5  
5.5  
1. The blank space means that the value is the same as the previous one.  
28/33  
 
VNH3SP30-E  
Package and packing information  
5
Package and packing information  
5.1  
ECOPACK® packages  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second-level interconnect. The category of  
Second-Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
5.2  
MultiPowerSO-30 package mechanical data  
Figure 44. MultiPowerSO-30 package outline  
29/33  
 
Package and packing information  
VNH3SP30-E  
Table 16. MultiPowerSO-30 mechanical data  
Millimeters  
Typ  
Symbol  
Min  
Max  
A
A2  
A3  
B
2.35  
2.25  
0.1  
1.85  
0
0.42  
0.23  
17.1  
18.85  
15.9  
0.58  
0.32  
17.3  
19.15  
16.1  
C
D
17.2  
E
E1  
e
16  
1
F1  
F2  
F3  
L
5.55  
4.6  
9.6  
0.8  
6.05  
5.1  
10.1  
1.15  
10deg  
7deg  
N
S
0deg  
Figure 45. MultiPowerSO-30 suggested pad layout  
30/33  
 
VNH3SP30-E  
Package and packing information  
5.3  
Packing information  
Note:  
The devices can be packed in tube or tape and reel shipments (see the Device summary on  
page 1 for packaging quantities).  
Figure 46. MultiPowerSO-30 tube shipment (no suffix)  
Dimension  
mm  
532  
A
Tube length ( 0.5)  
A
3.82  
23.6  
0.8  
B
C
B
C ( 0.13)  
Figure 47. MultiPowerSO-30 tape and reel shipment (suffix “TR”)  
Reel dimensions  
Dimension  
mm  
A (max)  
B (min)  
330  
1.5  
C ( 0.2)  
D (min)  
13  
20.2  
32  
G (+ 2 / -0)  
N (min)  
100  
38.4  
T (max)  
Tape dimensions  
According to Electronic Industries  
Association (EIA) Standard 481 rev. A, Feb  
1986  
Description  
Dimension  
mm  
Tape width  
W
32  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
Hole Diameter  
Hole Position  
P0 ( 0.1)  
P
24  
D ( 0.1/-0)  
D1 (min)  
F ( 0.1)  
1.5  
2
14.2  
End  
Start  
Top  
cover  
tape  
No components  
500 mm min  
Components  
No components  
500 mm min  
Empty components pockets  
User direction of feed  
31/33  
 
 
Revision history  
VNH3SP30-E  
6
Revision history  
Table 17. Document revision history  
Date  
Revision  
Description of changes  
Initial release of lead-free version based on the VNH3SP30 datasheet  
(May 2004 - Rev.1)  
Aug-2004  
Aug- 2005  
1
2
Modified figure 5  
Document converted into new ST corporate template.  
Changed document title .  
Changed features on page 1 to add ECOPACK® package.  
Added section 1: device block description on page 5.  
Added section 2: pinout description on page 6.  
Added section 3: maximum ratings on page 8.  
Added section 4: electrical characteristics on page 9.  
Added “low” and “high” to parameters for IINL and IINH in Table 6 on  
page 9.  
20-Dec-2006  
3
Added section 5: Waveforms and truth table on page 12.  
Changed first of two fault conditions in section 5 on page 12.  
Inserted note in Figure 4 on page 12.  
Added vertical limitation line to left side arrow of tD(off) to Figure 7 on  
page 17.  
Added section 6: thermal data on page 26.  
Added section 7: package characteristics on page 30.  
Added section 8: packaging information on page 32.  
Updated disclaimer (last page) to include a mention about the use of  
ST products in automotive applications.  
Document reformatted.  
Changed Table 6: Power section on page 9 : supply current and  
static resistance values.  
20-Jun-2007  
4
Added Table 7: Logic inputs (INA, INB, ENA, ENB) on page 9 : VDIAG  
.
ROW  
Deleted Enable (Logic I/O pin) Table.  
13-Sep-2007  
15-Nov-2007  
5
6
Updated Table 2: Block description on page 5.  
Corrected Figure 34 note : changed On resistance per leg from 9.5  
mto 22.5 m.  
32/33  
VNH3SP30-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
33/33  

相关型号:

VNH5019A-E

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH5050A-E

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH5050ATR-E

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH50N04

FULLY AUTOPROTECTED POWER MOSFET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH5180A-E

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH7013XP-E

Automotive integrated H-bridge

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH70N07

TRANSISTOR | MOSFET | N-CHANNEL | 70V V(BR)DSS | 70A I(D) | TO-218

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VNH7100AS

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNH7100ASTR

Automotive fully integrated H-bridge motor driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNI4140K

Quad high side smart power solid state relay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNI4140K-32

Quad high side smart power solid state relay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VNI4140KTR

Quad high side smart power solid state relay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR