CC2640R2FTWRGZRQ1 [TI]

符合汽车标准的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105;
CC2640R2FTWRGZRQ1
型号: CC2640R2FTWRGZRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合汽车标准的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105

无线
文件: 总47页 (文件大小:1814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
CC2640R2F-Q1 适用于汽车应用SimpleLink™ 低功Bluetooth ® 线MCU  
– 集成温度传感器  
1 特性  
• 外部系统  
– 片上内部直流/直流转换器  
– 极少的外部组件  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
SimpleLinkCC2590 CC2592 范围扩展  
– 器件温度等2-40°C +105°C 环境工作温  
度范围  
器无缝集成  
• 低功耗  
– 器件人体模(HBM) 静电放(ESD) 分类等级  
2
– 器CDM ESD 分类等C3  
• 微控制器  
– 宽电源电压范围1.8 3.8 V  
– 有源模RX6.1 mA  
– 有源模TX (0dBm)7.0 mA  
– 有源模TX (+5dBm)9.3 mA  
– 有源模MCU61µA/MHz  
– 有源模MCU48.5CoreMark/mA  
– 有源模式传感器控制器:  
– 功能强大Arm® Cortex®-M3  
EEMBC CoreMark® 评分142  
– 高48MHz 的时钟速度  
275KB 非易失性存储器128KB 系统内可  
编程闪存  
0.4 mA + 8.2µA/MHz  
– 待机1.3μARTC 运行RAM/CPU 保持)  
– 关断150nA发生外部事件时唤醒)  
• 射(RF) 部分  
– 高28KB SRAM20KB 为超低泄漏  
SRAM  
8KB SRAM 作为缓存或系RAM 用途  
2 cJTAG JTAG 调试  
– 支持无线(OTA) 升级  
– 与低功耗蓝(BLE) 4.2 5 规范兼容的  
2.4GHz 射频收发器  
• 超低功耗传感器控制器  
– 出色的接收器灵敏度对于低功耗蓝1Mbps  
97dBm、可选择性和阻断性能  
– 高+5dBm 的可编程输出功率  
– 对于低功耗蓝1Mbps链路预算102dB  
– 适用于符合各项全球射频规范的系统  
ETSI EN 300 328 EN 300 440欧洲)  
FCC CFR47 15 部分美国)  
ARIB STD-T66日本)  
– 可独立于系统其余部分自主运行  
16 位架构  
20KB 超低泄漏电流代码和数SRAM  
• 高效代码大小架构ROM 中装载驱动程序、低  
Bluetooth® 控制器和引导加载程序让更多闪  
存供应用使用  
• 符RoHS 标准的汽车级封装  
– 具有可湿性侧面7mm × 7mm RGZ VQFN48  
封装  
• 外设  
• 开发工具和软件  
– 全功能开发套件  
Sensor Controller Studio  
31 GPIO所有数字外设引脚均可连接至任何  
GPIO  
– 四个通用计时器模块  
8 16 位计时器4 32 位计时器均采  
PWM)  
SmartRFStudio  
IAR Embedded Workbench® for Arm®  
Code Composer Studio集成式开发环(IDE)  
Code Composer Studio™ Cloud IDE  
2 应用  
12 ADC200ksps8 通道模拟多路复用器  
– 持续时间比较器  
– 超低功耗模拟比较器  
– 可编程电流源  
汽车  
汽车门禁和安全系统  
无钥匙进入及启(PEPS) 系统  
手机即钥(PaaK)  
遥控免钥匙进(RKE)  
工业  
UART  
2 个同步串行接(SSI)SPIMICROWIRE  
TI)  
I2CI2S  
工厂自动化  
– 实时时(RTC)  
资产跟踪和管理  
人机界(HMI)  
门禁  
AES-128 安全模块  
– 真随机数发生(TRNG)  
– 支8 个电容式感应按钮  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS201  
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
3 说明  
SimpleLink™ 低功耗 Bluetooth ® CC2640R2F-Q1 器件是一款符合 AEC-Q100 标准的无线微控制器 (MCU)面  
®
®
向低功耗 Bluetooth 4.2 Bluetooth 5 汽车应用例如无钥匙进入/启动系统 (PEPS)、遥控免钥匙进入  
(RKE)、汽车共享、泊车引导、电缆更换和智能手机连接。  
CC2640R2F-Q1 件属于德州仪器 (TI)SimpleLinkMCU 台系列。该平台包含 Wi-Fi®低功耗  
Bluetooth ®Sub-1GHz、以太网、Zigbee®Thread 和主机 MCU。所有这些器件均共用一个简单易用的通用开  
发环境其中包含单个核心软件开发套(SDK) 和丰富的工具集。借助一次性集成的 SimpleLink™ 平台用户可  
以将产品系列中的任何器件组合添加到自己的设计中从而在设计要求变更时实现 100% 代码重用。更多信息,  
请访http://www.ti.com/wireless-connectivity/simplelink-solutions/overview/overview.html。  
CC2640R2F-Q1 的有源射频和 MCU 电流消耗非常低并且具有灵活的低功耗模式可提供出色的电池寿命使  
连接到汽车电池的节点依靠小型纽扣电池实现远距离操作并具有低功耗。出色的接收器灵敏度和可编程输出功  
为严苛的汽车射频环境提供其所需的出色射频性能。  
CC2640R2F-Q1 无线 MCU 包含一个作为主应用处理器以 48MHz 速率运行的 32 Arm® Cortex®-M3 处理器,  
并包含嵌入于 ROM 中的低功耗 Bluetooth ® 4.2 控制器库和主机库。此架构可改善整体系统性能和功耗并释放  
大量闪存以供应用使用。  
此外该器件通过了 AEC-Q100 认证达到 2 级温度范围40°C +105°C),并采用具有可湿性侧面的  
7mm × 7mm VQFN 封装。可湿性侧面有助于降低生产线成本并通过光学检查焊点的方式提高可靠性。  
ti.com 免费获取低功耗蓝牙软件栈。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
CC2640R2FTWRGZQ1  
封装  
7.00mm × 7.00mm  
具有可湿性侧面VQFN (48) 封装  
(1) 如需了解更多信息请参阅机械、封装和可订购信息。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
4 功能方框图  
4-1 显示CC2640R2F-Q1 器件的方框图。  
AEC-Q100 Automotive Grade  
SimpleLink CC2640R2F-Q1 Wireless MCU  
RF Core  
cJTAG  
Main CPU  
ROM  
ADC  
ADC  
ARM  
128-KB  
Flash  
Cortex-M3  
Digital PLL  
DSP Modem  
4-KB  
8-KB  
Cache  
ARM  
SRAM  
20-KB  
SRAM  
Cortex-M0  
ROM  
General Peripherals / Modules  
Sensor Controller  
I2C  
4× 32-bit Timers  
Sensor Controller  
Engine  
UART  
I2S  
2× SSI (SPI, µW, TI)  
Watchdog Timer  
12-bit ADC, 200 ks/s  
2× Comparator  
31 GPIOs  
AES  
TRNG  
SPI-I2C Digital Sensor IF  
Constant Current Source  
Time-to-Digital Converter  
2-KB SRAM  
Temp. / Batt. Monitor  
32 ch. µDMA  
RTC  
DC/DC Converter  
4-1. 方框图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.20 Thermal Resistance Characteristics for RGZ  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
6.1 Related Products........................................................ 6  
7 Terminal Configuration and Functions..........................7  
7.1 Pin Diagram RGZ Package....................................7  
7.2 Signal Descriptions RGZ Package.........................8  
7.3 Wettable Flanks.......................................................... 9  
8 Specifications................................................................ 10  
8.1 Absolute Maximum Ratings...................................... 10  
8.2 ESD Ratings............................................................. 10  
8.3 Recommended Operating Conditions.......................10  
8.4 Power Consumption Summary................................. 11  
8.5 General Characteristics.............................................11  
8.6 1-Mbps GFSK (Bluetooth low energy  
Package...................................................................... 20  
8.21 Timing Requirements..............................................21  
8.22 Switching Characteristics........................................21  
8.23 Typical Characteristics............................................22  
9 Detailed Description......................................................26  
9.1 Overview...................................................................26  
9.2 Main CPU..................................................................26  
9.3 RF Core.................................................................... 26  
9.4 Sensor Controller......................................................27  
9.5 Memory.....................................................................28  
9.6 Debug....................................................................... 28  
9.7 Power Management..................................................29  
9.8 Clock Systems.......................................................... 30  
9.9 General Peripherals and Modules............................ 30  
9.10 System Architecture................................................31  
10 Application, Implementation, and Layout................. 32  
10.1 Application Information........................................... 32  
10.2 7 × 7 Internal Differential (7ID) Application Circuit..34  
11 Device and Documentation Support..........................36  
11.1 Device Nomenclature..............................................36  
11.2 Tools and Software..................................................37  
11.3 Documentation Support.......................................... 38  
11.4 Texas Instruments Low-Power RF Website............ 38  
11.5 Support Resources................................................. 38  
11.6 Trademarks............................................................. 38  
11.7 Electrostatic Discharge Caution..............................38  
11.8 Export Control Notice..............................................38  
11.9 Glossary..................................................................38  
12 Mechanical, Packaging, and Orderable  
Technology) RX...................................................... 12  
8.7 1-Mbps GFSK (Bluetooth low energy  
Technology) TX.......................................................13  
8.8 24-MHz Crystal Oscillator (XOSC_HF).....................13  
8.9 32.768-kHz Crystal Oscillator (XOSC_LF)................13  
8.10 48-MHz RC Oscillator (RCOSC_HF)......................14  
8.11 32-kHz RC Oscillator (RCOSC_LF)........................ 14  
8.12 ADC Characteristics................................................14  
8.13 Temperature Sensor............................................... 15  
8.14 Battery Monitor........................................................15  
8.15 Continuous Time Comparator.................................15  
8.16 Low-Power Clocked Comparator............................17  
8.17 Programmable Current Source...............................17  
8.18 Synchronous Serial Interface (SSI).........................17  
8.19 DC Characteristics..................................................19  
Information.................................................................... 39  
12.1 Packaging Information............................................ 39  
5 Revision History  
Changes from Revision A (August 2017) to Revision B (October 2020)  
Page  
• 更新了整个文档中的章节、表格、图和交叉参考的编号..................................................................................... 1  
• 更改了1 中的开发工具和软件......................................................................................................................... 1  
• 更改了2 ......................................................................................................................................................... 1  
• 更改了3 ......................................................................................................................................................... 2  
Added note to 8.1 about injection current and associated this note with the "Voltage on any digital pin"  
specification......................................................................................................................................................10  
Removed the flash write time specification's association with note 2 in 8.5 ................................................11  
Added "Zero cycles" as the test condition for flash page/sector erase time in 8.5 ......................................11  
Added new flash page/sector erase time at 30 000 cycles in 8.5 ................................................................11  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Device Comparison  
6-1. Device Family Overview  
FLASH  
(KB)  
RAM  
(KB)  
DEVICE  
PHY SUPPORT  
GPIO  
31  
PACKAGE(1)  
Bluetooth low energy (Normal, High  
Speed, Long Range, Automotive)  
CC2640R2F-Q1(2)  
CC2640R2Fxxx(2)  
128  
128  
20  
20  
RGZ (Wettable Flanks)  
RGZ, RHB, YFV, RSM  
Bluetooth low energy (Normal, High  
Speed, Long Range)  
31, 15, 14, 10  
CC2650F128xxx  
CC2640F128xxx  
CC2630F128xxx  
CC2620F128xxx  
Multi-Protocol(3)  
128  
128  
128  
128  
20  
20  
20  
20  
31, 15, 10  
31, 15, 10  
31, 15, 10  
31, 10  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RSM  
Bluetooth low energy (Normal)  
IEEE 802.15.4 (Zigbee/6LoWPAN)  
IEEE 802.15.4 (RF4CE)  
(1) Package designator replaces the xxx in device name to form a complete device name, RGZ is 7-mm × 7-mm VQFN48, RHB is 5-mm ×  
5-mm VQFN32, RSM is 4-mm × 4-mm VQFN32, and YFV is 2.7-mm × 2.7-mm DSBGA.  
(2) CC2640R2F-xxx devices contain Bluetooth 4.2 Host and Controller libraries in ROM, leaving more of the 128KB of flash available for  
the customer application when used with supported BLE-Stack software protocol stack releases. Actual use of ROM and flash by  
the protocol stack may vary depending on device software configuration. See Bluetooth low energy Stack for more details.  
(3) The CC2650 device supports all PHYs and can be reflashed to run all the supported standards.  
6-2. Typical(1) Flash Memory Available for Customer Applications  
Device  
Simple BLE Peripheral (BT 4.0)(2)  
Simple BLE Peripheral (BT 4.2)(2) (3)  
CC2640R2Fxxx, CC2640R2F-Q1(4)  
83 KB  
41 KB  
80 KB  
31 KB  
CC2640F128xxx, CC2650F128xxx  
(1) Actual use of ROM and flash by the protocol stack will vary depending on device software configuration. The values in this table are  
provided as guidance only.  
(2) Application example with two services (GAP and Simple Profile). Compiled using IAR.  
(3) BT4.2 configuration including Secure Pairing, Privacy 1.2, and Data Length Extension  
(4) Bluetooth low energy applications running on the CC2640R2F-Q1 device make use of up to 115 KB of system ROM and up to 32 KB  
of RF Core ROM in order to minimize the flash usage. The maximum amount of nonvolatile memory available for Bluetooth low energy  
applications on the CC2640R2F-Q1 device is thus 275 KB (128-KB flash + 147-KB ROM).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.1 Related Products  
Wireless Connectivity  
The wireless connectivity portfolio offers a wide selection of low power RF solutions  
suitable for a broad range of applications. The offerings range from fully customized  
solutions to turn key offerings with pre-certified hardware and software (protocol).  
TI's SimpleLink™ Sub-1 Long-range, low-power wireless connectivity solutions are offered in a wide range of  
GHz Wireless MCUs  
Sub-1 GHz ISM bands.  
Design & development  
Review design and development resources that are available for this product.  
SimpleLink™ CC2640R2 The CC2640R2 LaunchPaddevelopment kit brings easy Bluetooth low energy  
Wireless MCU  
LaunchPad™  
Development Kit  
(BLE) connection to the LaunchPad ecosystem with the SimpleLink ultra-low power  
CC26xx family of devices. Compared to the CC2650 LaunchPad kit, the CC2640R2  
LaunchPad kit provides the following:  
More free flash memory for the user application in the CC2640R2 wireless MCU  
Out-of-the-box support for Bluetooth 4.2 specification  
4× faster over-the-air download speed compared to Bluetooth 4.1  
SimpleLink™ Bluetooth  
The SensorTag IoT kit invites you to realize your cloud-connected product idea. The  
low energy/Multistandard SensorTag includes 10 low-power MEMS sensors in a tiny red package, and it is  
SensorTag  
expandable with DevPacks to make it easy to add your own sensors or actuators.  
Reference Designs for  
CC2640  
TI Reference Design Library is a robust reference design library spanning analog,  
embedded processor and connectivity. Created by TI experts to help you jump-start  
your system design, all TI Designs include schematic or block diagrams, BOMs and  
design files to speed your time to market. Search and download designs at ti.com/  
tidesigns.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagram RGZ Package  
DIO_24 37  
DIO_25 38  
DIO_26 39  
DIO_27 40  
DIO_28 41  
DIO_29 42  
DIO_30 43  
VDDS 44  
24 JTAG_TMSC  
23 DCOUPL  
22 VDDS3  
21 DIO_15  
20 DIO_14  
19 DIO_13  
18 DIO_12  
17 DIO_11  
16 DIO_10  
15 DIO_9  
VDDR 45  
X24M_N 46  
X24M_P 47  
VDDR_RF 48  
14 DIO_8  
13 VDDS2  
The following I/O pins marked in bold have high-drive capabilities:  
Pin 10: DIO_5  
Pin 11: DIO_6  
Pin 12: DIO_7  
Pin 24: JTAG_TMSC  
Pin 26: DIO_16  
Pin 27: DIO_17  
The following I/O pins marked in italics have analog capabilities:  
Pin 36: DIO_23  
Pin 37: DIO_24  
Pin 38: DIO_25  
Pin 39: DIO_26  
Pin 40: DIO_27  
Pin 41: DIO_28  
Pin 42: DIO_29  
Pin 43: DIO_30  
7-1. 48-Pin RGZ Package With Wettable Flanks, 7-mm × 7-mm Pinout, 0.5-mm Pitch (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
7.2 Signal Descriptions RGZ Package  
7-1. Signal Descriptions RGZ Package  
NAME  
NO.  
33  
23  
5
TYPE  
DESCRIPTION  
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Output from internal DC/DC(1)  
Power  
1.27-V regulated digital-supply decoupling capacitor(2)  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
6
GPIO, Sensor Controller  
DIO_2  
7
GPIO, Sensor Controller  
DIO_3  
8
GPIO, Sensor Controller  
DIO_4  
9
GPIO, Sensor Controller  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
24  
25  
35  
GPIO, Sensor Controller, high-drive capability  
DIO_6  
GPIO, Sensor Controller, high-drive capability  
DIO_7  
GPIO, Sensor Controller, high-drive capability  
DIO_8  
GPIO  
DIO_9  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital I/O  
Digital I/O  
Digital input  
JTAG TMSC, high-drive capability  
JTAG TCKC  
Reset, active-low. No internal pullup.  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RF_P  
RF_N  
1
2
RF I/O  
RF I/O  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
VDDR  
45  
48  
Power  
Power  
Connect to output of internal DC/DC(2) (3)  
Connect to output of internal DC/DC(2) (4)  
VDDR_RF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
7-1. Signal Descriptions RGZ Package (continued)  
NAME  
NO.  
44  
13  
22  
34  
3
TYPE  
DESCRIPTION  
1.8-V to 3.8-V main chip supply(1)  
VDDS  
Power  
VDDS2  
Power  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DC/DC supply  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground Exposed Ground Pad  
VDDS3  
Power  
VDDS_DCDC  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
Power  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
4
46  
47  
(1) See the technical reference manual listed in 11.3 for more details.  
(2) Do not supply external circuitry from this pin.  
(3) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(4) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
7.3 Wettable Flanks  
The automotive industry requires original equipment manufacturers (OEMs) to perform 100% automated visual  
inspection (AVI) post-assembly to ensure that cars meet the current demands for safety and high reliability.  
Standard quad-flat no-lead (VQFN) packages do not have solderable or exposed pins/terminals that are easily  
viewed. It is therefore difficult to determine visually whether or not the package is successfully soldered onto the  
printed circuit board (PCB). To resolve the issue of side-lead wetting of leadless packaging for automotive and  
commercial component manufacturers, the wettable-flank process was developed. The wettable flanks on the  
VQFN package provide a visual indicator of solderability and thereby lower the inspection time and  
manufacturing costs.  
The CC2640R2F-Q1 device is assembled using an automotive-grade VQFN package with wettable flanks.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX UNIT  
VDDR supplied by internal DC/DC regulator or  
internal GLDO. VDDS_DCDC connected to VDDS  
on PCB.  
Supply voltage, VDDS(3)  
4.1  
V
0.3  
Voltage on any digital pin(4) (5)  
VDDS + 0.3, max 4.1  
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Voltage on ADC input (Vin)  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
V
VDDS / 2.9  
5
Input RF level  
Tstg  
dBm  
°C  
Storage temperature  
150  
40  
(1) All voltage values are with respect to ground, unless otherwise noted.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(3) VDDS2 and VDDS3 need to be at the same potential as VDDS.  
(4) Including analog-capable DIO.  
(5) Injection current is not supported on any GPIO pin.  
8.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human Body Model (HBM), per AEC Q100-002(1) (2)  
Charged Device Model (CDM), per AEC Q100-011(3)  
All pins  
VESD  
Electrostatic discharge  
XOCS pins 46, 47  
All other pins  
V
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Ambient temperature  
105  
°C  
V
40  
Operating supply voltage,  
VDDS  
For operation in battery-powered and 3.3-V systems  
(internal DC/DC can be used to minimize power consumption)  
1.8  
3.8  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.4 Power Consumption Summary  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V with internal DC/DC converter, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
150  
1.3  
MAX  
UNIT  
Reset. RESET_N pin asserted or VDDS below  
power-on-reset (POR) threshold  
nA  
Shutdown. No clocks running, no retention  
Standby. With RTC, CPU, RAM and (partial)  
register retention. RCOSC_LF  
Standby. With RTC, CPU, RAM and (partial)  
register retention. XOSC_LF  
1.5  
3.4  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. RCOSC_LF  
µA  
Icore  
Core current consumption  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. XOSC_LF  
3.6  
Idle. Supply Systems and RAM powered.  
Active. Core running CoreMark  
Radio RX  
650  
1.45 mA + 31 µA/MHz  
6.1  
7.0  
9.3  
Radio TX, 0-dBm output power  
Radio TX, 5-dBm output power  
mA  
Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated)(1)  
Peripheral power domain  
Serial power domain  
Delta current with domain enabled  
Delta current with domain enabled  
20  
13  
µA  
µA  
Delta current with power domain enabled, clock  
enabled, RF core idle  
RF Core  
237  
µA  
µDMA  
Timers  
I2C  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
130  
113  
12  
µA  
µA  
µA  
µA  
µA  
µA  
Iperi  
I2S  
36  
SSI  
93  
UART  
164  
(1) Iperi is not supported in Standby or Shutdown.  
8.5 General Characteristics  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FLASH MEMORY  
Supported flash erase cycles before  
failure  
100  
k Cycles  
Maximum number of write operations  
per row before erase(1)  
write  
operations  
83  
Years at  
105°C  
Flash retention  
105°C  
11.4  
Flash page/sector erase current  
Flash page/sector size  
Average delta current  
12.6  
4
mA  
KB  
ms  
ms  
mA  
Flash page/sector erase time(2)  
Flash page/sector erase time (2)  
Flash write current  
Zero cycles  
8
4000  
30 000 cycles  
Average delta current, 4 bytes at a time  
8.15  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.5 General Characteristics (continued)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Flash write time  
4 bytes at a time  
8
µs  
(1) Each row is 2048 bits (or 256 bytes) wide.  
(2) This number is dependent on Flash aging and will increase over time and erase cycles.  
8.6 1-Mbps GFSK (Bluetooth low energy Technology) RX  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC2640Q1EM-7ID SMA  
connector, BER = 103  
Receiver sensitivity  
dBm  
97  
Differential mode. Measured at the CC2640Q1EM-7ID SMA  
connector, BER = 103  
Receiver saturation  
4
dBm  
Difference between the incoming carrier frequency and the  
internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(3)  
Selectivity, ±1 MHz(3)  
350  
750  
kHz  
ppm  
dB  
350  
750  
Difference between incoming data rate and the internally  
generated data rate  
Wanted signal at 67 dBm, modulated interferer in channel,  
6  
7 / 2(1)  
BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±1 MHz,  
dB  
BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2 MHz,  
Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz(3)  
39 / 17(2) (1)  
38 / 30(1)  
42 / 36(1)  
32  
dB  
dB  
dB  
dB  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at ±3 MHz,  
Selectivity, ±3 MHz(3)  
BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±4 MHz,  
Selectivity, ±4 MHz(3)  
BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±5  
Selectivity, ±5 MHz or more(3)  
Selectivity, Image frequency(3)  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at image  
17  
frequency, BER = 103  
Selectivity, Image frequency  
±1 MHz(3)  
Wanted signal at 67 dBm, modulated interferer at ±1 MHz  
2 / 30(1)  
from image frequency, BER = 103  
Out-of-band blocking (4)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
20  
5  
8  
8  
Wanted signal at 2402 MHz, 64 dBm. Two interferers at  
2405 and 2408 MHz respectively, at the given power level  
Intermodulation  
dBm  
dBm  
34  
65  
Conducted measurement in a 50-Ωsingle-ended load.  
Suitable for systems targeting compliance with EN 300 328,  
EN 300 440, FCC CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
30 MHz to 1000 MHz  
Conducted measurement in a 50-Ωsingle-ended load.  
Suitable for systems targeting compliance with EN 300 328,  
EN 300 440, FCC CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
1 GHz to 12.75 GHz  
dBm  
52  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
(1) X / Y, where X is +N MHz and Y is N MHz.  
(2) +2MHz selectivity is reduced to 33dB when using radio FW supporting 2Mbps and Coded PHYs  
(3) Numbers given as I/C dB.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
(4) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
8.7 1-Mbps GFSK (Bluetooth low energy Technology) TX  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ωload  
through a balun  
Output power, highest setting  
Output power, lowest setting  
5
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Delivered to a single-ended 50-Ωload through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
21  
44  
62  
62  
55  
Spurious emission conducted  
measurement(1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 (Europe),  
FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.8 24-MHz Crystal Oscillator (XOSC_HF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
Ω
ESR Equivalent series resistance(2)  
ESR Equivalent series resistance(2)  
20  
6 pF < CL 9 pF  
80  
5 pF < CL 6 pF  
Ω
Relates to load capacitance  
(CL in Farads)  
LM Motional inductance(2)  
< 1.6 × 1024 / CL  
H
2
CL Crystal load capacitance(2)  
Crystal frequency(2) (3)  
5
9
pF  
MHz  
ppm  
µs  
24  
Crystal frequency tolerance(2) (4)  
Start-up time(3) (5)  
40  
40  
150  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
(2) The crystal manufacturer's specification must satisfy this requirement  
(3) Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V  
(4) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance, as per  
Bluetooth specification.  
(5) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection.  
8.9 32.768-kHz Crystal Oscillator (XOSC_LF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Crystal frequency(1)  
TEST CONDITIONS  
MIN  
500  
6
TYP  
MAX  
UNIT  
32.768  
kHz  
Crystal frequency tolerance, Bluetooth low-  
energy applications(1) (2)  
500  
ppm  
ESR Equivalent series resistance(1)  
CL Crystal load capacitance(1)  
30  
100  
12  
kΩ  
pF  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance, as per  
Bluetooth specification.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.10 48-MHz RC Oscillator (RCOSC_HF)  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
48  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1%  
±0.25%  
5
µs  
(1) Accuracy relative to the calibration source (XOSC_HF).  
8.11 32-kHz RC Oscillator (RCOSC_LF)  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Calibrated frequency(1)  
Temperature coefficient  
TEST CONDITIONS  
MIN  
TYP  
32.8  
50  
MAX  
UNIT  
kHz  
ppm/°C  
(1) The frequency accuracy of the real time clock (RTC) is not directly dependent on the frequency accuracy of the 32-kHz RC oscillator.  
The RTC can be calibrated by measuring the frequency error of RCOSC_LF relative to XOSC_HF and compensating the RTC tick  
speed.  
8.12 ADC Characteristics  
Tc = 25°C, VDDS = 3.0 V without internal DC/DC converter and with voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0
VDDS  
200  
V
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample rate  
Offset  
Internal 4.3-V equivalent reference(2)  
Internal 4.3-V equivalent reference(2)  
2
2.4  
Gain error  
DNL(3) Differential nonlinearity  
>1  
±3  
INL(4)  
Integral nonlinearity  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
9.8  
10  
ENOB Effective number of bits  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Bits  
dB  
dB  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
11.1  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
65  
69  
71  
THD  
Total harmonic distortion VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
60  
63  
69  
Signal-to-noise  
and  
Distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
67  
72  
73  
Spurious-free dynamic  
range  
SFDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
clock-  
cycles  
Conversion time  
Serial conversion, time-to-output, 24-MHz clock  
50  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
Tc = 25°C, VDDS = 3.0 V without internal DC/DC converter and with voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
Internal 4.3-V equivalent reference(2)  
VDDS as reference  
MIN  
TYP  
0.66  
0.75  
MAX UNIT  
Current consumption  
Current consumption  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should  
be initiated through the TI-RTOS API to include the gain/  
offset compensation factors stored in FCFG1.  
Reference voltage  
4.3(2) (5)  
V
Fixed internal reference (input-voltage scaling disabled).  
For the best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API to include the gain/offset  
compensation factors stored in FCFG1. This value is  
derived from the scaled value (4.3 V) as follows.  
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
1.48  
V
VDDS as reference (also known as RELATIVE) (input  
voltage scaling enabled)  
Reference voltage  
Reference voltage  
VDDS  
V
V
VDDS as reference (also known as RELATIVE) (input  
voltage scaling disabled)  
VDDS /  
2.82(5)  
200 ksps, voltage scaling enabled. Capacitive input, input  
impedance depends on sampling frequency and sampling  
time  
Input Impedance  
>1  
MΩ  
(1) Using IEEE Std 1241-2010 for terminology and test methods.  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.  
(3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device (see 8-21).  
(4) For a typical example, see 8-22.  
(5) Applied voltage must be within absolute maximum ratings at all times (see 8.1).  
8.13 Temperature Sensor  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Range  
4
105  
°C  
40  
Accuracy  
±5  
°C  
Supply voltage coefficient(1)  
3.2  
°C/V  
(1) Automatically compensated when using supplied driver libraries.  
8.14 Battery Monitor  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
50  
1.8  
3.8  
Accuracy  
13  
mV  
8.15 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
VDDS  
VDDS  
UNIT  
V
Input voltage range  
External reference voltage  
0
V
Internal reference voltage  
Offset  
DCOUPL as reference  
1.27  
3
V
mV  
mV  
µs  
Hysteresis  
<2  
Decision time  
0.72  
Step from 10 mV to 10 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current consumption when enabled(1)  
8.6  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.16 Low-Power Clocked Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
0
VDDS  
V
Clock frequency  
32  
1.491.51  
1.011.03  
0.780.79  
1.251.28  
0.630.65  
0.420.44  
0.330.34  
<2  
kHz  
Internal reference voltage, VDDS / 2  
Internal reference voltage, VDDS / 3  
Internal reference voltage, VDDS / 4  
Internal reference voltage, DCOUPL / 1  
Internal reference voltage, DCOUPL / 2  
Internal reference voltage, DCOUPL / 3  
Internal reference voltage, DCOUPL / 4  
Offset  
V
V
V
V
V
V
V
mV  
Hysteresis  
<5  
mV  
Decision time  
<1  
clock-cycle  
nA  
Step from 50 mV to 50 mV  
Current consumption when enabled  
362  
8.17 Programmable Current Source  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
Current source programmable output range  
Resolution  
0.2520  
0.25  
µA  
Including current source at maximum  
programmable output  
Current consumption(1)  
23  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
8.18 Synchronous Serial Interface (SSI)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
system  
clocks  
S1(1) tclk_per (SSIClk period)  
Device operating as SLAVE  
12  
65024  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low (SSIClk low time)  
Device operating as SLAVE  
Device operating as SLAVE  
0.5  
0.5  
tclk_per  
tclk_per  
One-way communication to SLAVE:  
Device operating as MASTER  
system  
clocks  
S1 (TX only)(1) tclk_per (SSIClk period)  
S1 (TX and RX)(1) tclk_per (SSIClk period)  
4
8
65024  
65024  
Normal duplex operation:  
Device operating as MASTER  
system  
clocks  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low(SSIClk low time)  
Device operating as MASTER  
Device operating as MASTER  
0.5  
0.5  
tclk_per  
tclk_per  
(1) Refer to SSI timing diagrams 8-1, 8-2, and 8-3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
8-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
8-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
8-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
8.19 DC Characteristics  
PARAMETER  
TA = 25°C, VDDS = 1.8 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
GPIO pullup current  
TEST CONDITIONS  
MIN  
1.32  
1.32  
TYP  
MAX UNIT  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.54  
0.26  
1.58  
0.21  
71.7  
21.1  
V
0.32  
0.32  
V
V
IOCURR = 1  
V
Input mode, pullup enabled, V(pad) = 0 V  
Input mode, pulldown enabled, V(pad) = VDDS  
µA  
µA  
GPIO pulldown current  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
0.88  
1.07  
V
V
GPIO low-to-high input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 0 1  
GPIO high-to-low input transition,  
with hysteresis  
0.74  
0.33  
V
V
IH = 1, transition voltage for input read as 1 0  
IH = 1, difference between 0 1 and 1 0 points  
GPIO input hysteresis  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
MAX UNIT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TA = 25°C, VDDS = 3.0 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
TA = 25°C, VDDS = 3.8 V  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.68  
0.33  
2.72  
0.28  
V
V
V
V
IOCURR = 1  
Input mode, pullup enabled, V(pad) = 0 V  
277  
113  
µA  
µA  
GPIO pulldown current  
Input mode, pulldown enabled, V(pad) = VDDS  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
1.67  
1.94  
V
V
GPIO low-to-high input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 0 1  
GPIO high-to-low input transition,  
with hysteresis  
1.54  
0.4  
V
V
IH = 1, transition voltage for input read as 1 0  
IH = 1, difference between 0 1 and 1 0 points  
GPIO input hysteresis  
TA = 25°C  
Lowest GPIO input voltage reliably interpreted as a  
«High»  
V(IH)  
V(IL)  
0.8 VDDS(1)  
VDDS(1)  
Highest GPIO input voltage reliably interpreted as a  
«Low»  
0.2  
(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 11.3 for more details.  
8.20 Thermal Resistance Characteristics for RGZ Package  
over operating free-air temperature range (unless otherwise noted)  
NAME  
DESCRIPTION  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
(°C/W)(1) (2)  
29.6  
15.7  
6.2  
RθJA  
RθJC(top)  
RθJB  
PsiJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
PsiJB  
6.2  
1.9  
RθJC(bot)  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see the following  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70°C is assumed.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.21 Timing Requirements  
MIN  
0
NOM  
MAX UNIT  
100 mV/µs  
20 mV/µs  
Rising supply-voltage slew rate  
Falling supply-voltage slew rate  
0
Falling supply-voltage slew rate, with low-power flash settings(1)  
3
mV/µs  
No limitation for negative  
temperature gradient, or  
outside standby mode  
Positive temperature gradient in standby(3)  
5
°C/s  
CONTROL INPUT AC CHARACTERISTICS(2)  
RESET_N low duration  
1
µs  
(1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor (see 图  
10-1) must be used to ensure compliance with this slew rate.  
(2) TA = 40°C to +105°C, VDDS = 1.8 V to 3.8 V, unless otherwise noted.  
(3) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see 节  
8.11).  
8.22 Switching Characteristics  
Measured on the TI CC2640Q1EM-7ID reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKEUP and TIMING  
14  
151  
µs  
µs  
µs  
Idle Active  
Standby Active  
Shutdown Active  
1015  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.23 Typical Characteristics  
-95  
-95  
-96  
BLE 1-Mbps  
-96  
-97  
-97  
-98  
-98  
-99  
-99  
-100  
-100  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
1.8  
2
2.2 2.4 2.6 2.8  
3
Supply Voltage VDDS (V)  
3.2 3.4 3.6 3.8  
D001  
D002  
8-4. Bluetooth low energy Sensitivity vs  
8-5. Bluetooth low energy Sensitivity vs Supply  
Temperature  
Voltage (VDDS)  
-95  
6
5
4
3
2
1
BLE 1-Mbps  
-95.5  
-96  
-96.5  
-97  
-97.5  
-98  
-98.5  
-99  
-99.5  
-100  
+5 dBm settings  
60 80 100  
0
-40  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Channel Frequency (MHz)  
-20  
0
20 40  
Temperature (°C)  
D003  
D004  
8-6. Bluetooth low energy Sensitivity vs  
8-7. TX Output Power vs Temperature  
Channel Frequency  
5.5  
5
6
4.5  
4
5
4
3
2
1
3.5  
3
2.5  
2
1.5  
1
+5 dBm settings  
+5 dBm setting  
0.5  
1.8  
2
2.2 2.4 2.6 2.8 3  
Supply Voltage VDDS (V)  
3.2 3.4 3.6 3.8  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Channel Frequency (MHz)  
D005  
D006  
8-8. TX Output Power vs Supply Voltage (VDDS)  
8-9. TX Output Power vs Channel Frequency  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10.5  
10  
9.5  
9
16  
15  
14  
13  
12  
11  
10  
9
+5 dBm settings  
0 dBm settings  
8.5  
8
7.5  
7
6.5  
6
8
5.5  
5
7
6
4.5  
1.8  
5
1.8  
2
2.2 2.4 2.6 2.8  
3
Supply Voltage VDDS (V)  
3.2 3.4 3.6 3.8  
2
2.2 2.4 2.6 2.8  
3
Supply Voltage VDDS (V)  
3.2 3.4 3.6 3.8  
D008  
D007  
8-11. RX Mode Current vs Supply Voltage  
8-10. TX Current Consumption vs Supply  
(VDDS)  
Voltage (VDDS)  
7
6.5  
6
10  
9
8
7
6
+5 dBm settings  
0 dBm settings  
5.5  
-40  
5
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
-20  
0
20 40  
Temperature (°C)  
60 80 100  
D009  
D010  
8-12. RX Mode Current Consumption vs  
8-13. TX Mode Current Consumption vs  
Temperature  
Temperature  
5
4
3
2
3.2  
3.1  
3
2.9  
2.8  
2.7  
1.8  
2
2.2 2.4 2.6 2.8  
3
Supply Voltage VDDS (V)  
3.2 3.4 3.6 3.8  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D012  
D011  
8-15. Active Mode (MCU Running, No  
8-14. Active Mode (MCU Running, No  
Peripherals) Current Consumption vs Supply  
Voltage (VDDS)  
Peripherals) Current Consumption vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC2640R2F-Q1  
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10  
9
8
7
6
5
4
3
2
1
0
11.4  
11.2  
11  
10.8  
10.6  
10.4  
10.2  
10  
9.8  
9.6  
9.4  
Fs = 200 kHz, No Averaging  
Fs = 200 kHz, 32 Samples Averaging  
9.2  
9
500  
1000  
10000  
Input Frequency (Hz)  
100000  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D013  
8-17. SoC ADC Effective Number of Bits vs Input  
8-16. Standby Mode Current Consumption vs  
Frequency (Internal Reference, No Scaling)  
Temperature  
1005  
1004  
1003  
1002  
1001  
1005  
1004  
1003  
1002  
1001  
1000  
-40  
-20  
0
20  
40  
60  
80  
100  
1.8  
2.3  
2.8  
Supply Voltage VDDS (V)  
3.3  
3.8  
Temperature (èC)  
D016  
D015  
8-19. SoC ADC Output vs Temperature (Fixed  
8-18. SoC ADC Output vs Supply Voltage (Fixed  
Input, Internal Reference, No Scaling)  
Input, Internal Reference, No Scaling)  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
ENOB Internal Reference (32 Samples Averaging)  
ENOB Internal Reference (No Averaging)  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
1k  
10k  
Input Frequency (Hz)  
100k 200k  
D019  
8-20. SoC ADC ENOB vs Sampling Frequency (Input Frequency = FS / 10)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
600  
1200  
1800  
2400  
3000  
3600  
4200  
DD0101701  
ADC CODE  
8-21. SoC ADC DNL vs ADC Code (Internal Reference, No Scaling)  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
0
400  
800  
1200  
1600  
2000  
ADC CODE  
2400  
2800  
3200  
3600  
4000 4200  
D018  
8-22. SoC ADC INL vs ADC Code (Internal Reference, No Scaling)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
4 shows the core modules of the CC26xx product family.  
9.2 Main CPU  
The automotive grade SimpleLink™ CC2640R2F-Q1 Wireless MCU contains an Arm® Cortex®-M3 (CM3) 32-bit  
CPU, which runs the application and the higher layers of the protocol stack.  
The Cortex®-M3 processor provides a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
Cortex-M3 features include the following:  
32-bit Arm® Cortex®-M3 architecture optimized for small-footprint embedded applications  
Outstanding processing performance combined with fast interrupt handling  
Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm  
core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few  
kilobytes of memory for microcontroller-class applications:  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control  
Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic, high-performance interrupt handling for time-critical applications  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial wire trace reduces the number of pins required for debugging and tracing  
Migration from the ARM7processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use  
Ultra-low power consumption with integrated sleep modes  
1.25 DMIPS per MHz  
9.3 RF Core  
The RF Core contains an Arm Cortex-M0 processor that interfaces the analog RF and base-band circuitries,  
handles data to and from the system side, and assembles the information bits in a given packet structure. The  
RF core offers a high level, command-based API to the main CPU.  
The RF core is capable of autonomously handling the time-critical aspects of the radio protocols (Bluetooth ® low  
energy) thus offloading the main CPU and leaving more resources for the user application.  
The RF core has a dedicated 4-KB SRAM block and runs initially from separate ROM memory. The Arm Cortex-  
M0 processor is not programmable by customers.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.4 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this  
domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This  
CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly reducing power  
consumption and offloading the main Cortex-M3 CPU.  
The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and  
potential use cases may be (but are not limited to):  
Analog sensors using integrated ADC  
Digital sensors using GPIOs, bit-banged I2C, and SPI  
UART communication for sensor reading or debugging  
Capacitive sensing  
Waveform generation  
Pulse counting  
Keyboard scan  
Quadrature decoder for polling rotation sensors  
Oscillator calibration  
备注  
Texas Instruments provides application examples for some of these use cases, but not for all of them.  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the device from any state in which the comparator is  
active. A configurable internal reference can be used in conjunction with the comparator. The output of the  
comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital  
converter, and a comparator. The continuous time comparator in this block can also be used as a higher-  
accuracy alternative to the low-power clocked comparator. The Sensor Controller will take care of baseline  
tracking, hysteresis, filtering and other related functions.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC can be  
triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the  
RTC.  
The Sensor Controller also includes a SPII2C digital interface.  
The analog modules can be connected to up to eight different GPIOs.  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9-1. GPIOs Connected to the Sensor Controller(1)  
7 × 7 RGZ  
DIO NUMBER  
ANALOG CAPABLE  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
30  
29  
28  
27  
26  
25  
24  
23  
7
6
5
4
3
2
1
0
(1) Up to 16 pins can be connected to the Sensor Controller. Up to 8 of these pins can be connected to  
analog modules.  
9.5 Memory  
The flash memory provides nonvolatile storage for code and data. The flash memory is in-system  
programmable.  
The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two 4-KB  
blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or disabled  
individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8-KB cache  
can be used as a general-purpose RAM.  
The ROM provides preprogrammed embedded TI-RTOS kernel, Driver Library, and lower layer protocol stack  
®
software (Bluetooth low energy Controller). It also contains a bootloader that can be used to reprogram the  
device using SPI or UART.  
9.6 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.7 Power Management  
To minimize power consumption, the CC2640R2F-Q1 device supports a number of power modes and power  
management features (see 9-2).  
9-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Active  
Off  
Off  
Off  
Off  
Flash  
On  
Available  
On  
Off  
SRAM  
On  
Available  
On  
Off  
Off  
Radio  
Available  
On  
Off  
Off  
Off  
Supply System  
Current  
On  
Duty Cycled  
1.3 µA  
151 µs  
Partial  
Full  
Off  
Off  
1.45 mA + 31 µA/MHz  
650 µA  
14 µs  
Full  
0.15 µA  
1015 µs  
No  
0.1 µA  
1015 µs  
No  
Wake-up Time to CPU Active(1)  
Register Retention  
SRAM Retention  
Full  
Full  
Full  
No  
No  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
High-Speed Clock  
Low-Speed Clock  
Off  
Off  
Off  
Off  
Off  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
Available  
Active  
Available  
Available  
Available  
Available  
Available  
Active  
Off  
Off  
Off  
Off  
Off  
Sensor Controller  
Available  
Available  
Available  
Available  
Duty Cycled  
Active  
Wake up on RTC  
Off  
Off  
Wake up on Pin Edge  
Wake up on Reset Pin  
Brown Out Detector (BOD)  
Power On Reset (POR)  
Available  
Available  
Off  
Off  
Available  
N/A  
Active  
Active  
Active  
N/A  
(1) Not including RTOS overhead  
In active mode, the application Cortex-M3 CPU is actively executing code. Active mode provides normal  
operation of the processor and all of the peripherals that are currently enabled. The system clock can be any  
available clock source (see 9-2).  
In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked  
and no code is executed. Any interrupt event will bring the processor back into active mode.  
In standby mode, only the always-on domain (AON) is active. An external wake event, RTC event, or sensor-  
controller event is required to bring the device back to active mode. MCU peripherals with retention do not need  
to be reconfigured when waking up again, and the CPU continues execution from where it went into standby  
mode. All GPIOs are latched in standby mode.  
In shutdown mode, the device is turned off entirely, including the AON domain and the Sensor Controller. The  
I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin  
defined as a wake from Shutdown pin wakes up the device and functions as a reset trigger. The CPU can  
differentiate between a reset in this way, a reset-by-reset pin, or a power-on-reset by reading the reset status  
register. The only state retained in this mode is the latched I/O state and the Flash memory contents.  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller  
independently of the main CPU, which means that the main CPU does not have to wake up, for example, to  
execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current and wake-up time  
that would otherwise be wasted. The Sensor Controller Studio enables the user to configure the sensor  
controller and choose which peripherals are controlled and which conditions wake up the main CPU.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.8 Clock Systems  
The CC2640R2F-Q1 device supports two external and two internal clock sources.  
A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to create a  
48-MHz clock.  
The 32-kHz crystal is optional. Bluetooth ® low energy requires a slow-speed clock with better than  
±500 ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal  
32-kHz RC oscillator can in some use cases be compensated to meet the requirements. The low-speed crystal  
oscillator is designed for use with a 32-kHz watch-type crystal.  
The internal high-speed oscillator (48-MHz) can be used as a clock source for the CPU subsystem.  
The internal low-speed oscillator (32.768-kHz) can be used as a reference if the low-power crystal oscillator is  
not used.  
The 32-kHz clock source can be used as external clocking reference through GPIO.  
9.9 General Peripherals and Modules  
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals to be  
assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs  
have high drive capabilities (marked in bold in 7).  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and synchronous serial  
interfaces from Texas Instruments. The SSIs support both SPI master and slave up to 4 MHz.  
The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-rate  
generation up to a maximum of 3 Mbps and is compatible with the Bluetooth ® HCI specifications.  
Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be  
configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module.  
Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0.  
In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF timer can  
be synchronized to the RTC.  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface is  
capable of 100-kHz and 400-kHz operation, and can serve as both I2C master and I2C slave.  
The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys,  
initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that  
create unpredictable output to feed a complex nonlinear combinatorial circuit.  
The watchdog timer is used to regain control if the system fails due to a software error after an external device  
fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a predefined time-  
out value is reached.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data transfer tasks from the Cortex-M3 CPU, allowing for more efficient use of the processor and the available  
bus bandwidth. The µDMA controller can perform transfer between memory and peripherals. The µDMA  
controller has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory as the peripheral is ready to transfer more data. Some  
features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes:  
Memory-to-memory  
Memory-to-peripheral  
Peripheral-to-memory  
Peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
The AON domain contains circuitry that is always enabled, except in Shutdown mode (where the digital supply is  
off). This circuitry includes the following:  
The RTC can be used to wake the device from any state where it is active. The RTC contains three compare  
and one capture registers. With software support, the RTC can be used for clock and calendar operation. The  
RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be compensated to tick at the  
correct frequency even when the internal 32-kHz RC oscillator is used instead of a crystal.  
The battery monitor and temperature sensor are accessible by software and give a battery status indication  
as well as a coarse temperature measure.  
9.10 System Architecture  
Depending on the product configuration, the CC2640R2F-Q1 device can function either as a wireless network  
processor (WNPa device running the wireless protocol stack with the application running on a separate MCU),  
or as a system-on-chip (SoC), with the application and protocol stack running on the Arm Cortex-M3 core inside  
the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Application, Implementation, and Layout  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
Very few external components are required for the operation of the CC2640R2F-Q1 device. This section  
provides general information about the differential configuration when using the CC2640R2F-Q1 device in an  
application, and an example application circuit with schematics and layout is shown in 10-1, 10-2, 10-3,  
and 10-4. This is only a small selection of the many application circuit examples available as complete  
reference designs from the product folder on www.ti.com.  
10-1 shows the differential RF front-end configuration option with internal biasing. See the CC2640Q1EM-7ID  
reference design for this option.  
To VDDR  
pins  
10 µF  
Optional  
inductor is  
needed  
6.8 pF  
only for  
DC-DC  
operation  
10 µH  
Antenna  
(50 Q)  
2.4 nH  
1 pF  
CC26xx  
DCDC_SW  
Pin 2 (RF N)  
Pin 1 (RF P)  
2 nH  
1 pF  
2 nH  
(GND exposed die  
attached pad)  
VDDS_DCDC  
Pin 2 (RF N)  
Pin 1 (RF P)  
2.4 to 2.7 nH  
1 pF  
input  
decoupling  
10 µF to 22 µF  
12 pF  
Differential operation  
24-MHz XTAL  
(Load capacitors on chip)  
Copyright © 2017, Texas Instruments Incorporated  
10-1. CC2640R2F-Q1 Application Circuit  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10-2 shows the various supply voltage configuration options for the CC2640R2F-Q1 device. Not all power  
supply decoupling capacitors or digital I/Os are shown. For a detailed overview of power supply decoupling and  
wiring, see the TI reference designs and the CC13x0, CC26x0 SimpleLink Wireless MCU Technical Reference  
Manual.  
Internal DC-DC Regulator  
Internal LDO Regulator  
To all VDDR Pins  
To all VDDR Pins  
10 F  
10 F  
VDDS  
VDDS  
VDDS  
VDDS  
10 H  
CC26xx  
CC26xx  
DCDC_SW Pin  
NC  
(GND Exposed Die  
Attached Pad)  
(GND Exposed Die  
Attached Pad)  
VDDS_DCDC Pin  
Pin 2 (RF N)  
Pin 1 (RF P)  
VDDS_DCDC Pin  
Pin 2 (RF N)  
Pin 1 (RF P)  
VDDS_DCDC  
Input Decoupling  
10 F to 22 F  
VDDS_DCDC  
Input Decoupling  
10 F to 22 F  
24-MHz XTAL  
(Load Capacitors on Chip)  
24-MHz XTAL  
(Load Capacitors on Chip)  
1.8 V to 3.8 V  
to all VDDS Pins  
1.8-V to 3.8-V  
Supply Voltage  
To All VDDS Pins  
Copyright © 2017, Texas Instruments Incorporated  
10-2. Supply Voltage Configurations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10.2 7 × 7 Internal Differential (7ID) Application Circuit  
VDD_EB  
VDDS  
VDDR  
VDDS Decoupling Capacitors  
VDDR Decoupling Capacitors  
FL1  
L1  
DCDC_SW  
Pin 13  
C3  
Pin 22  
C4  
Pin 44  
Pin 34  
C6  
Pin 45  
Pin 48  
C16  
BLM18HE152SZ1  
10uH  
C2  
C5  
C7  
C8  
C9  
C10  
DNM  
0.1uF  
0.1uF  
0.1uF  
10uF  
100nF  
10uF  
0.1uF  
0.1uF  
DNM_0402  
Place L1 and  
C8 close to pin 33  
VDDS  
J1  
SMA-10V21-TGG  
3
R1  
100k  
VDDS  
VDDR  
4
5
C31  
2
nRESET  
U1A  
6.8pF  
13  
2
VDDS2  
VDDS3  
VDDS  
VDDS_DCDC  
VDDR  
VDDR  
1
22  
44  
34  
45  
48  
JTAG_TMS  
JTAG_TCK  
C20  
24  
25  
35  
L11  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
C24  
A1  
2.4nH  
0.1uF  
C11  
1pF  
1
12pF  
2
1
3
DCDC_SW  
33  
L12  
L13  
C14  
R12  
0
DCDC_SW  
1
2
1
2
1
2
RF_P  
RF_N  
3
4
23  
49  
2.4GHz  
X32K_Q1  
X32K_Q2  
DCOUPL  
VSS  
2nH  
2nH  
Y1  
L21  
C12  
C15  
DNM_0402  
DNM_0402  
1
2
46  
47  
1
2
C13  
1pF  
X24M_N  
X24M_P  
DNM_0402  
2.4nH  
C17  
32.768kHz  
C18  
22pF  
C19  
1uF  
Mount either  
C24 or C14  
To select SMA  
or PCB ant.  
R12 and C15 for  
antenna matching  
CC2640R2FTWRGZRQ1  
C21  
1pF  
22pF  
Y2  
24MHz  
Note that a  
DC-blocking  
capacitor must  
be used if  
antenna  
has DC-path  
to ground.  
1
3
U1B  
C23  
DNM_0402  
C22  
DNM_0402  
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16 / JTAG TDO  
DIO_17 / JTAG TDI  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
5
6
7
8
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
DIO_0  
DIO_1  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
2
4
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
9
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
DIO22  
TP_0.9mm_PTH  
CC2640R2FTWRGZRQ1  
EM connector 1  
P1  
EM connector 2  
P2  
DIO_7  
DIO_6  
JTAG_TCK  
1
3
5
7
9
11  
13  
15  
17  
19  
2
4
6
8
10  
12  
14  
16  
18  
20  
1
3
5
7
9
11  
13  
15  
17  
2
4
6
8
10  
12  
14  
16  
18  
20  
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_13  
DIO_14  
JTAG_TMS  
DIO_26  
DIO_20  
DIO_24  
DIO_30  
DIO_29  
DIO_28  
DIO_21  
DIO_15  
DIO_18  
DIO_19  
DIO_12  
DIO_11  
DIO_10  
DIO_9  
DIO_23  
VDD_EB  
DIO_25  
DIO_27  
nRESET  
DIO_17 / JTAG TDI  
DIO_16 / JTAG TDO  
19  
FIDU1  
FIDU4  
FIDU2  
FIDU5  
FIDU3  
DIO_8  
SFM-110-02-S-D-A-K-TR  
SFM-110-02-S-D-A-K-TR  
FIDU6  
Copyright © 2017, Texas Instruments Incorporated  
10-3. 7 × 7 Internal Differential (7ID) Application Circuit  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10.2.1 Layout  
10-4. Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC2640R2F-Q1  
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and date-  
code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, CC2640R2F-Q1  
is in production; therefore, no prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Production devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, RGZ).  
For orderable part numbers of the CC2640R2F-Q1 device package types, see the Package Option Addendum of  
this document, the TI website (www.ti.com), or contact your TI sales representative.  
CC26 40  
R2 FTW RGZ R/T Q1  
PREFIX  
Q1 = Q100  
X = Experimental device  
P = Prototype  
Blank = Qualified device  
R = Large Reel  
T = Small Reel  
DEVICE FAMILY  
SimpleLink™ Multistandard  
Wireless MCU  
PACKAGE DESIGNATOR  
RGZ = 48-pin VQFN  
(Very Thin Quad Flatpack No-Lead)  
F = Flash  
T = Grade 2, 105°C  
W = Wettable flanks  
DEVICE  
40 = Bluetooth low energy  
ROM revision 2  
Flash = 128KB  
11-1. Device Nomenclature  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
11.2 Tools and Software  
TI offers an extensive line of development tools, including tools to evaluate the performance of the processors,  
generate code, develop algorithm implementations, and fully integrate and debug software and hardware  
modules.  
The following products support development of the CC2640R2F-Q1 device applications:  
Software Tools:  
SmartRF Studio 7 is a PC application that helps designers of radio systems to easily evaluate the RF-IC at an  
early stage in the design process.  
Test functions for sending and receiving radio packets, continuous wave transmit and receive  
Evaluate RF performance on custom boards by wiring it to a supported evaluation board or debugger  
Can also be used without any hardware, but then only to generate, edit and export radio configuration  
settings  
Can be used in combination with several development kits for TI's CCxxxx RF-ICs  
Sensor Controller Studio provides a development environment for the CC26xx Sensor Controller. The Sensor  
Controller is a proprietary, power-optimized CPU in the CC26xx, which can perform simple background tasks  
autonomously and independent of the System CPU state.  
Allows for Sensor Controller task algorithms to be implemented using a C-like programming language  
Outputs a Sensor Controller Interface driver, which incorporates the generated Sensor Controller machine  
code and associated definitions  
Allows for rapid development by using the integrated Sensor Controller task testing and debugging  
functionality. This allows for live visualization of sensor data and algorithm verification.  
IDEs and Compilers:  
Code Composer StudioIntegrated Development Environment (IDE):  
Integrated development environment with project management tools and editor  
Code Composer Studio (CCS) 6.1 and later has built-in support for the CC26xx device family  
Best support for XDS debuggers; XDS100v3, XDS110 and XDS200  
High integration with TI-RTOS with support for TI-RTOS Object View  
IAR Embedded Workbench® for Arm®:  
Integrated development environment with project management tools and editor  
IAR EWARM 7.30.3 and later has built-in support for the CC26xx device family  
Broad debugger support, supporting XDS100v3, XDS200, IAR I-Jet and Segger J-Link  
Integrated development environment with project management tools and editor  
RTOS plugin available for TI-RTOS  
For a complete listing of development-support tools for theCC2640R2F-Q1 platform, visit the Texas Instruments  
website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or  
authorized distributor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC2640R2F-Q1  
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
11.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com (CC2640R2F-  
Q1). In the upper right corner, click on Alert me to register and receive a weekly digest of any product information  
that has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the CC2640R2F-Q1 devices, related peripherals, and other technical  
collateral is listed in the following.  
Technical Reference Manual  
CC13x0, CC26x0 SimpleLink™ Wireless MCU Technical Reference Manual  
Errata  
CC2640R2M-Q1 SimpleLink™ Wireless MCU Errata  
11.4 Texas Instruments Low-Power RF Website  
Texas Instruments' Low-Power RF website has all the latest products, application and design notes, FAQ  
section, news and events updates. Go to www.ti.com/lprf.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 Trademarks  
SimpleLink, SmartRF, Code Composer Studio, 德州仪(TI), LaunchPad, Texas Instruments, and TI  
E2Eare trademarks of Texas Instruments.  
IEEE Std 1241is a trademark of Institute of Electrical and Electronics Engineers, Incorporated.  
ARM7is a trademark of Arm Limited (or its subsidiaries).  
Arm®, Cortex®, and Arm Thumb® are registered trademarks of Arm Limited (or its subsidiaries).  
CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Zigbee® is a registered trademark of Zigbee Alliance.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
 
 
 
 
 
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC2640R2F-Q1  
 
 
 
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
RGZ0048N  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
0.3  
0.2  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
7.1  
6.9  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15 0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
A
A
SEE TERMINAL  
DETAIL  
1
36  
0.3  
48X  
0.2  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C B A  
0.5  
0.3  
48X  
0.05  
4223598/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RGZ0048N  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.15)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.25)  
6X  
(1.065)  
44X (0.5)  
SYMM  
10X  
(1.26)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
6X  
10X (1.26)  
(1.065)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223598/A 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC2640R2F-Q1  
CC2640R2F-Q1  
ZHCSGW5B JANUARY 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RGZ0048N  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.63 TYP)  
(1.26) TYP  
16X  
1.06)  
(
37  
48  
48X (0.6)  
49  
36  
1
48X (0.25)  
44X (0.5)  
(1.26)  
TYP  
(0.63)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4223598/A 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC2640R2F-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2640R2FTWRGZRQ1  
CC2640R2FTWRGZTQ1  
ACTIVE  
VQFN  
VQFN  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
CC2640Q1  
R2F  
Samples  
Samples  
ACTIVE  
RGZ  
SN  
CC2640Q1  
R2F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2022  
OTHER QUALIFIED VERSIONS OF CC2640R2F-Q1 :  
Catalog : CC2640R2F  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2640R2FTWRGZRQ1 VQFN  
CC2640R2FTWRGZTQ1 VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
180.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC2640R2FTWRGZRQ1  
CC2640R2FTWRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
336.6  
210.0  
336.6  
185.0  
31.8  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC2640R2FTWRGZTQ1

符合汽车标准的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2640R2FYFVR

具有 128kB 闪存和 275kB ROM 的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | YFV | 34 | -40 to 85
TI

CC2640R2FYFVT

具有 128kB 闪存和 275kB ROM 的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | YFV | 34 | -40 to 85
TI

CC2640R2L

SimpleLink™ 低功耗 Bluetooth® 5.1 无线 MCU
TI

CC2640R2LRGZR

SimpleLink™ 低功耗 Bluetooth® 5.1 无线 MCU | RGZ | 48 | -40 to 85
TI

CC2640R2LRHBR

SimpleLink™ 低功耗 Bluetooth® 5.1 无线 MCU | RHB | 32 | -40 to 85
TI

CC2640_15

CC2640 SimpleLink Bluetooth Smart Wireless MCU
TI

CC2642R

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低功耗 Bluetooth® 无线 MCU
TI

CC2642R-Q1

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU
TI

CC2642R1FRGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2642R1FRGZT

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2642R1FTWRGZRQ1

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI