DLPC410 [TI]

用于 DLP650LNIR、DLP7000/7000UV 和 DLP9500/DLP9500UV 数字微镜开发的数字控制器;
DLPC410
型号: DLPC410
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于 DLP650LNIR、DLP7000/7000UV 和 DLP9500/DLP9500UV 数字微镜开发的数字控制器

控制器
文件: 总80页 (文件大小:1377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
DLPC410 DMD 数字控制器  
1 特性  
3 说明  
操作以下 DLP®芯片:  
DLPC410 是一种数字控制器,支持五个 DMD 选  
1
项:DLP650LNIRDLP7000DLP7000UV、  
DLP9500 DLP9500UV。它是应用电子产品和 DMD  
之间的便捷高速数据和控制接口。DLPC410 为  
DLPA200 DMD 微镜驱动器提供 DMD 反射镜时钟脉  
冲(复位)和时序信息。该器件使用 DLPR410 PROM  
中存储的固件进行配置。  
DLP650LNIRDLP7000DLP7000UV、  
DLP9500 DLP9500UV DMD  
DLPA200 DMD 微镜驱动器  
DLPR410 配置 PROM  
支持高速 DMD 图形速率  
1 位二进制模式速率高达 32kHz  
8 位单色图形速率高达 4kHz  
该系列芯片组支持最高 48 千兆位/(Gbps) 的像素数  
据速率,提供单块、双块、四块和全局复位。此外还具  
备随机行寻址和 LOAD4 功能。此系列芯片通常用于设  
UV NIR 光学系统,例如需要快速吞吐量和像素  
精确控制的直接成像平版印刷系统、3D 打印和激光打  
标系统。  
400MHz 输入数据时钟速率  
64 2xLVDS 数据总线接口输入/输出  
支持随机行和 LOAD4 DMD 寻址  
与多种用户定义的处理器或现场可编程门阵列  
(FPGA) 兼容  
2 应用  
器件信息(1)  
工业:  
器件型号  
DLPC410  
封装  
封装尺寸(标称值)  
直接成像平版印刷  
FCBGA (676)  
27.00mm x 27.00mm  
3D 打印(SLA SLS)  
3D 机器视觉  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
用于机器人和检测的 3D 扫描仪  
动态灰度激光打标和编码  
工业印刷  
高速投影和高级成像  
消融和修复系统  
显微镜  
简化应用  
LEDs, LASERs,  
Lamp  
PWMs, Triggers  
LED, LASER, Lamp Driver  
Optical Sensor  
Optical Power Sense  
LVDS Data Bus (A,B)  
LVDS Data Bus (C, D)  
LVDS Data Bus  
Row, Block Signals  
Control Signals  
DLPC410 Info Signals  
DLPC410  
DLPA200 Control  
MBRST 2  
MBRST 1  
JTAG  
DLPA200  
DLPA200  
D0  
Clk  
DONE  
OE  
DLPA200 Control  
SCP Bus  
DLPR410  
DMDs  
DLP650LNIR  
DLP7000  
DLP7000UV  
DLP9500  
DLP9500UV  
Oscillator  
Power Managment  
TI Components  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS024  
 
 
 
 
 
 
 
 
 
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 5  
Pin Configuration and Functions......................... 6  
Specifications....................................................... 20  
7.1 Absolute Maximum Ratings .................................... 20  
7.2 ESD Ratings............................................................ 20  
7.3 Recommended Operating Conditions..................... 20  
7.4 Electrical Characteristics......................................... 21  
7.5 Timing Requirements.............................................. 21  
Detailed Description ............................................ 23  
8.1 Overview ................................................................. 23  
8.2 Functional Block Diagrams ..................................... 24  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 49  
8.5 Programming........................................................... 58  
9
Application and Implementation ........................ 59  
9.1 Application Information............................................ 59  
9.2 Typical Application .................................................. 59  
9.3 Initialization Setup................................................... 61  
10 Power Supply Recommendations ..................... 65  
10.1 Power Down Operation......................................... 65  
11 Layout................................................................... 65  
11.1 Layout Guidelines ................................................. 65  
11.2 Layout Example .................................................... 67  
11.3 DLPC410 Chipset Connections ........................... 68  
12 器件和文档支持 ..................................................... 77  
12.1 器件支持................................................................ 77  
12.2 文档支持................................................................ 78  
12.3 社区资源................................................................ 78  
12.4 ....................................................................... 78  
12.5 静电放电警告......................................................... 78  
12.6 术语表 ................................................................... 78  
13 机械、封装和可订购信息....................................... 78  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (January 2019) to Revision F  
Page  
Modified functions for TP4-TP31 ......................................................................................................................................... 15  
Corrected DLP650LNIR Bus A Pixel Mapping .................................................................................................................... 38  
Corrected DLP650LNIR Bus A Pixel Mapping .................................................................................................................... 39  
Corrected DLP650LNIR Bus B Pixel Mapping .................................................................................................................... 40  
Corrected DLP650LNIR Bus B Pixel Mapping .................................................................................................................... 41  
Removed ECP2M calibration feedback pins ....................................................................................................................... 62  
Removed ECP2M DLPA200 Init Status pin ........................................................................................................................ 62  
Removed ECP2M DMD Init Status pin ................................................................................................................................ 62  
Adjusted pinouts of DMD OK Status bits ............................................................................................................................ 62  
Adjusted pinouts of DMD OK Status bits ............................................................................................................................ 63  
Removed the ECP2_M TP20 referring to AA18 instead ..................................................................................................... 63  
Changes from Revision D (December 2018) to Revision E  
Page  
已更改 ARST description that was incorrectly described in DLPS024 Revision D. ............................................................. 48  
Changes from Revision C (December 2015) to Revision D  
Page  
DLP650LNIR 新增至支持的 DMD(多个)........................................................................................................................ 1  
将输入数据时钟速率更改为仅 400MHz................................................................................................................................... 1  
更新了 应用 列表,以反映最新市场........................................................................................................................................ 1  
更改了简化图表,以包括新的 DLP650LNIR........................................................................................................................... 1  
Changed pin DDC_SPARE_0 to LOAD4 ............................................................................................................................ 16  
Removed 200MHz - new revision tested at 400MHz only .................................................................................................. 21  
Re-organization of Detailed Description for flow, clarity, and readability ............................................................................. 23  
2
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Added DLP650LNIR functional block diagram .................................................................................................................... 24  
Updated DLP7000 functional block diagram (no technical changes)................................................................................... 25  
Updated DLP9500 functional block diagram (no technical changes)................................................................................... 26  
Added new DLP650LNIR DMD Characteristics to 2........................................................................................................ 28  
Added DLP650LNIR DMD to Row Addressing and 11.................................................................................................... 41  
Re-worded the Block Operations section for clarity. ........................................................................................................... 45  
Added new DLP650LNIR DMD Characteristics ................................................................................................................... 48  
Added/edited LOAD4 sections, enabled by DLPR410A....................................................................................................... 49  
Removed reference to 200 MHz input data clock. ............................................................................................................... 49  
Added the DLP650LNIR and its block load time to 16 ................................................................................................... 51  
Added 17 ......................................................................................................................................................................... 54  
Combined Application Example Diagrams to encompass all DLPC410 supported DMDs ................................................. 60  
Added DLP650LNIR to Detailed Design procedure section ................................................................................................ 61  
Added 25 - DLP650LNIR window transmittance ............................................................................................................ 61  
Changed "Generate Data" to "Present Data to DLPC410" ................................................................................................. 63  
已更改 "DLPC410 DMD data signals" to "LVDS data bus differential pairs"........................................................................ 66  
移除了对 TI 器件型号 2510440-001 的引用...................................................................................................................... 77  
删除了 Discovery 芯片组数据表,添加了 DLP650LNIR 数据表,更正了其他器件名....................................................... 78  
Changes from Revision B (June 2013) to Revision C  
Page  
已添加 ESD 额定值表,特性 描述 部分、器件功能模式应用和实施部分、电源建议部分、布局部分、器件和文档支  
部分以及机械、封装和可订购信息部分 ............................................................................................................................... 1  
删除了对 Discovery 4100 的引用,通篇删除了 DLPR4101 ................................................................................................... 1  
已添加 DLP7000UV DLP9500UV 特性 说明部分的文本 ........................................................................................... 1  
Added note - Xlilinx System Monitor analog supply & ground - "must be connected to ground" (AVDD_0 & AVSS_0)....... 7  
Changed "DAD A" descriptions to "DLPA200 number 1" and "DAD B" descriptions to "DLPA200 number 2" ..................... 7  
Reversed DDC_Bnn_VR pairs pullups / pulldowns (for nn =12, 15, and 16)) ....................................................................... 8  
Changed Pin # C22 name from DDC_B11_VRP (duplicate) to DDC_B15_VRP ................................................................. 8  
Added "Not used" to description for DMD_B_RESET and DMD_B_SCPEN ...................................................................... 14  
Added TP14 and TP17 note - Xilinx Temperature Diode .................................................................................................... 14  
Added "in Reference Design" to ECP2 Mictor pin notes...................................................................................................... 14  
Changed ECP2 pin description from "Not Defined" to "Not Used" ...................................................................................... 14  
Added ECP2_M_TP[3:29] descriptions and active state...................................................................................................... 15  
Deleted duplicate pin numbers M13 and M14 ..................................................................................................................... 16  
Changed Description from "DMD Power" to "DMD Power Good indicator" ........................................................................ 16  
Changed duplicate pin name from RSVD_0 to RSVD_1 ..................................................................................................... 17  
Updated pin description for SCPDI and SCPDO ................................................................................................................. 17  
Changed STEPVCC to connect to ground, active "Hi" to "-", and clock to "-" .................................................................... 17  
Changed Description from "JTAG Data Clock" to "JTAG Data" .......................................................................................... 17  
Changed pin names for VCCO_n_n pins to list each pin separately ................................................................................... 18  
Added note about Xilinx System Monitor differential pins (VN_0 & VP_0) and reference voltage (VREFN_0 &  
VREFP_0)............................................................................................................................................................................. 18  
Changed Description from "DMD Reset Watchdog" to "DMD Mirror Clocking Pulse Watchdog" ....................................... 19  
Deleted duplicate pin numbers in "UNUSED" pin list........................................................................................................... 19  
Updated the functional block diagrams ................................................................................................................................ 25  
Moved DLP7000 / DLP7000UV and DLP9500 / DLP9500UV Example Block Diagrams from Functional Block  
Diagram section to Typical Application Section .................................................................................................................. 26  
版权 © 2012–2019, Texas Instruments Incorporated  
3
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
已删除 the "Step DMD SRAM Memory Voltage" and "Load 4" Enhanced Functionality (with DLPR4101 PROM only)"  
sections................................................................................................................................................................................. 48  
Updated the embedded example block diagrams................................................................................................................ 60  
已添加 DLP7000UV and DLP9500UV well suited for direct imaging lithography, 3D printing, and UV applications .......... 61  
已添加 Debugging Guidelines section.................................................................................................................................. 61  
已更改 maximum differential trace length from 100 to 150 matching Table 13. .................................................................. 66  
已添加 DLP7000UV DLP9500UV 相关文档..................................................................................................................... 78  
Changes from Revision A (September 2012) to Revision B  
Page  
已更改 特性“1 位二进制模式速率高达 32kHz”“1 位二进制模式速率高达 32kHz(与 DLPR4101 搭配使用时高达  
48kHz”................................................................................................................................................................................. 1  
已添加 Section "Load 4" Enhanced Functionality (with DLPR4101 PROM only)................................................................. 49  
已添加 DLPR4101 DLPR410........................................................................................................................................... 78  
Changes from Original (August 2012) to Revision A  
Page  
将器件状态从:产品预览改为:生产 ...................................................................................................................................... 1  
4
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
5 说明 (续)  
在基于 DLP 的电子解决方案中,从 DLPC410 输入端口到投影图像的图像数据是 100% 数字化的数据。图像保持  
在数字格式并且永远不会被转换为一个模拟信号。DLPC410 处理数字输入图像并将数据转换为 DMD 所需的图像  
格式。然后,针对每个像素镜,DMD 使用二元脉宽调制 (PWM) 来操纵光源。  
DLPC410 是一种 DMD 数字控制器,控制 DLP650LNIRDLP7000DLP7000UVDLP9500 DLP9500UV  
DMD(请参阅 45 6)。DLPC410 能够使开发人员轻松访问 DMD 并使用高速独立微镜控制。请参阅  
DMD 解决方案的必需芯片组元件列表:1:  
1. DLPC410 器件配置  
DMD  
DMD 微镜驱动器  
2 DLPA200  
2 DLPA200  
1 DLPA200  
1 DLPA200  
1 DLPA200  
DMD 数字控制器  
DLP9500 DLP 0.95 1080p 2xLVDS A DMD  
DLP9500UV DLP 0.95 UV 1080p 2xLVDS A DMD  
DLP7000 DLP 0.7 XGA 2xLVDS A DMD  
DLP7000UV DLP 0.7 UV XGA 2xLVDS A DMD  
DLP650LNIR 0.65 NIR WXGA S450 DMD  
DLPC410+ DLPR410 配置 PROM)  
DLPC410UV 需要与 1 中的其他芯片组元件结合使用才能实现可靠功能和操作。有关芯片组元件的更多信息,  
请参阅 26 中的数据表。  
Copyright © 2012–2019, Texas Instruments Incorporated  
5
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
ZYR Package  
676-Pin FCBGA  
Bottom View  
6
Copyright © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
Not Used  
NAME  
APPS_CNTL_DPN  
APPS_CNTL_DPP  
ARST  
NO.  
F7  
-
-
I
-
-
This pair connected with 100  
Ω resistor between pair.  
-
-
-
-
-
E7  
Not Used  
AC13  
LVCMOS25_S_  
12_I  
Lo  
DLPC410 Reset  
AVDD_0  
AVSS_0  
M14  
M13  
-
-
-
Not used - connect to  
Ground (no name in  
Reference Design)  
-
-
-
-
Xilinx System Monitor analog  
supply - (not used - must be  
connected to ground)  
-
Not used - connect to  
Ground (no name in  
Reference Design)  
Xilinx System Monitor analog  
ground - (not used - must be  
connected to ground)  
BLKAD_0  
BLKAD_1  
BLKAD_2  
BLKAD_3  
BLKMD_0  
BLKMD_1  
CLKIN_R  
COMP_DATA  
E12  
D13  
E13  
F13  
I
I
I
I
I
I
I
I
LVCMOS25_S_  
12_I  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
-
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
DDC_DCLK_[A,B,C,D]  
Reference Clock  
Block Address bit 0  
Block Address bit 1  
Block Address bit 2  
Block Address bit 3  
Block Mode Bit 0  
LVCMOS25_S_  
12_I  
LVCMOS25_S_  
12_I  
LVCMOS25_S_  
12_I  
H13  
H14  
AD13  
G19  
LVCMOS25_S_  
12_I  
LVCMOS25_S_  
12_I  
Block Mode Bit 1  
LVCMOS25_S_  
12_I  
Reference Clock  
LVCMOS25_S_  
12_I  
Hi  
DDC_DCLK_[A,B,C,D]  
Compliment Data (0 <--> 1)  
CS_B_0  
N18  
W11  
E1  
-
-
-
1 kΩ pulldown to ground  
Lo  
-
-
-
-
Xilinx Config  
Not Used  
D_OUT_BUSY_0  
DAD_A_ADDR0  
NC  
Do not connect  
O
LVCMOS25_F_ Connected to DLPA200  
12_O number 1 Address 0 pin  
Hi = 1  
DLPA200 Number 1 Reset  
Block bit 0  
DAD_A_ADDR1  
DAD_A_ADDR2  
DAD_A_ADDR3  
DAD_A_MODE0  
DAD_A_MODE1  
DAD_A_SCPEN  
DAD_A_SEL0  
E2  
E3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 Address 1 pin  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Lo  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DLPA200 Number 1 Reset  
Block bit 1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 Address 2 pin  
DLPA200 Number 1 Reset  
Block bit 2  
F3  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 Address 3 pin  
DLPA200 Number 1 Reset  
Block bit 3  
C1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 Mode 0 pin  
DLPA200 Number 1Mode bit 0  
D1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 Mode 1 pin  
DLPA200 Number 1 Mode bit  
1
AE3  
AB12  
AC12  
AF3  
E26  
E25  
F25  
F24  
D26  
D25  
AB19  
R22  
R23  
AB20  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 SCPEN pin  
DLPA200 Number 1 SCP  
Communication Enable  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 SEL 0 pin  
Hi = 1  
Hi = 1  
Hi  
DLPA200 Number 1 Address  
bit 0  
DAD_A_SEL1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 SEL 1 pin  
DLPA200 Number 1 Address  
bit 1  
DAD_A_STROBE  
DAD_B_ADDR0  
DAD_B_ADDR1  
DAD_B_ADDR2  
DAD_B_ADDR3  
DAD_B_MODE0  
DAD_B_MODE1  
DAD_B_SCPEN  
DAD_B_SEL0  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 1 STROBE pin  
DLPA200 Number 1 Transition  
Strobe  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Address 1 pin  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Lo  
DLPA200 Number 2 Reset  
Block bit 0  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Address 2 pin  
DLPA200 Number 2 Reset  
Block bit 1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Address 3 pin  
DLPA200 Number 2 Reset  
Block bit 2  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Address 0 pin  
DLPA200 Number 2 Reset  
Block bit 3  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Mode 0 pin  
DLPA200 Number 2 Mode bit  
0
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 Mode 1 pin  
DLPA200 Number 2 Mode bit  
1
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 SCPEN pin  
DLPA200 Number 2 SCP  
Communication Enable  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 SEL 0 pin  
Hi = 1  
Hi = 1  
Hi  
DLPA200 Number 2 Address  
bit 0  
DAD_B_SEL1  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 SEL 1 pin  
DLPA200 Number 2 Address  
bit 1  
DAD_B_STROBE  
LVCMOS25_F_ Connected to DLPA200  
12_O Number 2 STROBE pin  
DLPA200 Number 2 Transition  
Strobe  
Copyright © 2012–2019, Texas Instruments Incorporated  
7
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
DAD_INIT  
NO.  
AF4  
O
LVCMOS25_F_ Connected to DLPA200  
Hi  
-
DLPA200 Number 1 / Number  
2 Init  
12_O  
Number 1 and Number 2  
RESET pin  
DAD_OE  
AF5  
O
LVCMOS25_F_ Connected to DLPA200  
Lo  
-
DLPA200 Number 1 / Number  
2 Output Enable  
12_O  
Number 1 and Number 2 OE  
pin  
DDC_B11_VRN  
L23  
L22  
M5  
M6  
D23  
C22  
A4  
-
-
REFERENCE  
REFERENCE  
REFERENCE  
REFERENCE  
REFERENCE  
REFERENCE  
REFERENCE  
REFERENCE  
LVDS_25  
51.1 Ω pullup to 2.5 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Reference Voltage  
DDC_B11_VRP  
51.1 Ω pulldown to ground  
51.1 Ω pullup to 2.5 V  
Reference Ground  
DDC_B12_VRN  
-
Reference Voltage  
DDC_B12_VRP  
-
51.1 Ω pulldown to ground  
51.1 Ω pullup to 2.5 V  
Reference Ground  
DDC_B15_VRN  
-
Reference Voltage  
DDC_B15_VRP  
-
51.1 Ω pulldown to ground  
51.1 Ω pullup to 2.5 V  
Reference Ground  
DDC_B16_VRN  
-
Reference Voltage  
DDC_B16_VRP  
A5  
-
51.1 Ω pulldown to ground  
Reference Ground  
DDC_DCLK_A_DPN  
DDC_DCLK_A_DPP  
DDC_DCLK_B_DPN  
DDC_DCLK_B_DPP  
DDC_DCLK_C_DPN  
DDC_DCLK_C_DPP  
DDC_DCLK_D_DPN  
DDC_DCLK_D_DPP  
DDC_DCLKOUT_A_DPN  
DDC_DCLKOUT_A_DPP  
B21  
C21  
A7  
I
100 Ω across pair (not  
terminated in the DLPC410)  
Bank A Input Clock (Neg)  
Bank A Input Clock (Pos)  
Bank B Input Clock (Neg)  
Bank B Input Clock (Pos)  
Bank C Input Clock (Neg)  
Bank C Input Clock (Pos)  
Bank D Input Clock (Neg)  
Bank D Input Clock (Pos)  
Bank A Output Clock (Neg)  
Bank A Output Clock (Pos)  
I
LVDS_25_I  
LVDS_25  
I
100 Ω across pair (not  
terminated in the DLPC410)  
B7  
I
LVDS_25_I  
LVDS_25  
K20  
K21  
L5  
I
100 Ω across pair (not  
terminated in the DLPC410)  
I
LVDS_25_I  
LVDS_25  
I
100 Ω across pair (not  
terminated in the DLPC410)  
K5  
I
LVDS_25_I  
LVDS_25  
N1  
O
O
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
M1  
LVDS_25_O  
DDC_DCLKOUT_B_DPN  
DDC_DCLKOUT_B_DPP  
Y5  
Y6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
-
-
Bank B Output Clock (Neg)  
Bank B Output Clock (Pos)  
LVDS_25_O  
DDC_DCLKOUT_C_DPN  
DDC_DCLKOUT_C_DPP  
AA22  
AB22  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
-
-
Bank C Output Clock (Neg)  
Bank C Output Clock (Pos)  
LVDS_25_O  
DDC_DCLKOUT_D_DPN  
DDC_DCLKOUT_D_DPP  
M26  
M25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
-
-
Bank D Output Clock (Neg)  
Bank D Output Clock (Pos)  
LVDS_25_O  
DDC_DIN_A0_DPN  
DDC_DIN_A0_DPP  
DDC_DIN_A1_DPN  
DDC_DIN_A1_DPP  
DDC_DIN_A2_DPN  
DDC_DIN_A2_DPP  
DDC_DIN_A3_DPN  
DDC_DIN_A3_DPP  
DDC_DIN_A4_DPN  
DDC_DIN_A4_DPP  
DDC_DIN_A5_DPN  
DDC_DIN_A5_DPP  
DDC_DIN_A6_DPN  
DDC_DIN_A6_DPP  
DDC_DIN_A7_DPN  
DDC_DIN_A7_DPP  
DDC_DIN_A8_DPN  
DDC_DIN_A8_DPP  
DDC_DIN_A9_DPN  
DDC_DIN_A9_DPP  
DDC_DIN_A10_DPN  
DDC_DIN_A10_DPP  
DDC_DIN_A11_DPN  
DDC_DIN_A11_DPP  
A15  
A14  
B14  
C14  
B16  
B15  
C16  
D16  
A17  
B17  
C17  
D18  
A19  
A18  
C18  
B19  
D19  
C19  
B20  
A20  
A22  
B22  
A24  
A23  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LVDS_25  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Data A bit 0 Input (Neg)  
Data A bit 0 Input (Pos)  
Data A bit 1 Input (Neg)  
Data A bit 1 Input (Pos)  
Data A bit 2 Input (Neg)  
Data A bit 2 Input (Pos)  
Data A bit 3 Input (Neg)  
Data A bit 3 Input (Pos)  
Data A bit 4 Input (Neg)  
Data A bit 4 Input (Pos)  
Data A bit 5 Input (Neg)  
Data A bit 5 Input (Pos)  
Data A bit 6 Input (Neg)  
Data A bit 6 Input (Pos)  
Data A bit 7 Input (Neg)  
Data A bit 7 Input (Pos)  
Data A bit 8 Input (Neg)  
Data A bit 8 Input (Pos)  
Data A bit 9 Input (Neg)  
Data A bit 9 Input (Pos)  
Data A bit 10 Input (Neg)  
Data A bit 10 Input (Pos)  
Data A bit 11 Input (Neg)  
Data A bit 11 Input (Pos)  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
8
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
C23  
B24  
C24  
D24  
A25  
B25  
C26  
B26  
A12  
A13  
B12  
C13  
D10  
D11  
C12  
C11  
A10  
B11  
D9  
DDC_DIN_A12_DPN  
DDC_DIN_A12_DPP  
DDC_DIN_A13_DPN  
DDC_DIN_A13_DPP  
DDC_DIN_A14_DPN  
DDC_DIN_A14_DPP  
DDC_DIN_A15_DPN  
DDC_DIN_A15_DPP  
DDC_DIN_B0_DPN  
DDC_DIN_B0_DPP  
DDC_DIN_B1_DPN  
DDC_DIN_B1_DPP  
DDC_DIN_B2_DPN  
DDC_DIN_B2_DPP  
DDC_DIN_B3_DPN  
DDC_DIN_B3_DPP  
DDC_DIN_B4_DPN  
DDC_DIN_B4_DPP  
DDC_DIN_B5_DPN  
DDC_DIN_B5_DPP  
DDC_DIN_B6_DPN  
DDC_DIN_B6_DPP  
DDC_DIN_B7_DPN  
DDC_DIN_B7_DPP  
DDC_DIN_B8_DPN  
DDC_DIN_B8_DPP  
DDC_DIN_B9_DPN  
DDC_DIN_B9_DPP  
DDC_DIN_B10_DPN  
DDC_DIN_B10_DPP  
DDC_DIN_B11_DPN  
DDC_DIN_B11_DPP  
DDC_DIN_B12_DPN  
DDC_DIN_B12_DPP  
DDC_DIN_B13_DPN  
DDC_DIN_B13_DPP  
DDC_DIN_B14_DPN  
DDC_DIN_B14_DPP  
DDC_DIN_B15_DPN  
DDC_DIN_B15_DPP  
DDC_DIN_C0_DPN  
DDC_DIN_C0_DPP  
DDC_DIN_C1_DPN  
DDC_DIN_C1_DPP  
DDC_DIN_C2_DPN  
DDC_DIN_C2_DPP  
DDC_DIN_C3_DPN  
DDC_DIN_C3_DPP  
DDC_DIN_C4_DPN  
DDC_DIN_C4_DPP  
DDC_DIN_C5_DPN  
DDC_DIN_C5_DPP  
DDC_DIN_C6_DPN  
DDC_DIN_C6_DPP  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
100 Ω across pair (not  
terminated in the DLPC410)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Data A bit 12 Input (Neg)  
Data A bit 12 Input (Pos)  
Data A bit 13 Input (Neg)  
Data A bit 13 Input (Pos)  
Data A bit 14 Input (Neg)  
Data A bit 14 Input (Pos)  
Data A bit 15 Input (Neg)  
Data A bit 15 Input (Pos)  
Data B bit 0 Input (Neg)  
Data B bit 0 Input (Pos)  
Data B bit 1 Input (Neg)  
Data B bit 1 Input (Pos)  
Data B bit 2 Input (Neg)  
Data B bit 2 Input (Pos)  
Data B bit 3 Input (Neg)  
Data B bit 3 Input (Pos)  
Data B bit 4 Input (Neg)  
Data B bit 4 Input (Pos)  
Data B bit 5 Input (Neg)  
Data B bit 5 Input (Pos)  
Data B bit 6 Input (Neg)  
Data B bit 6 Input (Pos)  
Data B bit 7 Input (Neg)  
Data B bit 7 Input (Pos)  
Data B bit 8 Input (Neg)  
Data B bit 8 Input (Pos)  
Data B bit 9 Input (Neg)  
Data B bit 9 Input (Pos)  
Data B bit 10 Input (Neg)  
Data B bit 10 Input (Pos)  
Data B bit 11 Input (Neg)  
Data B bit 11 Input (Pos)  
Data B bit 12 Input (Neg)  
Data B bit 12 Input (Pos)  
Data B bit 13 Input (Neg)  
Data B bit 13 Input (Pos)  
Data B bit 14 Input (Neg)  
Data B bit 14 Input (Pos)  
Data B bit 15 Input (Neg)  
Data B bit 15 Input (Pos)  
Data C bit 0 Input (Neg)  
Data C bit 0 Input (Pos)  
Data C bit 1 Input (Neg)  
Data C bit 1 Input (Pos)  
Data C bit 2 Input (Neg)  
Data C bit 2 Input (Pos)  
Data C bit 3 Input (Neg)  
Data C bit 3 Input (Pos)  
Data C bit 4 Input (Neg)  
Data C bit 4 Input (Pos)  
Data C bit 5 Input (Neg)  
Data C bit 5 Input (Pos)  
Data C bit 6 Input (Neg)  
Data C bit 6 Input (Pos)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
C9  
B10  
B9  
100 Ω across pair (not  
terminated in the DLPC410)  
A8  
100 Ω across pair (not  
terminated in the DLPC410)  
A9  
D6  
100 Ω across pair (not  
terminated in the DLPC410)  
D5  
C7  
100 Ω across pair (not  
terminated in the DLPC410)  
C6  
B6  
100 Ω across pair (not  
terminated in the DLPC410)  
B5  
D4  
100 Ω across pair (not  
terminated in the DLPC410)  
D3  
B4  
100 Ω across pair (not  
terminated in the DLPC410)  
C4  
C3  
100 Ω across pair (not  
terminated in the DLPC410)  
C2  
A3  
100 Ω across pair (not  
terminated in the DLPC410)  
A2  
B2  
100 Ω across pair (not  
terminated in the DLPC410)  
B1  
E20  
E21  
F20  
G20  
H19  
J19  
E23  
E22  
F23  
F22  
G22  
G21  
J20  
J21  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
100 Ω across pair (not  
terminated in the DLPC410)  
Copyright © 2012–2019, Texas Instruments Incorporated  
9
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
H22  
H21  
J23  
H23  
K22  
K23  
M19  
M20  
M21  
M22  
N19  
P19  
N21  
N22  
P20  
P21  
N23  
P23  
T3  
DDC_DIN_C7_DPN  
DDC_DIN_C7_DPP  
DDC_DIN_C8_DPN  
DDC_DIN_C8_DPP  
DDC_DIN_C9_DPN  
DDC_DIN_C9_DPP  
DDC_DIN_C10_DPN  
DDC_DIN_C10_DPP  
DDC_DIN_C11_DPN  
DDC_DIN_C11_DPP  
DDC_DIN_C12_DPN  
DDC_DIN_C12_DPP  
DDC_DIN_C13_DPN  
DDC_DIN_C13_DPP  
DDC_DIN_C14_DPN  
DDC_DIN_C14_DPP  
DDC_DIN_C15_DPN  
DDC_DIN_C15_DPP  
DDC_DIN_D0_DPN  
DDC_DIN_D0_DPP  
DDC_DIN_D1_DPN  
DDC_DIN_D1_DPP  
DDC_DIN_D2_DPN  
DDC_DIN_D2_DPP  
DDC_DIN_D3_DPN  
DDC_DIN_D3_DPP  
DDC_DIN_D4_DPN  
DDC_DIN_D4_DPP  
DDC_DIN_D5_DPN  
DDC_DIN_D5_DPP  
DDC_DIN_D6_DPN  
DDC_DIN_D6_DPP  
DDC_DIN_D7_DPN  
DDC_DIN_D7_DPP  
DDC_DIN_D8_DPN  
DDC_DIN_D8_DPP  
DDC_DIN_D9_DPN  
DDC_DIN_D9_DPP  
DDC_DIN_D10_DPN  
DDC_DIN_D10_DPP  
DDC_DIN_D11_DPN  
DDC_DIN_D11_DPP  
DDC_DIN_D12_DPN  
DDC_DIN_D12_DPP  
DDC_DIN_D13_DPN  
DDC_DIN_D13_DPP  
DDC_DIN_D14_DPN  
DDC_DIN_D14_DPP  
DDC_DIN_D15_DPN  
DDC_DIN_D15_DPP  
DDC_DOUT_A0_DPN  
DDC_DOUT_A0_DPP  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
O
O
LVDS_25  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLK_D  
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Data C bit 7 Input (Neg)  
Data C bit 7 Input (Pos)  
Data C bit 8 Input (Neg)  
Data C bit 8 Input (Pos)  
Data C bit 9 Input (Neg)  
Data C bit 9 Input (Pos)  
Data C bit 10 Input (Neg)  
Data C bit 10 Input (Pos)  
Data C bit 11 Input (Neg)  
Data C bit 11 Input (Pos)  
Data C bit 12 Input (Neg)  
Data C bit 12 Input (Pos)  
Data C bit 13 Input (Neg)  
Data C bit 13 Input (Pos)  
Data C bit 14 Input (Neg)  
Data C bit 14 Input (Pos)  
Data C bit 15 Input (Neg)  
Data C bit 15 Input (Pos)  
Data D bit 0 Input (Neg)  
Data D bit 0 Input (Pos)  
Data D bit 1 Input (Neg)  
Data D bit 1 Input (Pos)  
Data D bit 2 Input (Neg)  
Data D bit 2 Input (Pos)  
Data D bit 3 Input (Neg)  
Data D bit 3 Input (Pos)  
Data D bit 4 Input (Neg)  
Data D bit 4 Input (Pos)  
Data D bit 5 Input (Neg)  
Data D bit 5 Input (Pos)  
Data D bit 6 Input (Neg)  
Data D bit 6 Input (Pos)  
Data D bit 7 Input (Neg)  
Data D bit 7 Input (Pos)  
Data D bit 8 Input (Neg)  
Data D bit 8 Input (Pos)  
Data D bit 9 Input (Neg)  
Data D bit 9 Input (Pos)  
Data D bit 10 Input (Neg)  
Data D bit 10 Input (Pos)  
Data D bit 11 Input (Neg)  
Data D bit 11 Input (Pos)  
Data D bit 12 Input (Neg)  
Data D bit 12 Input (Pos)  
Data D bit 13 Input (Neg)  
Data D bit 13 Input (Pos)  
Data D bit 14 Input (Neg)  
Data D bit 14 Input (Pos)  
Data D bit 15 Input (Neg)  
Data D bit 15 Input (Pos)  
Data A bit 0 Output (Neg)  
Data A bit 0 Output (Pos)  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
R3  
LVDS_25_I  
LVDS_25  
R5  
100 Ω across pair (not  
terminated in the DLPC410)  
R6  
LVDS_25_I  
LVDS_25  
R7  
100 Ω across pair (not  
terminated in the DLPC410)  
P6  
LVDS_25_I  
LVDS_25  
N3  
100 Ω across pair (not  
terminated in the DLPC410)  
P3  
LVDS_25_I  
LVDS_25  
P4  
100 Ω across pair (not  
terminated in the DLPC410)  
P5  
LVDS_25_I  
LVDS_25  
N6  
100 Ω across pair (not  
terminated in the DLPC410)  
N7  
LVDS_25_I  
LVDS_25  
N4  
100 Ω across pair (not  
terminated in the DLPC410)  
M4  
M7  
L7  
LVDS_25_I  
LVDS_25  
100 Ω across pair (not  
terminated in the DLPC410)  
LVDS_25_I  
LVDS_25  
K7  
100 Ω across pair (not  
terminated in the DLPC410)  
K6  
LVDS_25_I  
LVDS_25  
J4  
100 Ω across pair (not  
terminated in the DLPC410)  
J5  
LVDS_25_I  
LVDS_25  
H7  
100 Ω across pair (not  
terminated in the DLPC410)  
J6  
LVDS_25_I  
LVDS_25  
G4  
100 Ω across pair (not  
terminated in the DLPC410)  
H4  
LVDS_25_I  
LVDS_25  
G5  
100 Ω across pair (not  
terminated in the DLPC410)  
H6  
LVDS_25_I  
LVDS_25  
G7  
100 Ω across pair (not  
terminated in the DLPC410)  
G6  
LVDS_25_I  
LVDS_25  
F4  
100 Ω across pair (not  
terminated in the DLPC410)  
F5  
LVDS_25_I  
LVDS_25  
E5  
100 Ω across pair (not  
terminated in the DLPC410)  
E6  
LVDS_25_I  
LVDS_25  
AE2  
AF2  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
LVDS_25_O  
DDC_DOUT_A1_DPN  
DDC_DOUT_A1_DPP  
AD1  
AE1  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 1 Output (Neg)  
Data A bit 1 Output (Pos)  
LVDS_25_O  
10  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
AC1  
AC2  
DDC_DOUT_A2_DPN  
DDC_DOUT_A2_DPP  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 2 Output (Neg)  
Data A bit 2 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A3_DPN  
DDC_DOUT_A3_DPP  
AB1  
AB2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 3 Output (Neg)  
Data A bit 3 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A4_DPN  
DDC_DOUT_A4_DPP  
Y2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 4 Output (Neg)  
Data A bit 4 Output (Pos)  
AA2  
LVDS_25_O  
DDC_DOUT_A5_DPN  
DDC_DOUT_A5_DPP  
W1  
Y1  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 5 Output (Neg)  
Data A bit 5 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A6_DPN  
DDC_DOUT_A6_DPP  
V1  
V2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 6 Output (Neg)  
Data A bit 6 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A7_DPN  
DDC_DOUT_A7_DPP  
U1  
U2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 7 Output (Neg)  
Data A bit 7 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A8_DPN  
DDC_DOUT_A8_DPP  
R2  
T2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 8 Output (Neg)  
Data A bit 8 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A9_DPN  
DDC_DOUT_A9_DPP  
N2  
M2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 9 Output (Neg)  
Data A bit 9 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A10_DPN  
DDC_DOUT_A10_DPP  
K1  
L2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 10 Output (Neg)  
Data A bit 10 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A11_DPN  
DDC_DOUT_A11_DPP  
K2  
K3  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 11 Output (Neg)  
Data A bit 11 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A12_DPN  
DDC_DOUT_A12_DPP  
J3  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 12 Output (Neg)  
Data A bit 12 Output (Pos)  
H3  
LVDS_25_O  
DDC_DOUT_A13_DPN  
DDC_DOUT_A13_DPP  
H2  
J1  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 13 Output (Neg)  
Data A bit 13 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A14_DPN  
DDC_DOUT_A14_DPP  
H1  
G1  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 14 Output (Neg)  
Data A bit 14 Output (Pos)  
LVDS_25_O  
DDC_DOUT_A15_DPN  
DDC_DOUT_A15_DPP  
G2  
F2  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_A  
DDC_DCLKOUT_A  
DDR  
DDR  
Data A bit 15 Output (Neg)  
Data A bit 15 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B0_DPN  
DDC_DOUT_B0_DPP  
AE5  
AE6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 0 Output (Neg)  
Data B bit 0 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B1_DPN  
DDC_DOUT_B1_DPP  
AD3  
AD4  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 1 Output (Neg)  
Data B bit 1 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B2_DPN  
DDC_DOUT_B2_DPP  
AD5  
AD6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 2 Output (Neg)  
Data B bit 2 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B3_DPN  
DDC_DOUT_B3_DPP  
AC3  
AC4  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 3 Output (Neg)  
Data B bit 3 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B4_DPN  
DDC_DOUT_B4_DPP  
AB5  
AB6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 4 Output (Neg)  
Data B bit 4 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B5_DPN  
DDC_DOUT_B5_DPP  
AB7  
AC6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 5 Output (Neg)  
Data B bit 5 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B6_DPN  
DDC_DOUT_B6_DPP  
AA5  
AA4  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 6 Output (Neg)  
Data B bit 6 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B7_DPN  
DDC_DOUT_B7_DPP  
AA7  
Y7  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 7 Output (Neg)  
Data B bit 7 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B8_DPN  
DDC_DOUT_B8_DPP  
Y3  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 8 Output (Neg)  
Data B bit 8 Output (Pos)  
W3  
LVDS_25_O  
DDC_DOUT_B9_DPN  
DDC_DOUT_B9_DPP  
W4  
V4  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 9 Output (Neg)  
Data B bit 9 Output (Pos)  
LVDS_25_O  
Copyright © 2012–2019, Texas Instruments Incorporated  
11  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
W6  
W5  
DDC_DOUT_B10_DPN  
DDC_DOUT_B10_DPP  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 10 Output (Neg)  
Data B bit 10 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B11_DPN  
DDC_DOUT_B11_DPP  
V7  
V6  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 11 Output (Neg)  
Data B bit 11 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B12_DPN  
DDC_DOUT_B12_DPP  
U4  
V3  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 12 Output (Neg)  
Data B bit 12 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B13_DPN  
DDC_DOUT_B13_DPP  
T4  
T5  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 13 Output (Neg)  
Data B bit 13 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B14_DPN  
DDC_DOUT_B14_DPP  
U6  
U5  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 14 Output (Neg)  
Data B bit 14 Output (Pos)  
LVDS_25_O  
DDC_DOUT_B15_DPN  
DDC_DOUT_B15_DPP  
U7  
T7  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_B  
DDC_DCLKOUT_B  
DDR  
DDR  
Data B bit 15 Output (Neg)  
Data B bit 15 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C0_DPN  
DDC_DOUT_C0_DPP  
T22  
T23  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 0 Output (Neg)  
Data C bit 0 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C1_DPN  
DDC_DOUT_C1_DPP  
R20  
R21  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 1 Output (Neg)  
Data C bit 1 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C2_DPN  
DDC_DOUT_C2_DPP  
T19  
T20  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 2 Output (Neg)  
Data C bit 2 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C3_DPN  
DDC_DOUT_C3_DPP  
U21  
U22  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 3 Output (Neg)  
Data C bit 3 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C4_DPN  
DDC_DOUT_C4_DPP  
U20  
U19  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 4 Output (Neg)  
Data C bit 4 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C5_DPN  
DDC_DOUT_C5_DPP  
V23  
V24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 5 Output (Neg)  
Data C bit 5 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C6_DPN  
DDC_DOUT_C6_DPP  
V22  
V21  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 6 Output (Neg)  
Data C bit 6 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C7_DPN  
DDC_DOUT_C7_DPP  
W19  
V19  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 7 Output (Neg)  
Data C bit 7 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C8_DPN  
DDC_DOUT_C8_DPP  
W23  
W24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 8 Output (Neg)  
Data C bit 8 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C9_DPN  
DDC_DOUT_C9_DPP  
Y22  
Y23  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 9 Output (Neg)  
Data C bit 9 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C10_DPN  
DDC_DOUT_C10_DPP  
Y20  
Y21  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 10 Output (Neg)  
Data C bit 10 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C11_DPN  
DDC_DOUT_C11_DPP  
AA24  
AA23  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 11 Output (Neg)  
Data C bit 11 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C12_DPN  
DDC_DOUT_C12_DPP  
AA19  
AA20  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 12 Output (Neg)  
Data C bit 12 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C13_DPN  
DDC_DOUT_C13_DPP  
AC24  
AB24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 13 Output (Neg)  
Data C bit 13 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C14_DPN  
DDC_DOUT_C14_DPP  
AC19  
AD19  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 14 Output (Neg)  
Data C bit 14 Output (Pos)  
LVDS_25_O  
DDC_DOUT_C15_DPN  
DDC_DOUT_C15_DPP  
AC22  
AC23  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_C  
DDC_DCLKOUT_C  
DDR  
DDR  
Data C bit 15 Output (Neg)  
Data C bit 15 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D0_DPN  
DDC_DOUT_D0_DPP  
AB26  
AC26  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 0 Output (Neg)  
Data D bit 0 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D1_DPN  
DDC_DOUT_D1_DPP  
AA25  
AB25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 1 Output (Neg)  
Data D bit 1 Output (Pos)  
LVDS_25_O  
12  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
Y26  
Y25  
DDC_DOUT_D2_DPN  
DDC_DOUT_D2_DPP  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 2 Output (Neg)  
Data D bit 2 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D3_DPN  
DDC_DOUT_D3_DPP  
W26  
W25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 3 Output (Neg)  
Data D bit 3 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D4_DPN  
DDC_DOUT_D4_DPP  
U26  
V26  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 4 Output (Neg)  
Data D bit 4 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D5_DPN  
DDC_DOUT_D5_DPP  
U25  
U24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 5 Output (Neg)  
Data D bit 5 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D6_DPN  
DDC_DOUT_D6_DPP  
T25  
T24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 6 Output (Neg)  
Data D bit 6 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D7_DPN  
DDC_DOUT_D7_DPP  
R26  
R25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 7 Output (Neg)  
Data D bit 7 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D8_DPN  
DDC_DOUT_D8_DPP  
P24  
P25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 8 Output (Neg)  
Data D bit 8 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D9_DPN  
DDC_DOUT_D9_DPP  
N24  
M24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 9 Output (Neg)  
Data D bit 9 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D10_DPN  
DDC_DOUT_D10_DPP  
L25  
L24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 10 Output (Neg)  
Data D bit 10 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D11_DPN  
DDC_DOUT_D11_DPP  
K26  
K25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 11 Output (Neg)  
Data D bit 11 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D12_DPN  
DDC_DOUT_D12_DPP  
J26  
J25  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 12 Output (Neg)  
Data D bit 12 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D13_DPN  
DDC_DOUT_D13_DPP  
J24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 13 Output (Neg)  
Data D bit 13 Output (Pos)  
H24  
LVDS_25_O  
DDC_DOUT_D14_DPN  
DDC_DOUT_D14_DPP  
H26  
G26  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 14 Output (Neg)  
Data D bit 14 Output (Pos)  
LVDS_25_O  
DDC_DOUT_D15_DPN  
DDC_DOUT_D15_DPP  
G25  
G24  
O
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
-
DDC_DCLKOUT_D  
DDC_DCLKOUT_D  
DDR  
DDR  
Data D bit 15 Output (Neg)  
Data D bit 15 Output (Pos)  
LVDS_25_O  
DDC_M0  
W18  
Y17  
V18  
R1  
-
-
NC  
NC  
4.7 kΩ pullup to 2.5V  
4.7 kΩ pullup to 2.5V  
4.7 kΩ pullup to 2.5V  
Hi  
Hi  
Hi  
-
-
Xilinx Configuration  
Xilinx Configuration  
Xilinx Configuration  
DDC_M1  
-
DDC_M2  
-
NC  
-
DDC_SCTRL_AN  
O
LVDS_25  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
DDC_DCLKOUT_A  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Bank A Serial Control Data  
(Neg)  
DDC_SCTRL_AP  
DDC_SCTRL_BN  
DDC_SCTRL_BP  
DDC_SCTRL_CN  
DDC_SCTRL_CP  
DDC_SCTRL_DN  
DDC_SCTRL_DP  
DDC_VERSION_0  
DDC_VERSION_1  
DDC_VERSION_2  
DDC_SPARE_1  
P1  
AA3  
AB4  
W20  
W21  
N26  
P26  
F18  
O
O
O
O
O
O
O
O
O
O
-
LVDS_25_O  
LVDS_25  
-
DDC_DCLKOUT_A  
Bank A Serial Control Data  
(Pos)  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
DDC_DCLKOUT_B  
Bank B Serial Control Data  
(Neg)  
LVDS_25_O  
LVDS_25  
-
DDC_DCLKOUT_B  
Bank B Serial Control Data  
(Pos)  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
DDC_DCLKOUT_C  
Bank C Serial Control Data  
(Neg)  
LVDS_25_O  
LVDS_25  
-
DDC_DCLKOUT_C  
Bank C Serial Control Data  
(Pos)  
Pair connected to DMD  
(LVDS terminated internally  
in DMD - 100 Ω)  
-
DDC_DCLKOUT_D  
Bank D Serial Control Data  
(Neg)  
LVDS_25_O  
-
DDC_DCLKOUT_D  
Bank D Serial Control Data  
(Pos)  
LVCMOS25_F_  
12_O  
Hi = 1  
Hi = 1  
Hi = 1  
-
-
-
-
-
DLPC410 Firmware Rev  
Number bit 0  
G17  
H18  
AC21  
LVCMOS25_F_  
12_O  
DLPC410 Firmware Rev  
Number bit 1  
LVCMOS25_F_  
12_O  
DLPC410 Firmware Rev  
Number bit 2  
LVCMOS25_F_ Do not connect  
12_O  
Not Used  
Copyright © 2012–2019, Texas Instruments Incorporated  
13  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
DMD_A_RESET  
AD14  
O
LVCMOS25_F_ Connected in Reference  
Lo  
-
DMD Circuitry Reset (not data  
reset)  
12_O  
Design to 36 Ω resistor with  
27 pF cap to ground (signal  
name DMD_A_RESET_FILT  
after resistor - connects to  
DMD signal DMDRST)  
DMD_A_SCPEN  
AB14  
O
LVCMOS25_F_ Connected in Reference  
Lo  
-
DMD SCP Output Enable  
12_O  
Design to 36 Ω resistor with  
27 pF cap to ground (called  
DMD_A_SCPEN# in  
Reference Design- signal  
name  
DMD_A_SCPEN#_FILT after  
resistor - connects to DMD  
signal DMDSEL )  
DMD_B_RESET  
DMD_B_SCPEN  
AA12  
AC14  
O
O
LVCMOS25_S_ Connected in Reference  
-
-
-
-
Not Used  
Not Used  
12_O  
Design to 36 Ω resistor with  
27 pF cap to ground (signal  
name DMD_B_RESET_FILT  
after resistor - NC after that  
point)  
LVCMOS25_S_ Connected in Reference  
12_O  
Design to 36 Ω resistor with  
27 pF cap to ground (called  
DMD_B_SCPEN# in  
Reference Design - signal  
name  
DMD_B_SCPEN#_FILT after  
resistor - NC after that point )  
DMD_TYPE_0  
DMD_TYPE_1  
DMD_TYPE_2  
DMD_TYPE_3  
DONE_DDC  
AA17  
AC16  
AB17  
AD15  
K10  
O
O
O
O
O
LVCMOS25_F_  
12_O  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi  
-
-
-
-
-
DMD Attached Type bit 0  
DMD Attached Type bit 1  
DMD Attached Type bit 2  
DMD Attached Type bit 3  
LVCMOS25_F_  
12_O  
LVCMOS25_F_  
12_O  
LVCMOS25_F_  
12_O  
-
4.7 kΩ pullup to 2.5V -  
connected to DLPR410 CE  
pin and LED D3 pin 3  
(cathode) in series with 62 Ω  
resistor to 3.3 V  
DLPR410 Initialization Routine  
Complete  
DVALID_A_DPN  
DVALID_A_DPP  
DVALID_B_DPN  
DVALID_B_DPP  
DVALID_C_DPN  
DVALID_C_DPP  
DVALID_D_DPN  
DVALID_D_DPP  
DXN_0  
D20  
D21  
C8  
I
I
I
I
I
I
I
I
-
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
LVDS_25  
LVDS_25_I  
NC  
100 Ω across pair (not  
terminated in the DLPC410)  
-
-
-
-
-
-
-
-
-
DDC_DCLK_A  
DDC_DCLK_A  
DDC_DCLK_B  
DDC_DCLK_B  
DDC_DCLK_C  
DDC_DCLK_C  
DDC_DCLK_D  
DDC_DCLK_D  
-
Bank A Valid Input Signal  
(Neg)  
Bank A Valid Input Signal  
(Pos)  
100 Ω across pair (not  
terminated in the DLPC410)  
Bank B Valid Input Signal  
(Neg)  
D8  
Bank B Valid Input Signal  
(Pos)  
L19  
L20  
L3  
100 Ω across pair (not  
terminated in the DLPC410)  
Bank C Valid Input Signal  
(Neg)  
Bank C Valid Input Signal  
(Pos)  
100 Ω across pair (not  
terminated in the DLPC410)  
Bank D Valid Input Signal  
(Neg)  
L4  
Bank D Valid Input Signal  
(Pos)  
R13  
TP17 in Reference Design  
TP14 in Reference Design  
Dedicated Xlilinx Temperature  
Diode (anode); Not Used in  
Reference Design  
DXP_0  
R14  
Y18  
-
NC  
-
-
-
Dedicated Xlilinx Temperature  
Diode (cathode); Not Used in  
Reference Design  
ECP2_FINISHED  
O
LVCMOS25_F_ Connected to LED D3 pin 2  
Hi  
DLPR410 Initialization Routine  
Complete  
12_O  
(anode) in series with 62 Ω  
resistor to 3.3 V  
ECP2_M_TP0  
ECP2_M_TP1  
ECP2_M_TP2  
AD11  
AD10  
AD8  
-
-
-
LVCMOS25_F_ Mictor J8 Pin 2 in Reference  
12_O Design  
-
-
-
-
-
-
Not Used - do not connect  
Reserved - do not connect  
Reserved - do not connect  
LVCMOS25_F_ Mictor J8 Pin 4 in Reference  
12_O Design  
LVCMOS25_F_ Mictor J8 Pin 6 in Reference  
12_O Design  
14  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
ECP2_M_TP3  
AC8  
O
LVCMOS25_F_ Mictor J8 Pin 8 in Reference  
12_O Design  
-
-
Buffered data clock - test point  
ECP2_M_TP4  
ECP2_M_TP5  
ECP2_M_TP6  
ECP2_M_TP7  
ECP2_M_TP8  
ECP2_M_TP9  
ECP2_M_TP10  
ECP2_M_TP11  
ECP2_M_TP12  
ECP2_M_TP13  
ECP2_M_TP14  
ECP2_M_TP15  
ECP2_M_TP16  
ECP2_M_TP17  
ECP2_M_TP18  
ECP2_M_TP19  
ECP2_M_TP20  
ECP2_M_TP21  
ECP2_M_TP22  
ECP2_M_TP23  
ECP2_M_TP24  
ECP2_M_TP25  
ECP2_M_TP26  
ECP2_M_TP27  
ECP2_M_TP28  
ECP2_M_TP29  
ECP2_M_TP30  
ECP2_M_TP31  
AC7  
AC9  
AB9  
AA8  
AA9  
Y8  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LVCMOS25_F_ Mictor J8 Pin 10 in  
12_O Reference Design  
-
-
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
DMD A/B bus OK - test point  
DMD C/D bus OK - test point  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
Reserved - do not connect  
LVCMOS25_F_ Mictor J8 Pin 12 in  
12_O Reference Design  
Hi  
Hi  
Hi  
Hi  
-
LVCMOS25_F_ Mictor J8 Pin 14 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 16 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 18 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 20 in  
12_O Reference Design  
-
AB10  
AA10  
Y10  
AC11  
Y12  
Y11  
AB11  
H8  
LVCMOS25_F_ Mictor J8 Pin 22 in  
12_O Reference Design  
Lo  
Hi  
Hi  
Hi  
Hi  
-
LVCMOS25_F_ Mictor J8 Pin 24 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 26 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 28 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 30 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 32 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 34 in  
12_O Reference Design  
Hi  
Hi  
Hi  
-
LVCMOS25_F_ Mictor J8 Pin 36 in  
12_O Reference Design  
H9  
LVCMOS25_F_ Mictor J8 Pin 38 in  
12_O Reference Design  
F12  
G11  
G12  
E11  
E10  
E8  
LVCMOS25_F_ Mictor J8 Pin 37 in  
12_O Reference Design  
-
LVCMOS25_F_ Mictor J8 Pin 35 in  
12_O Reference Design  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
Hi  
-
LVCMOS25_F_ Mictor J8 Pin 33 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 31 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 29 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 27 in  
12_O Reference Design  
F10  
F9  
LVCMOS25_F_ Mictor J8 Pin 25 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 23 in  
12_O Reference Design  
F8  
LVCMOS25_F_ Mictor J8 Pin 21 in  
12_O Reference Design  
G10  
G9  
LVCMOS25_F_ Mictor J8 Pin 19 in  
12_O Reference Design  
LVCMOS25_F_ Mictor J8 Pin 17 in  
12_O Reference Design  
H11  
H12  
LVCMOS25_F_ Mictor J8 Pin 15 in  
12_O Reference Design  
-
-
LVCMOS25_F_ Mictor J8 Pin 13 in  
12_O Reference Design  
-
Copyright © 2012–2019, Texas Instruments Incorporated  
15  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
Connect to Ground  
NAME  
NO.  
GND  
A1, A6, A11,  
A16, A21, A26,  
AA1, AA11,  
-
GND  
-
-
AA21, AA26,  
AB8, AB18,  
AC5, AC15,  
AC25, AD2,  
AD12, AD22,  
AE4, AE9,  
AE14, AE19,  
AF1, AF6,  
AF11, AF16,  
AF21, AF26,  
B3, B8, B13,  
B18, C5, C15,  
C25, D2, D12,  
D22, E9, E19,  
F1, F6, F16,  
F26, G3, G13,  
G18, G23, H10,  
H20, J7, J9,  
J13, J15, J17,  
K4, K8, K12,  
K14, K16, K19,  
K24, L1, L9,  
L11, L13, L15,  
L17, L21, L26,  
M3, M8, M10,  
M12, M16, M18,  
N5, N9, N11,  
N15, N17, N25,  
P2, P7, P8,  
P10, P12, P16,  
P22, R9, R11,  
R15, R17, R19,  
T1, T6, T8, T10,  
T12, T14, T16,  
T26, U3, U9,  
U13, U15, U17,  
U18, U23, V8,  
V10, V14, V16,  
V20, W7, W9,  
W13, W15,  
W17, Y4, Y14,  
Y16, Y19, Y24  
HSWAPEN  
L18  
-
-
4.7 kΩ pullup to 2.5 V  
-
-
-
Xilinx Configuration  
INIT_ACTIVE  
AA18  
O
LVCMOS25_F_  
12_O  
Hi  
DLPC410 Initilization Routine  
Active  
INTB_DDC  
LOAD4  
J11  
-
-
-
4.7 kΩ pullup to 2.5 V  
connected to DLPR410  
OE/RESET  
Hi  
-
-
-
Xilinx Configuration  
AB21  
LVCMOS25_F_ Previously DDC_SPARE_0,  
LOAD4 mode enable  
12_I/O  
connected to Applications  
FPGA (U5) pin AD19 in  
Reference Design. Weak  
internal pull-up. Pull-up to  
logic '1' if LOAD4 is unused.  
NS_FLIP  
F19  
J18  
J10  
I
I
LVCMOS25_S_  
12_I  
Hi  
Hi  
-
-
Top/Bottom image flip on DMD  
Xilinx Configuration  
PROGB_DDC  
PROM_CCK_DDC  
-
4.7 kΩ pullup to 2.5 V  
connected to DLPR410 CF  
-
LVCMOS25_S_ Connected to center of  
PROM_CCK_DDC  
Configuration PROM Clock  
12  
voltage divider (100/100 Ω)  
and through R53 to  
DLPR410 CLKOUT  
PROM_D0_DDC  
PWR_FLOAT  
K11  
-
I
-
Connected to DLPR410 Data  
0 (D0)  
-
PROM_CCK_DDC  
-
Configuration PROM Data Out  
DMD Power Good indicator  
AC17  
LVCMOS25_S_ Connected to output of U22  
Hi  
12_I  
NOR Gate (inputs  
V5_PWR_FLOAT and  
PWRGD)  
RDWR_B  
P18  
D14  
-
I
-
1 kΩ pulldown to ground  
-
-
-
Xilinx Configuration  
ROWAD_0  
LVCMOS25_S_  
12_I  
Hi = 1  
DMD Row Address bit 0  
ROWAD_1  
ROWAD_2  
D15  
E15  
I
I
LVCMOS25_S_  
12_I  
Hi = 1  
Hi = 1  
-
-
DMD Row Address bit 1  
DMD Row Address bit 2  
LVCMOS25_S_  
12_I  
16  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
ROWAD_3  
F14  
I
LVCMOS25_S_  
12_I  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
Hi = 1  
-
-
DMD Row Address bit 3  
ROWAD_4  
ROWAD_5  
ROWAD_6  
ROWAD_7  
ROWAD_8  
ROWAD_9  
ROWAD_10  
ROWMD_0  
ROWMD_1  
RST_ACTIVE  
RST2BLK  
RSVD_0  
G14  
E16  
F15  
I
I
I
I
I
I
I
I
I
I
I
-
-
LVCMOS25_S_  
12_I  
-
DMD Row Address bit 4  
DMD Row Address bit 5  
DMD Row Address bit 6  
DMD Row Address bit 7  
DMD Row Address bit 8  
DMD Row Address bit 9  
DMD Row Address bit 10  
DMD Row Mode bit 0  
DMD Row Mode bit 1  
DMD Reset in Progress  
Dual Block Reset bit  
LVCMOS25_S_  
12_I  
-
LVCMOS25_S_  
12_I  
-
G15  
E17  
F17  
LVCMOS25_S_  
12_I  
-
LVCMOS25_S_  
12_I  
-
LVCMOS25_S_  
12_I  
-
G16  
H17  
H16  
AB16  
E18  
R18  
T18  
LVCMOS25_S_  
12_I  
-
LVCMOS25_S_  
12_I  
-
LVCMOS25_S_  
12_I  
-
LVCMOS25_F_  
12_O  
-
LVCMOS25_S_  
12_I  
-
-
Connect to Ground  
Connect to Ground  
-
Not Used - must be tied to  
Ground  
RSVD_1  
-
-
-
Not Used - must be tied to  
Ground  
SCPCLK  
AB15  
LVCMOS25_F_ Connected to DLPA200  
-
SCPCLK  
SCP Clock  
12_O  
Number 1 and Number 2  
SCPCLK and to R105 36 Ω  
filter resistor with 27 pF cap  
after - called  
DMD_A_SCPCLK_FILT after  
- connects to DMD SCPCLK  
(also connects to R97 filter  
resistor with 27 pF cap after -  
called  
DMD_B_SCPCLK_FILT but  
NC after)  
SCPDI  
AA15  
I
LVCMOS25_S_ 1 kΩ pullup to 2.5 V -  
-
SCPCLK  
SCP data input to DLPC410  
12_I  
connects to DLPA200  
Number 1 and Number 2  
SCPDO and to DMD SCPDO  
through flex A - on DMD  
board there is an LCR filter  
[2 x 100 pF caps, inductor  
and 34 Ω resistor] also  
connects to flex B but NC on  
other end.  
SCPDO  
AA14  
O
LVCMOS25_F_ 1 kΩ pullup to 2.5 V -  
-
SCPCLK  
SCP data output from  
DLPC410  
12_O  
connects to DLPA200  
Number 1 and Number 2  
SCPDI and to R96 filter cap  
with 27 pF cap after - called  
DMD_A_FILTER - connect  
through flex A to DMD  
SCPDI - also connects to  
R71 36 Ω filter resistor with  
27 pF cap to  
DMD_B_SCPDO_FILT but  
NC on other end.  
STEPVCC  
TCK_JTAG  
Y13  
U11  
-
LVCMOS25_S_ 1 kΩ pulldown to ground  
-
-
-
Not Used  
12_I  
-
Connects to DLPC410,  
DLPR410, and JTAG header  
TCK (if user has JTAG they  
must build their chain  
accordingly)  
TCK_JTAG  
JTAG Clock  
TDO_DDC  
W10  
V11  
-
-
Connects to JTAG return  
TDO on JTAG header  
-
-
TCK_JTAG  
TCK_JTAG  
JTAG data out of DLPC410  
TDO_XCF16DDC  
Connects to DLPR410 TDO  
(DLPC410 internal signal  
TDI_0)  
JTAG data out of DLPR410 to  
DLPC410  
Copyright © 2012–2019, Texas Instruments Incorporated  
17  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
TMS_JTAG  
NO.  
V12  
-
Connects to DLPC410,  
DLPR410, and JTAG header  
TMS  
Hi  
TCK_JTAG  
JTAG  
VBATT_0  
VCCAUX  
K18  
-
Connecteto 4.7 kΩ pullup to  
2.5 V  
-
-
-
-
Not Used  
J8, K17, L8,  
M17, N8, P17,  
R8, T17, U8,  
V17, W8, W16  
POWER  
VCC_2P5V  
VCC_1P0V  
Aux Power  
VCCINT  
H15, J12, J14,  
J16, K9, K13,  
K15, L10, L12,  
L14, L16, M9,  
M11, M15, N10,  
N12, N16, P9,  
P11, P15, R10,  
R12, R16, T9,  
T11, T13, T15,  
U10, U12, U14,  
U16, V9, V13,  
V15, W14, Y15  
POWER  
-
-
Power  
VCCO_0_1  
VCCO_0_2  
VCCO_1_1  
VCCO_1_2  
VCCO_2_1  
VCCO_2_2  
VCCO_3_1  
VCCO_3_2  
VCCO_4_1  
VCCO_4_2  
VCCO_11_1  
VCCO_11_2  
VCCO_11_3  
VCCO_12_1  
VCCO_12_2  
VCCO_12_3  
VCCO_13_1  
VCCO_13_2  
VCCO_13_3  
VCCO_14_1  
VCCO_14_2  
VCCO_14_3  
VCCO_15_1  
VCCO_15_2  
VCCO_15_3  
VCCO_16_1  
VCCO_16_2  
VCCO_16_3  
VCCO_17_1  
VCCO_17_2  
VCCO_17_3  
VCCO_18_1  
VCCO_18_2  
VCCO_18_3  
VLED0  
Y9  
W12  
C10  
F11  
AA16  
AD17  
E14  
D17  
AC10  
AB13  
F21  
J22  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
VCC_2P5V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
-
-
-
-
-
-
-
-
-
-
-
H25  
J2  
-
-
H5  
-
L6  
-
R24  
M23  
N20  
V5  
-
-
-
-
R4  
-
W2  
-
E24  
B23  
C20  
G8  
-
-
-
-
D7  
-
E4  
-
V25  
W22  
T21  
AD7  
AA6  
AB3  
AC18  
-
-
-
-
-
VCC_2P5V  
LVCMOS25_F_ Connects to LED D9 in  
-
O
O
-
Hi = On  
Power Indicator LED Output  
12_O  
series with 22.1 Ω resistor to  
2.5 V  
VLED1  
VN_0  
AD18  
P13  
LVCMOS25_F_ Connects to LED D10 in  
Hi = On  
-
-
Heartbeat Indicator LED  
Output  
12_O  
series with 22.1 Ω resistor to  
2.5 V  
-
Connect to Ground  
-
Xilinx System Monitor (not  
used - must be connected to  
ground)  
18  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TERMINATION  
/NOTES  
ACTIVE  
(Hi or Lo)  
DATA  
RATE  
TYPE  
SIGNAL  
CLOCK  
DESCRIPTION  
NAME  
NO.  
VP_0  
N14  
-
-
Connect to Ground  
-
-
-
-
Xilinx System Monitor (not  
used - must be connected to  
ground)  
VREFN_0  
VREFP_0  
N13  
P14  
-
-
I
LVCMOS25_S_ Connect to Ground  
12  
-
-
Xilinx System Monitor  
reference voltage (not used -  
must be connected to ground)  
LVCMOS25_S_ Connect to Ground  
12  
Xilinx System Monitor  
reference ground (not used -  
must be connected to ground)  
WDT_ENBL  
UNUSED  
AA13  
LVCMOS25_S_  
12_I  
Lo  
-
-
-
DMD Mirror Clocking Pulse  
Watchdog Timer Enable  
AB23, AC20,  
AD9, AD16,  
AD20, AD21,  
AD23, AD24,  
AD25, AD26,  
AE7, AE8,  
NC  
No Connection (listed as  
Xilinx NC0 - NC42)  
Unused Pins  
AE10, AE11,  
AE12, AE13,  
AE15, AE16,  
AE17, AE18,  
AE20, AE21,  
AE22, AE23,  
AE24, AE25,  
AE26, AF7,  
AF8, AF9,  
AF10, AF12,  
AF13, AF14,  
AF15, AF17,  
AF18, AF19,  
AF20, AF22,  
AF23, AF24,  
AF25  
版权 © 2012–2019, Texas Instruments Incorporated  
19  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
7 Specifications  
The information contained in the following sections has been adapted from the Xilinx  
XC5VLX30 data sheet. For any information beyond what is listed here, consult the Xilinx  
XC5VLX30 data sheet. Where appropriate, DLPC410 specific values have been  
substituted in place of generic parameters.  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ELECTRICAL  
VCCINT  
–0.5  
–0.5  
2.35  
–0.75  
–0.3  
1.05  
3.45  
V
V
V
V
V
(2)  
Supply voltage  
VCCO  
VCCAUX  
2.5 V  
2.5 V  
2.625  
(3)  
VI  
Input voltage  
VCCO + 0.5  
VCCO + 0.3  
VO  
Output voltage(4)  
ENVIRONMENTAL  
TA  
Operating free-air temperature(5)  
0
85  
°C  
°C  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Applies to external input and bidirectional buffers.  
(4) Applies to external output and bidirectional buffers.  
(5) Maximum Ambient Temperature may be further limited by the device’s power dissipation (which is data and configuration dependent),  
air flow and resultant junction temperature.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
400  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.95  
1.14  
2.375  
0
NOM  
1.00  
MAX UNIT  
VCCINT 1-V Supply voltage, core logic  
VCCO 2.5-V Supply voltage, I/O  
VCCAUX 2.5-V Supply voltage, I/O  
1.05  
3.45  
2.625  
VCCO  
2.2  
V
V
V
2.50  
2.500  
2.5-V CMOS  
2.5-V LVDS  
2.5-V CMOS  
2.5-V LVDS  
VI  
Input voltage  
V
V
0.3  
0
VCCO  
1.675  
125  
VO  
Output voltage  
0.825  
0
TJ  
Operating junction temperature(1)  
°C  
W
PD  
Continuous total power dissipation  
2.7  
2.8  
(1) Thermal analysis and design should be carefully considered to ensure that the junction temperature is maintained within the above  
specifications.  
20  
版权 © 2012–2019, Texas Instruments Incorporated  
 
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
7.4 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
High-level Input voltage  
Low-level Input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
2.5-V CMOS  
2.5-V CMOS  
2.5-V Interface  
2.5-V LVDS  
1.7  
V
0.7  
0.4  
V
VCCO-.4  
VOH  
VOL  
CI  
High-level output voltage  
Low-level output voltage  
Input capacitance  
V
1.38  
2.5-V Interface  
2.5-V LVDS  
V
1.03  
8
2.5-V Interface  
2.5-V LVDS  
pF  
8
ICCINT  
ICCO  
Supply voltage range, core supply  
Supply voltage range, I/O supply  
300  
850  
mA  
mA  
7.5 Timing Requirements  
(1)  
(see  
)
MIN NOM  
395 400  
50  
MAX UNIT  
fcd  
fcr  
Clock frequency, DCLKIN_n(2)  
Clock frequency, CLK_R  
400  
MHz  
MHz  
ns  
tc  
Cycle time, DCLKIN_n  
2.5  
2.5  
2.53  
1.27  
1.27  
.6  
tw(H)  
tw(L)  
tt  
Pulse duration, high  
50% to 50% reference points (signal)  
1.25 1.25  
1.25 1.25  
ns  
Pulse duration, low  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
ns  
Transition time, tt = tf /tr  
ns  
tjp  
Period Jitter DCLKIN_n(3)  
150  
–150  
ps  
Skew, DIN_A(15-0) to DCLKIN_A  
Skew, DIN_B(15-0) to DCLKIN_B  
Skew, DIN_C(15-0) to DCLKIN_C  
Skew, DIN_D(15-0) to DCLKIN_D  
Skew, DVALID_n to DCLKIN_n↑  
Skew, BLK_MD BLK_AD to DCLKIN_n(4)  
Skew, ROWMD or ROWAD to DCLKIN_n(4)  
Skew, STEPVCC to DCLKIN(4)  
150  
150  
150  
150  
150  
150  
150  
150  
–150  
–150  
–150  
tSK  
ps  
–150  
–150  
–150  
–150  
(1) It is recommended that the COMP_DATA, NS_FLIP and RST2BLK flags be set to one value and not adjusted during normal system  
operation.  
(2) Preferred DCLKIN_n duty cycle = 50%  
(3) This is the deviation in period from ideal period due solely to high frequency jitter.  
(4) First edge of DIN*, ROW*, BLK* and STEPVCC should be synchronous to DVALID rising edge  
版权 © 2012–2019, Texas Instruments Incorporated  
21  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
tsk  
tsk  
tt  
tc  
tw(H)  
tw(L)  
50%  
Cycle 1  
80%  
20%  
DCLKIN  
50%  
50%  
50%  
Cycle#CLKS/  
ROW  
DVALID  
DDR Data  
Control  
2. Input Interface Timing  
tt  
tc  
tw(H)  
tw(L)  
50%  
80%  
20%  
50%  
50%  
th  
DCLKIN  
tsu  
COMP_DATA/  
NS_FLIP  
Valid  
3. Control Timing  
Dynamic changes to NS_FLIP and COMP_DATA during normal operation is not  
recommended.  
22  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
8 Detailed Description  
8.1 Overview  
The DLPC410 DMD Digital Controller enables customers to stream binary pattern data to the DLP650LNIR,  
DLP7000(UV), or DLP9500(UV) DMD for very high speed binary pattern imaging applications. The DLPC410  
receives customer input binary pattern data on a row by row basis and passes the pattern data to the connected  
DMD. Concurrent with the receipt of data, the DLPC410 captures the customer requested ROW mode and ROW  
address which determines if row loading starts at the top (or bottom) of the DMD and increments (or decrements)  
to the next row for the next Row Cycle, or if a specific row address is specified for loading the next pattern data.  
Each DMD micromirror is individually configurable through this data loading process which enables precise,  
predictable control of each and every micromirror in the DMD Micromirror array.  
The DLPC410 also receives customer input control information instructing the DLPC410 to command the  
DLPA200 device(s) to generate the Mirror Clocking Pulses (MCPs) to the DMD – these MCPs are necessary for  
the DMD micromirrors to transition from their current state to their new state, the new state being determined by  
the new data just loaded into the DMD. A feedback signal from the DLPC410 frames the MCP such that the  
customer knows the MCP request has been received by the DLPC410 and when the MCP is completed.  
The DLPC410 supports multiple MCP modes of operation. The DMD Micromirror arrays are arranged into  
horizontal Reset Blocks – there are typically 16 horizontal Reset Blocks per DMD where each Reset Block  
receives a single MCP to initiate the Micromirror state change. DMD blocks can be Reset one at a time or all at  
once. In certain modes, adjacent blocks of 2 or of 4 Reset Blocks can be Reset at the same time. This flexibility  
provides great advantages to optimizing the time certain DMD blocks are in certain states, which in turn can  
provide speed advantages or extend DMD illumination windows (the duration for which a solid state illuminator  
should be illuminating).  
Behind the scenes, the DLPC410 also communicates directly with the control logic of the DMD to read part type  
and status information and to configure the DMD for proper operation. The DLPC410 is always paired with the  
DLPR410 PROM as the DLPR410 provides the configuration bit stream which configures the DLPC410 to be a  
DMD Digital Controller. The DLPC410 also drives one DMD at a time, and that DMD could require either one or  
two DLPA200 devices depending on the DMD type. For further information, refer to 11 or the individual DMD  
datasheets (links can be found in 26).  
版权 © 2012–2019, Texas Instruments Incorporated  
23  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8.2 Functional Block Diagrams  
2x LVDS bus  
2x LVDS bus  
DLPC410  
DLP650LNIR  
DCLK_A  
DVALID_A  
DIN_A[15:0]  
DCLKOUT_A  
SCTRL_A  
DOUT_A[15,13,11,9,7,5,3,1]  
DCLK_B  
DVALID_B  
DIN_B[15:0]  
DCLKOUT_B  
SCTRL_B  
DOUT_B[15,13,11,9,7,5,3,1]  
DCLK_C  
DVALID_C  
DIN_C[15:0]  
DCLKOUT_C  
SCTRL_C  
DOUT_C[15,13,11,9,7,5,3,1]  
DCLK_D  
DVALID_D  
DIN_D[15:0]  
DCLKOUT_D  
SCTRL_D  
DOUT_D[15,13,11,9,7,5,3,1]  
User Interface  
Controller  
FPGA  
SCPCLK  
SCPDO  
SCPDI  
DMD_A_SCPENZ  
DMD_B_SCPENZ  
A_SCPENZ  
B_SCPENZ  
COMP_DATA, NS_FLIP, WDT_ENZ,PWR_FLOAT  
ROWMD[1:0]  
ROWAD[10:0]  
RST2BLKZ  
BLKMD[1:0]  
BLKAD[10:0]  
LOAD4  
DLPA200  
RST_ACTIVE  
INIT_ACTIVE  
ECP2_FINISHED  
DMD_TYPE[3:0]  
VERSION[2:0]  
A_STROBE  
A_MODE[1:0]  
A_SEL[1:0]  
A_ADDR[3:0]  
OEZ  
MBRST[15:0]  
INIT  
DLPR410  
TDI_JTAG  
PROM_CCK_DDC  
PROGB_DDC  
PROM_DO_DDC  
DONE_DDC  
INTB_DDC  
B_STROBE  
TDO_XCF16DDC  
B_MODE[1:0]  
B_SEL[1:0]  
B_ADDR[3:0]  
TCK_JTAG  
TMS_JTAG  
TDO_DDC  
VLED0  
VLED1  
ARSTZ  
CLKIN_R  
DMD_A_RESET  
DMD_B_RESET  
OSC  
50 MHz  
4. DLPC410 and DLP650LNIR DMD Functional Block Diagram  
24  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Functional Block Diagrams (接下页)  
2x LVDS bus  
2x LVDS bus  
DLPC410  
DLP7000  
DCLK_A  
DVALID_A  
DIN_A[15:0]  
DCLKOUT_A  
SCTRL_A  
DOUT_A[15:0]  
DCLK_B  
DVALID_B  
DIN_B[15:0]  
DCLKOUT_B  
SCTRL_B  
DOUT_B[15:0]  
DCLK_C  
DVALID_C  
DIN_C[15:0]  
DCLKOUT_C  
SCTRL_C  
DOUT_C[15:0]  
DCLK_D  
DVALID_D  
DIN_D[15:0]  
DCLKOUT_D  
SCTRL_D  
DOUT_D[15:0]  
User Interface  
Controller  
FPGA  
SCPCLK  
SCPDO  
SCPDI  
DMD_A_SCPENZ  
DMD_B_SCPENZ  
A_SCPENZ  
B_SCPENZ  
COMP_DATA, NS_FLIP, WDT_ENZ,PWR_FLOAT  
ROWMD[1:0]  
ROWAD[10:0]  
RST2BLKZ  
BLKMD[1:0]  
BLKAD[10:0]  
LOAD4  
DLPA200  
RST_ACTIVE  
INIT_ACTIVE  
ECP2_FINISHED  
DMD_TYPE[3:0]  
VERSION[2:0]  
A_STROBE  
A_MODE[1:0]  
A_SEL[1:0]  
A_ADDR[3:0]  
OEZ  
MBRST[15:0]  
INIT  
DLPR410  
TDI_JTAG  
PROM_CCK_DDC  
PROGB_DDC  
PROM_DO_DDC  
DONE_DDC  
INTB_DDC  
B_STROBE  
TDO_XCF16DDC  
B_MODE[1:0]  
B_SEL[1:0]  
B_ADDR[3:0]  
TCK_JTAG  
TMS_JTAG  
TDO_DDC  
VLED0  
VLED1  
ARSTZ  
CLKIN_R  
DMD_A_RESET  
DMD_B_RESET  
OSC  
50 MHz  
5. DLPC410 and DLP7000 / DLP7000UV Functional Block Diagram  
版权 © 2012–2019, Texas Instruments Incorporated  
25  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
2x LVDS bus  
2x LVDS bus  
DLPC410  
DLP9500  
DCLK_A  
DVALID_A  
DIN_A[15:0]  
DCLKOUT_A  
SCTRL_A  
DOUT_A[15:0]  
DCLK_B  
DVALID_B  
DIN_B[15:0]  
DCLKOUT_B  
SCTRL_B  
DOUT_B[15:0]  
DCLK_C  
DVALID_C  
DIN_C[15:0]  
DCLKOUT_C  
SCTRL_C  
DOUT_C[15:0]  
DCLK_D  
DVALID_D  
DIN_D[15:0]  
DCLKOUT_D  
SCTRL_D  
DOUT_D[15:0]  
User Interface  
Controller  
FPGA  
SCPCLK  
SCPDO  
SCPDI  
DMD_A_SCPENZ  
DMD_B_SCPENZ  
A_SCPENZ  
COMP_DATA, NS_FLIP, WDT_ENZ,PWR_FLOAT  
ROWMD[1:0]  
ROWAD[10:0]  
RST2BLKZ  
BLKMD[1:0]  
BLKAD[10:0]  
LOAD4  
DLPA200  
B_SCPENZ  
RST_ACTIVE  
INIT_ACTIVE  
ECP2_FINISHED  
DMD_TYPE[3:0]  
VERSION[2:0]  
A_STROBE  
A_MODE[1:0]  
A_SEL[1:0]  
A_ADDR[3:0]  
OEZ  
MBRST[15:0]  
INIT  
DLPR410  
DLPA200  
TDI_JTAG  
PROM_CCK_DDC  
PROGB_DDC  
PROM_DO_DDC  
DONE_DDC  
INTB_DDC  
MBRST[15:0]  
B_STROBE  
B_MODE[1:0]  
B_SEL[1:0]  
TDO_XCF16DDC  
TCK_JTAG  
TMS_JTAG  
TDO_DDC  
B_ADDR[3:0]  
VLED0  
VLED1  
DMD_A_RESET  
ARSTZ  
CLKIN_R  
DMD_B_RESET  
OSC  
50 MHz  
6. DLPC410 and DLP9500 / DLP9500UV Functional Block Diagram  
8.3 Feature Description  
8.3.1 DLPC410 Binary Pattern Data Path  
The DLPC410 receives binary pattern input data from the customer application formatted specifically for display  
on one of the DLPC410 compatible DMDs. This data is captured on a row by row basis using specific data  
formats with multiple signals which frame the data and provided control information from the customer defining  
where in the DMD the data is destined. The DLPC410 then sends the pattern data to the DMD and uses the  
received control information to decode and provide the correct control information to the DMD and other DLP  
components.  
8.3.1.1 DIN_A, DIN_B, DIN_C, DIN_D Input Data Buses  
The DLPC410 has four differential 16-bit input data buses (A/B/C/D). Which of these input data bus signals are  
used at any given time is specific to the DMD connected to the DLPC410 in the system. The data buses are  
2xLVDS double-data-rate (DDR) buses which can transfer data at 800 MHz data rates per input. Data should be  
synchronous and edge aligned with the input clocks for each specific data bus (A, B, C, or D). Depending on the  
design, skewing the clock to data relationship may cause a problem. For timing constraints for the input data  
clock to either the input data and/or DVALID, refer to Timing Requirements  
26  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Feature Description (接下页)  
8.3.1.2 DCLKIN Input Clocks  
DCLKIN is the differential input clock for each DLPC410 input data bus. There are four input clocks, one for each  
bus (A/B/C/D). DCLKIN is a 400 MHz clock to the DMD which should be synchronous and edge aligned with all  
data and control signals for that specific bus (A, B, C, or D). Depending on the design, skewing the clock to data  
relationship may cause a problem. For timing constraints for the input data clock to either the input data and/or  
DVALID, refer to Timing Requirements. Care should be take to keep clock jitter of these signals to a minimum.  
8.3.1.3 DVALID Input Signals  
The DVALID signal is a differential input signal, one for each input data bus (A/B/C/D), which indicates that data  
being presented to the DLPC410 is valid. DVALID assertion latches the following types of data into the DLPC410  
for decoding or passing information to the DMD:  
Binary pattern data on input data buses A/B/C/D  
Row Mode  
Row Address  
Block Mode  
Block Address  
RST2BLK signal  
DVALID and all other inputs listed above should be synchronous to DCLKIN. DVALID can be asserted in one of  
the three following ways:  
DVALID can frame (remain active) individual DMD row loads with breaks between rows.  
DVALID can frame continuous DMD block loads of multiple rows with breaks between blocks  
DVALID can frame (remain active) the entire DMD device load (all rows) without any breaks.  
If the DVALID frames individual blocks or the entire DMD, ensure that block and row controls are adjusted at the  
proper locations in the data stream. See section DLPC410 Initialization and Training for further information.  
After an active DVALID signal transitions inactive (low), DVALID should only transition to  
active again on even number of clocks later, i.e. 2, 4, 6, etc.  
8.3.1.4 DOUT_A, DOUT_B, DOUT_C, DOUT_D Output Data Buses  
The DLPC410, having captured the incoming pattern data on its input data buses, provides this data on an  
equivalent number of output data buses. The DLPC410 has four differential 16-bit output data buses (A/B/C/D),  
which are aligned to its input data buses. Which of these input data bus signals are used at any given time is  
specific to the DMD connected to the DLPC410 in the system. The data buses are 2xLVDS double-data-rate  
(DDR) buses which can transfer data at 800 MHz data rates per output. Data should be synchronous and edge  
aligned with the output clocks for each specific data bus (A, B, C, or D). Depending on the design, skewing the  
clock to data relationship may cause a problem. For timing constraints for the output data clock to the output  
data, refer to Timing Requirements.  
8.3.1.5 DCLKOUT Output Clocks  
DCLKOUT is the differential output clock for each DLPC410 output data bus. There are four output data clocks,  
one for each bus (A/B/C/D) to the DMD. DCLKOUT is a 400 MHz clock to the DMD which should be  
synchronous and edge aligned with all data and control signals for that specific bus (A, B, C, or D). Depending  
on the design, skewing the clock to data relationship may cause a problem. For timing constraints for the output  
data clocks to either the output data and/or SCTRL signals, refer to Timing Requirements.  
版权 © 2012–2019, Texas Instruments Incorporated  
27  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1.6 SCTRL Output Signals  
The SCTRL signal is a differential output signal to the DMD which provides DMD control information. There are  
four SCTRL differential pair signals, one for each bus (A/B/C/D). The control information is generated internally to  
the DLPC410 and is specific to the connected DMD. Data should be synchronous and edge aligned with the  
output clocks for each specific data bus (A, B, C, or D). Depending on the design, skewing the clock to SCTRL  
relationship may cause a problem. For timing constraints for the output data clock to the SCTRL signals, refer to  
Timing Requirements.  
8.3.1.7 Supported DMD Bus Sizes  
The DLPC410 supports the 2xLVDS Data Bus DMD types as shown in 11.  
2. DMD Row Sizes, Bus Widths, and Row Lengths  
NO. OF DATA  
LINES  
CLOCKS PER  
ROW  
TYPE  
PIXELS PER ROW INPUT / OUTPUT BUSS  
A[15,13,11,9,7,5,3,1]  
1280  
DLP650LNIR DMD  
16  
32  
40  
16  
B[15,13,11,9,7,5,3,1]  
A[15:0]  
B[15:0]  
DLP7000 and DLP7000UV DMDs  
DLP9500 and DLP9500UV DMDs  
1024  
A[15:0]  
B[15:0]  
1920 (2048)  
C[15:0]  
64  
16  
D[15:0]  
8.3.1.8 Row Cycle definition  
A Row Cycle relates to specific number of input data clocks it takes for the customer to send one row of input  
binary pattern data to one row of the DMD. DVALID starts the Row Cycle by transitioning to an active (logic '1')  
state. The row cycle ends after the appropriate number of clock cycles per row are applied. Any input data on the  
DIN input data buses should be appropriately provided during the Row Cycle. 2 shows the number of input  
data clocks needing to populate one row of the DMD using the number of data lines identified in the table. Other  
Row and Block related signals are captured at the start of a row cycle and will be discussed later.  
There is also a unique row cycle called a No-Op Row Cycle which does not provide any valid input data nor any  
valid block command. It is typically used to do nothing except provide the DLPC410 and DMD time to perform  
internal actions already in process. The No-Op Row Cycle is discussed in No-Op Row Cycle Description.  
28  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
8.3.1.9 DLP9500 and DLP9500UV Input Data Formatting  
7 details one Row Cycle of input data formatting for the DLP9500 and DLP9500UV DMDs. For brevity, only  
two data bits of all four 16 bit data bus (A/B/C/D) signals are shown, but there is enough information presented to  
allow extrapolation to all data bus signals not shown.  
3, 4, 5, and 6 show how each pixel of the DLP9500 and DLP9500UV DMDs maps to individual data  
bus inputs and input clock edges within each row cycle. Because these DMDs are actually 2048 pixels per row  
with only 1920 micromirrors per row, no visible data is loaded for the first clock cycle for A and B data and for the  
last clock cycle for C and D data for each row load operation. This only applies to the DLP9500 and  
DLP9500UV. For readability purposes, input buses DIN_A, DIN_B, DIN_C, and DIN_D are abbreviated as D_A,  
D_B, D_C, and D_D. DCLKIN has been shortened to DCLK.  
CLOCK CYCLE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DCLK_N  
DCLK_P  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
DVALID_P  
D_AN(0)  
D_AP(0)  
D_AN(1)  
D_AP(1)  
D_BN(0)  
D_BP(0)  
D_BN(1)  
D_BP(1)  
D_CN(0)  
D_CP(0)  
D_CN(1)  
D_CP(1)  
D_DN(0)  
D_DP(0)  
D_DN(1)  
D_DP(1)  
7. DLP9500 / DLP9500UV 2XLVDS DMD Input Data Bus  
版权 © 2012–2019, Texas Instruments Incorporated  
29  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
3. DLP9500 / DLP9500UV 2XLVDS DMD Data Pixel Mapping D_A(15:0)  
DCLK  
EDGE  
D_A(0)  
D_A(1)  
D_A(2)  
D_A(3)  
D_A(4)  
D_A(5)  
D_A(6)  
D_A(7)  
D_A(8)  
D_A(9) D_A(10) D_A(11) D_A(12) D_A(13) D_A(14) D_A(15)  
0
Not Visible  
1
2
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
3
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
4
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
5
96  
97  
98  
99  
100  
132  
164  
196  
228  
260  
292  
324  
356  
388  
420  
452  
484  
516  
548  
580  
612  
644  
676  
708  
740  
772  
804  
836  
868  
900  
932  
101  
133  
165  
197  
229  
261  
293  
325  
357  
389  
421  
453  
485  
517  
549  
581  
613  
645  
677  
709  
741  
773  
805  
837  
869  
901  
933  
102  
134  
166  
198  
230  
262  
294  
326  
358  
390  
422  
454  
486  
518  
550  
582  
614  
646  
678  
710  
742  
774  
806  
838  
870  
902  
934  
103  
135  
167  
199  
231  
263  
295  
327  
359  
391  
423  
455  
487  
519  
551  
583  
615  
647  
679  
711  
743  
775  
807  
839  
871  
903  
935  
104  
136  
168  
200  
232  
264  
296  
328  
360  
392  
424  
456  
488  
520  
552  
584  
616  
648  
680  
712  
744  
776  
808  
840  
872  
904  
936  
105  
137  
169  
201  
233  
265  
297  
329  
361  
393  
425  
457  
489  
521  
553  
585  
617  
649  
681  
713  
745  
777  
809  
841  
873  
905  
937  
106  
138  
170  
202  
234  
266  
298  
330  
362  
394  
426  
458  
490  
522  
554  
586  
618  
650  
682  
714  
746  
778  
810  
842  
874  
906  
938  
107  
139  
171  
203  
235  
267  
299  
331  
363  
395  
427  
459  
491  
523  
555  
587  
619  
651  
683  
715  
747  
779  
811  
843  
875  
907  
939  
108  
140  
172  
204  
236  
268  
300  
332  
364  
396  
428  
460  
492  
524  
556  
588  
620  
652  
684  
716  
748  
780  
812  
844  
876  
908  
940  
109  
141  
173  
205  
237  
269  
301  
333  
365  
397  
429  
461  
493  
525  
557  
589  
621  
653  
685  
717  
749  
781  
813  
845  
877  
909  
941  
110  
142  
174  
206  
238  
270  
302  
334  
366  
398  
430  
462  
494  
526  
558  
590  
622  
654  
686  
718  
750  
782  
814  
846  
878  
910  
942  
111  
143  
175  
207  
239  
271  
303  
335  
367  
399  
431  
463  
495  
527  
559  
591  
623  
655  
687  
719  
751  
783  
815  
847  
879  
911  
943  
6
128  
160  
192  
224  
256  
288  
320  
352  
384  
416  
448  
480  
512  
544  
576  
608  
640  
672  
704  
736  
768  
800  
832  
864  
896  
928  
129  
161  
193  
225  
257  
289  
321  
353  
385  
417  
449  
481  
513  
545  
577  
609  
641  
673  
705  
737  
769  
801  
833  
865  
897  
929  
130  
162  
194  
226  
258  
290  
322  
354  
386  
418  
450  
482  
514  
546  
578  
610  
642  
674  
706  
738  
770  
802  
834  
866  
898  
930  
131  
163  
195  
227  
259  
291  
323  
355  
387  
419  
451  
483  
515  
547  
579  
611  
643  
675  
707  
739  
771  
803  
835  
867  
899  
931  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
30  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
4. DLP9500 / DLP9500UV 2XLVDS DMD Data Pixel Mapping D_B(15:0)  
DCLK  
D_B(0)  
EDGE  
D_B(1)  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5)  
D_B(6)  
D_B(7)  
D_B(8)  
D_B(9) D_B(10) D_B(11) D_B(12) D_B(13) D_B(14) D_B(15)  
0
1
Not Visible  
2
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
3
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
4
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
5
112  
144  
176  
208  
240  
272  
304  
336  
368  
400  
432  
464  
496  
528  
560  
592  
624  
656  
688  
720  
752  
784  
816  
848  
880  
912  
944  
113  
145  
177  
209  
241  
273  
305  
337  
369  
401  
433  
465  
497  
529  
561  
593  
625  
657  
689  
721  
753  
785  
817  
849  
881  
913  
945  
114  
146  
178  
210  
242  
274  
306  
338  
370  
402  
434  
466  
498  
530  
562  
594  
626  
658  
690  
722  
754  
786  
818  
850  
882  
914  
946  
115  
147  
179  
211  
243  
275  
307  
339  
371  
403  
435  
467  
499  
531  
563  
595  
627  
659  
691  
723  
755  
787  
819  
851  
883  
915  
947  
116  
148  
180  
212  
244  
276  
308  
340  
372  
404  
436  
468  
500  
532  
564  
596  
628  
660  
692  
724  
756  
788  
820  
852  
884  
916  
948  
117  
149  
181  
213  
245  
277  
309  
341  
373  
405  
437  
469  
501  
533  
565  
597  
629  
661  
693  
725  
757  
789  
821  
853  
885  
917  
949  
118  
150  
182  
214  
246  
278  
310  
342  
374  
406  
438  
470  
502  
534  
566  
598  
630  
662  
694  
726  
758  
790  
822  
854  
886  
918  
950  
119  
151  
183  
215  
247  
279  
311  
343  
375  
407  
439  
471  
503  
535  
567  
599  
631  
663  
695  
727  
759  
791  
823  
855  
887  
919  
951  
120  
152  
184  
216  
248  
280  
312  
344  
376  
408  
440  
472  
504  
536  
568  
600  
632  
664  
696  
728  
760  
792  
824  
856  
888  
920  
952  
121  
153  
185  
217  
249  
281  
313  
345  
377  
409  
441  
473  
505  
537  
569  
601  
633  
665  
697  
729  
761  
793  
825  
857  
889  
921  
953  
122  
154  
186  
218  
250  
282  
314  
346  
378  
410  
442  
474  
506  
538  
570  
602  
634  
666  
698  
730  
762  
794  
826  
858  
890  
922  
954  
123  
155  
187  
219  
251  
283  
315  
347  
379  
411  
443  
475  
507  
539  
571  
603  
635  
667  
699  
731  
763  
795  
827  
859  
891  
923  
955  
124  
156  
188  
220  
252  
284  
316  
348  
380  
412  
444  
476  
508  
540  
572  
604  
636  
668  
700  
732  
764  
796  
828  
860  
892  
924  
956  
125  
157  
189  
221  
253  
285  
317  
349  
381  
413  
445  
477  
509  
541  
573  
605  
637  
669  
701  
733  
765  
797  
829  
861  
893  
925  
957  
126  
158  
190  
222  
254  
286  
318  
350  
382  
414  
446  
478  
510  
542  
574  
606  
638  
670  
702  
734  
766  
798  
830  
862  
894  
926  
958  
127  
159  
191  
223  
255  
287  
319  
351  
383  
415  
447  
479  
511  
543  
575  
607  
639  
671  
703  
735  
767  
799  
831  
863  
895  
927  
959  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
版权 © 2012–2019, Texas Instruments Incorporated  
31  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
5. DLP9500 / DLP9500UV 2XLVDS DMD Data Pixel Mapping D_C(15:0)  
DCLK  
EDGE  
D_C(0)  
D_C(1)  
D_C(2)  
D_C(3)  
D_C(4)  
D_C(5)  
D_C(6)  
D_C(7)  
D_C(8)  
D_C(9) D_C(10) D_C(11) D_C(12) D_C(13) D_C(14) D_C(15)  
0
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
1
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1032  
1064  
1096  
1128  
1160  
1192  
1224  
1256  
1288  
1320  
1352  
1384  
1416  
1448  
1480  
1512  
1544  
1576  
1608  
1640  
1672  
1704  
1736  
1768  
1800  
1832  
1864  
1896  
1001  
1033  
1065  
1097  
1129  
1161  
1193  
1225  
1257  
1289  
1321  
1353  
1385  
1417  
1449  
1481  
1513  
1545  
1577  
1609  
1641  
1673  
1705  
1737  
1769  
1801  
1833  
1865  
1897  
1002  
1034  
1066  
1098  
1130  
1162  
1194  
1226  
1258  
1290  
1322  
1354  
1386  
1418  
1450  
1482  
1514  
1546  
1578  
1610  
1642  
1674  
1706  
1738  
1770  
1802  
1834  
1866  
1898  
1003  
1035  
1067  
1099  
1131  
1163  
1195  
1227  
1259  
1291  
1323  
1355  
1387  
1419  
1451  
1483  
1515  
1547  
1579  
1611  
1643  
1675  
1707  
1739  
1771  
1803  
1835  
1867  
1899  
1004  
1036  
1068  
1100  
1132  
1164  
1196  
1228  
1260  
1292  
1324  
1356  
1388  
1420  
1452  
1484  
1516  
1548  
1580  
1612  
1644  
1676  
1708  
1740  
1772  
1804  
1836  
1868  
1900  
1005  
1037  
1069  
1101  
1133  
1165  
1197  
1229  
1261  
1293  
1325  
1357  
1389  
1421  
1453  
1485  
1517  
1549  
1581  
1613  
1645  
1677  
1709  
1741  
1773  
1805  
1837  
1869  
1901  
1006  
1038  
1070  
1102  
1134  
1166  
1198  
1230  
1262  
1294  
1326  
1358  
1390  
1422  
1454  
1486  
1518  
1550  
1582  
1614  
1646  
1678  
1710  
1742  
1774  
1806  
1838  
1870  
1902  
1007  
1039  
1071  
1103  
1135  
1167  
1199  
1231  
1263  
1295  
1327  
1359  
1391  
1423  
1455  
1487  
1519  
1551  
1583  
1615  
1647  
1679  
1711  
1743  
1775  
1807  
1839  
1871  
1903  
2
1024  
1056  
1088  
1120  
1152  
1184  
1216  
1248  
1280  
1312  
1344  
1376  
1408  
1440  
1472  
1504  
1536  
1568  
1600  
1632  
1664  
1696  
1728  
1760  
1792  
1824  
1856  
1888  
1025  
1057  
1089  
1121  
1153  
1185  
1217  
1249  
1281  
1313  
1345  
1377  
1409  
1441  
1473  
1505  
1537  
1569  
1601  
1633  
1665  
1697  
1729  
1761  
1793  
1825  
1857  
1889  
1026  
1058  
1090  
1122  
1154  
1186  
1218  
1250  
1282  
1314  
1346  
1378  
1410  
1442  
1474  
1506  
1538  
1570  
1602  
1634  
1666  
1698  
1730  
1762  
1794  
1826  
1858  
1890  
1027  
1059  
1091  
1123  
1155  
1187  
1219  
1251  
1283  
1315  
1347  
1379  
1411  
1443  
1475  
1507  
1539  
1571  
1603  
1635  
1667  
1699  
1731  
1763  
1795  
1827  
1859  
1891  
1028  
1060  
1092  
1124  
1156  
1188  
1220  
1252  
1284  
1316  
1348  
1380  
1412  
1444  
1476  
1508  
1540  
1572  
1604  
1636  
1668  
1700  
1732  
1764  
1796  
1828  
1860  
1892  
1029  
1061  
1093  
1125  
1157  
1189  
1221  
1253  
1285  
1317  
1349  
1381  
1413  
1445  
1477  
1509  
1541  
1573  
1605  
1637  
1669  
1701  
1733  
1765  
1797  
1829  
1861  
1893  
1030  
1062  
1094  
1126  
1158  
1190  
1222  
1254  
1286  
1318  
1350  
1382  
1414  
1446  
1478  
1510  
1542  
1574  
1606  
1638  
1670  
1702  
1734  
1766  
1798  
1830  
1862  
1894  
1031  
1063  
1095  
1127  
1159  
1191  
1223  
1255  
1287  
1319  
1351  
1383  
1415  
1447  
1479  
1511  
1543  
1575  
1607  
1639  
1671  
1703  
1735  
1767  
1799  
1831  
1863  
1895  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Not Visible  
32  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
6. DLP9500 / DLP9500UV 2XLVDS DMD Data Pixel Mapping D_D(15:0)  
DCLK  
D_D(0)  
EDGE  
D_D(1)  
D_D(2)  
D_D(3)  
D_D(4)  
D_D(5)  
D_D(6)  
D_D(7)  
D_D(8)  
D_D(9) D_D(10) D_D(11) D_D(12) D_D(13) D_D(14) D_D(15)  
0
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
1
1008  
1040  
1072  
1104  
1136  
1168  
1200  
1232  
1264  
1296  
1328  
1360  
1392  
1424  
1456  
1488  
1520  
1552  
1584  
1616  
1648  
1680  
1712  
1744  
1776  
1808  
1840  
1872  
1904  
1009  
1041  
1073  
1105  
1137  
1169  
1201  
1233  
1265  
1297  
1329  
1361  
1393  
1425  
1457  
1489  
1521  
1553  
1585  
1617  
1649  
1681  
1713  
1745  
1777  
1809  
1841  
1873  
1905  
1010  
1042  
1074  
1106  
1138  
1170  
1202  
1234  
1266  
1298  
1330  
1362  
1394  
1426  
1458  
1490  
1522  
1554  
1586  
1618  
1650  
1682  
1714  
1746  
1778  
1810  
1842  
1874  
1906  
1011  
1043  
1075  
1107  
1139  
1171  
1203  
1235  
1267  
1299  
1331  
1363  
1395  
1427  
1459  
1491  
1523  
1555  
1587  
1619  
1651  
1683  
1715  
1747  
1779  
1811  
1843  
1875  
1907  
1012  
1044  
1076  
1108  
1140  
1172  
1204  
1236  
1268  
1300  
1332  
1364  
1396  
1428  
1460  
1492  
1524  
1556  
1588  
1620  
1652  
1684  
1716  
1748  
1780  
1812  
1844  
1876  
1908  
1013  
1045  
1077  
1109  
1141  
1173  
1205  
1237  
1269  
1301  
1333  
1365  
1397  
1429  
1461  
1493  
1525  
1557  
1589  
1621  
1653  
1685  
1717  
1749  
1781  
1813  
1845  
1877  
1909  
1014  
1046  
1078  
1110  
1142  
1174  
1206  
1238  
1270  
1302  
1334  
1366  
1398  
1430  
1462  
1494  
1526  
1558  
1590  
1622  
1654  
1686  
1718  
1750  
1782  
1814  
1846  
1878  
1910  
1015  
1047  
1079  
1111  
1143  
1175  
1207  
1239  
1271  
1303  
1335  
1367  
1399  
1431  
1463  
1495  
1527  
1559  
1591  
1623  
1655  
1687  
1719  
1751  
1783  
1815  
1847  
1879  
1911  
1016  
1048  
1080  
1112  
1144  
1176  
1208  
1240  
1272  
1304  
1336  
1368  
1400  
1432  
1464  
1496  
1528  
1560  
1592  
1624  
1656  
1688  
1720  
1752  
1784  
1816  
1848  
1880  
1912  
1017  
1049  
1081  
1113  
1145  
1177  
1209  
1241  
1273  
1305  
1337  
1369  
1401  
1433  
1465  
1497  
1529  
1561  
1593  
1625  
1657  
1689  
1721  
1753  
1785  
1817  
1849  
1881  
1913  
1018  
1050  
1082  
1114  
1146  
1178  
1210  
1242  
1274  
1306  
1338  
1370  
1402  
1434  
1466  
1498  
1530  
1562  
1594  
1626  
1658  
1690  
1722  
1754  
1786  
1818  
1850  
1882  
1914  
1019  
1051  
1083  
1115  
1147  
1179  
1211  
1243  
1275  
1307  
1339  
1371  
1403  
1435  
1467  
1499  
1531  
1563  
1595  
1627  
1659  
1691  
1723  
1755  
1787  
1819  
1851  
1883  
1915  
1020  
1052  
1084  
1116  
1148  
1180  
1212  
1244  
1276  
1308  
1340  
1372  
1404  
1436  
1468  
1500  
1532  
1564  
1596  
1628  
1660  
1692  
1724  
1756  
1788  
1820  
1852  
1884  
1916  
1021  
1053  
1085  
1117  
1149  
1181  
1213  
1245  
1277  
1309  
1341  
1373  
1405  
1437  
1469  
1501  
1533  
1565  
1597  
1629  
1661  
1693  
1725  
1757  
1789  
1821  
1853  
1885  
1917  
1022  
1054  
1086  
1118  
1150  
1182  
1214  
1246  
1278  
1310  
1342  
1374  
1406  
1438  
1470  
1502  
1534  
1566  
1598  
1630  
1662  
1694  
1726  
1758  
1790  
1822  
1854  
1886  
1918  
1023  
1055  
1087  
1119  
1151  
1183  
1215  
1247  
1279  
1311  
1343  
1375  
1407  
1439  
1471  
1503  
1535  
1567  
1599  
1631  
1663  
1695  
1727  
1759  
1791  
1823  
1855  
1887  
1919  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Not Visible  
版权 © 2012–2019, Texas Instruments Incorporated  
33  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8.3.1.10 DLP7000 and DLP7000UV Input Data Bus  
8 details one row cycle of input data formatting for the DLP7000 and DLP7000UV DMDs. For brevity, only two  
data bits of both 16 bit data bus (A/B) signals are shown, but there is enough information presented to allow  
extrapolation to data bus signals not shown.  
7 and 8 show how each pixel of the DLP7000 and DLP7000UV DMDs maps to individual data bus inputs  
and input clock edges within each row load operation.  
In the following charts, for readability purposes input buses DIN_A, DIN_B are abbreviated  
as D_A, D_B. DCLKIN has been shortened to DCLK.  
CLOCK CYCLE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DCLK_N  
DCLK_P  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
DVALID_P  
D_AN(0)  
D_AP(0)  
D_AN(1)  
D_AP(1)  
D_BN(0)  
D_BP(0)  
D_BN(1)  
D_BP(1)  
8. DLP7000 / DLP7000UV 2XLVDS DMD Input Data Bus  
34  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
7. DLP7000 / DLP7000UV 2XLVDS DMD Data Pixel Mapping D_A(15:0)  
DCLK  
D_A(0)  
EDGE  
D_A(1)  
D_A(2)  
D_A(3)  
D_A(4)  
D_A(5)  
D_A(6)  
D_A(7)  
D_A(8)  
D_A(9) D_A(10) D_A(11) D_A(12) D_A(13) D_A(14) D_A(15)  
0
0
1
2
3
4
5
6
7
8
9
10  
42  
11  
43  
12  
44  
13  
45  
14  
46  
15  
47  
1
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
2
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
3
96  
97  
98  
99  
100  
132  
164  
196  
228  
260  
292  
324  
356  
388  
420  
452  
484  
516  
548  
580  
612  
644  
676  
708  
740  
772  
804  
836  
868  
900  
932  
964  
996  
101  
133  
165  
197  
229  
261  
293  
325  
357  
389  
421  
453  
485  
517  
549  
581  
613  
645  
677  
709  
741  
773  
805  
837  
869  
901  
933  
965  
997  
102  
134  
166  
198  
230  
262  
294  
326  
358  
390  
422  
454  
486  
518  
550  
582  
614  
646  
678  
710  
742  
774  
806  
838  
870  
902  
934  
966  
998  
103  
135  
167  
199  
231  
263  
295  
327  
359  
391  
423  
455  
487  
519  
551  
583  
615  
647  
679  
711  
743  
775  
807  
839  
871  
903  
935  
967  
999  
104  
136  
168  
200  
232  
264  
296  
328  
360  
392  
424  
456  
488  
520  
552  
584  
616  
648  
680  
712  
744  
776  
808  
840  
872  
904  
936  
968  
1000  
105  
137  
169  
201  
233  
265  
297  
329  
361  
393  
425  
457  
489  
521  
553  
585  
617  
649  
681  
713  
745  
777  
809  
841  
873  
905  
937  
969  
1001  
106  
138  
170  
202  
234  
266  
298  
330  
362  
394  
426  
458  
490  
522  
554  
586  
618  
650  
682  
714  
746  
778  
810  
842  
874  
906  
938  
970  
1002  
107  
139  
171  
203  
235  
267  
299  
331  
363  
395  
427  
459  
491  
523  
555  
587  
619  
651  
683  
715  
747  
779  
811  
843  
875  
907  
939  
971  
1003  
108  
140  
172  
204  
236  
268  
300  
332  
364  
396  
428  
460  
492  
524  
556  
588  
620  
652  
684  
716  
748  
780  
812  
844  
876  
908  
940  
972  
1004  
109  
141  
173  
205  
237  
269  
301  
333  
365  
397  
429  
461  
493  
525  
557  
589  
621  
653  
685  
717  
749  
781  
813  
845  
877  
909  
941  
973  
1005  
110  
142  
174  
206  
238  
270  
302  
334  
366  
398  
430  
462  
494  
526  
558  
590  
622  
654  
686  
718  
750  
782  
814  
846  
878  
910  
942  
974  
1006  
111  
143  
175  
207  
239  
271  
303  
335  
367  
399  
431  
463  
495  
527  
559  
591  
623  
655  
687  
719  
751  
783  
815  
847  
879  
911  
943  
975  
1007  
4
128  
160  
192  
224  
256  
288  
320  
352  
384  
416  
448  
480  
512  
544  
576  
608  
640  
672  
704  
736  
768  
800  
832  
864  
896  
928  
960  
992  
129  
161  
193  
225  
257  
289  
321  
353  
385  
417  
449  
481  
513  
545  
577  
609  
641  
673  
705  
737  
769  
801  
833  
865  
897  
929  
961  
993  
130  
162  
194  
226  
258  
290  
322  
354  
386  
418  
450  
482  
514  
546  
578  
610  
642  
674  
706  
738  
770  
802  
834  
866  
898  
930  
962  
994  
131  
163  
195  
227  
259  
291  
323  
355  
387  
419  
451  
483  
515  
547  
579  
611  
643  
675  
707  
739  
771  
803  
835  
867  
899  
931  
963  
995  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
版权 © 2012–2019, Texas Instruments Incorporated  
35  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8. DLP7000 / DLP7000UV 2XLVDS DMD Data Pixel Mapping D_B(15:0)  
DCLK  
EDGE  
D_B(0)  
D_B(1)  
D_B(2)  
D_B(3)  
D_B(4)  
D_B(5)  
D_B(6)  
D_B(7)  
D_B(8)  
D_B(9) D_B(10) D_B(11) D_B(12) D_B(13) D_B(14) D_B(15)  
0
16  
48  
17  
49  
18  
50  
19  
51  
20  
52  
21  
53  
22  
54  
23  
55  
24  
56  
25  
57  
26  
58  
27  
59  
28  
60  
29  
61  
30  
62  
31  
63  
1
2
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
3
112  
144  
176  
208  
240  
272  
304  
336  
368  
400  
432  
464  
496  
528  
560  
592  
624  
656  
688  
720  
752  
784  
816  
848  
880  
912  
944  
976  
1008  
113  
145  
177  
209  
241  
273  
305  
337  
369  
401  
433  
465  
497  
529  
561  
593  
625  
657  
689  
721  
753  
785  
817  
849  
881  
913  
945  
977  
1009  
114  
146  
178  
210  
242  
274  
306  
338  
370  
402  
434  
466  
498  
530  
562  
594  
626  
658  
690  
722  
754  
786  
818  
850  
882  
914  
946  
978  
1010  
115  
147  
179  
211  
243  
275  
307  
339  
371  
403  
435  
467  
499  
531  
563  
595  
627  
659  
691  
723  
755  
787  
819  
851  
883  
915  
947  
979  
1011  
116  
148  
180  
212  
244  
276  
308  
340  
372  
404  
436  
468  
500  
532  
564  
596  
628  
660  
692  
724  
756  
788  
820  
852  
884  
916  
948  
980  
1012  
117  
149  
181  
213  
245  
277  
309  
341  
373  
405  
437  
469  
501  
533  
565  
597  
629  
661  
693  
725  
757  
789  
821  
853  
885  
917  
949  
981  
1013  
118  
150  
182  
214  
246  
278  
310  
342  
374  
406  
438  
470  
502  
534  
566  
598  
630  
662  
694  
726  
758  
790  
822  
854  
886  
918  
950  
982  
1014  
119  
151  
183  
215  
247  
279  
311  
343  
375  
407  
439  
471  
503  
535  
567  
599  
631  
663  
695  
727  
759  
791  
823  
855  
887  
919  
951  
983  
1015  
120  
152  
184  
216  
248  
280  
312  
344  
376  
408  
440  
472  
504  
536  
568  
600  
632  
664  
696  
728  
760  
792  
824  
856  
888  
920  
952  
984  
1016  
121  
153  
185  
217  
249  
281  
313  
345  
377  
409  
441  
473  
505  
537  
569  
601  
633  
665  
697  
729  
761  
793  
825  
857  
889  
921  
953  
985  
1017  
122  
154  
186  
218  
250  
282  
314  
346  
378  
410  
442  
474  
506  
538  
570  
602  
634  
666  
698  
730  
762  
794  
826  
858  
890  
922  
954  
986  
1018  
123  
155  
187  
219  
251  
283  
315  
347  
379  
411  
443  
475  
507  
539  
571  
603  
635  
667  
699  
731  
763  
795  
827  
859  
891  
923  
955  
987  
1019  
124  
156  
188  
220  
252  
284  
316  
348  
380  
412  
444  
476  
508  
540  
572  
604  
636  
668  
700  
732  
764  
796  
828  
860  
892  
924  
956  
988  
1020  
125  
157  
189  
221  
253  
285  
317  
349  
381  
413  
445  
477  
509  
541  
573  
605  
637  
669  
701  
733  
765  
797  
829  
861  
893  
925  
957  
989  
1021  
126  
158  
190  
222  
254  
286  
318  
350  
382  
414  
446  
478  
510  
542  
574  
606  
638  
670  
702  
734  
766  
798  
830  
862  
894  
926  
958  
990  
1022  
127  
159  
191  
223  
255  
287  
319  
351  
383  
415  
447  
479  
511  
543  
575  
607  
639  
671  
703  
735  
767  
799  
831  
863  
895  
927  
959  
991  
1023  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
36  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
8.3.1.11 DLP650LNIR Input Data Bus  
9 details one row cycle of input data formatting for the DLP650LNIR DMD. For brevity, only two data bits of  
both 8 bit data bus (A/B) signals are shown, but there is enough information presented to allow extrapolation to  
data bus signals not shown.  
9 and 10 show how each pixel of the DLP650LNIR DMD maps to individual data bus inputs and input clock  
edges within each row load operation.  
In the following charts, for readability purposes input buses DIN_A, DIN_B are abbreviated  
as D_A, D_B. DCLKIN has been shortened to DCLK.  
Since showing the entire 40 clock row cycle would make this chart unreadable, the chart  
has been broken in the middle. However, there is enough information available to allow  
extrapolation of the missing data.  
CLOCK CYCLE  
1
2
3
4
5
6
7
8
33  
34  
35  
36  
37  
38  
39  
40  
DCLK_N  
DCLK_P  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 165 66 67 68 69 70 71 72 73 74 75 76 77 78 79  
DVALID_P  
D_AN(1)  
D_AP(1)  
D_AN(3)  
D_AP(3)  
D_BN(1)  
D_BP(1)  
D_BN(3)  
D_BP(3)  
9. DLP650LNIR 2xLVDS DMD Input Data Bus  
版权 © 2012–2019, Texas Instruments Incorporated  
37  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
9. DLP650LNIR 2xLVDS DMD Data Pixel Mapping D_A(15,13,11,9,7,5,3,1)  
DCLK EDGE  
0
D_A(1)  
0
D_A(3)  
2
D_A(5)  
4
D_A(7  
6
D_A(9)  
8
D_A(11)  
10  
D_A(13)  
12  
D_A(15)  
14  
1
32  
34  
36  
38  
40  
42  
44  
46  
2
64  
66  
68  
70  
72  
74  
76  
78  
3
96  
98  
100  
5
102  
7
104  
9
106  
11  
108  
13  
110  
15  
4
1
3
5
33  
35  
37  
39  
41  
43  
45  
47  
6
65  
67  
69  
71  
73  
75  
77  
79  
7
97  
99  
101  
132  
164  
196  
228  
133  
165  
197  
229  
260  
292  
324  
356  
261  
293  
325  
357  
388  
420  
452  
484  
389  
421  
453  
485  
516  
548  
580  
612  
517  
549  
581  
613  
644  
676  
708  
740  
645  
677  
709  
741  
772  
804  
836  
868  
773  
805  
837  
869  
103  
134  
166  
198  
230  
135  
167  
199  
231  
262  
294  
326  
358  
263  
295  
327  
359  
390  
422  
454  
486  
391  
423  
455  
487  
518  
550  
582  
614  
519  
551  
583  
615  
646  
678  
710  
742  
647  
679  
711  
743  
774  
806  
838  
870  
775  
807  
839  
871  
105  
136  
168  
200  
232  
137  
169  
201  
233  
264  
296  
328  
360  
265  
297  
329  
361  
392  
424  
456  
488  
393  
425  
457  
489  
520  
552  
584  
616  
521  
553  
585  
617  
648  
680  
712  
744  
649  
681  
713  
745  
776  
808  
840  
872  
777  
809  
841  
873  
107  
138  
170  
202  
234  
139  
171  
203  
235  
266  
298  
330  
362  
267  
299  
331  
363  
394  
426  
458  
490  
395  
427  
459  
491  
522  
554  
586  
618  
523  
555  
587  
619  
650  
682  
714  
746  
651  
683  
715  
747  
778  
810  
842  
874  
779  
811  
843  
875  
109  
140  
172  
204  
236  
141  
173  
205  
237  
268  
300  
332  
364  
269  
301  
333  
365  
396  
428  
460  
492  
397  
429  
461  
493  
524  
556  
588  
620  
525  
557  
589  
621  
652  
684  
716  
748  
653  
685  
717  
749  
780  
812  
844  
876  
781  
813  
845  
877  
111  
142  
174  
206  
238  
143  
175  
207  
239  
270  
302  
334  
366  
271  
303  
335  
367  
398  
430  
462  
494  
399  
431  
463  
495  
526  
558  
590  
622  
527  
559  
591  
623  
654  
686  
718  
750  
655  
687  
719  
751  
782  
814  
846  
878  
783  
815  
847  
879  
8
128  
160  
192  
224  
129  
161  
193  
225  
256  
288  
320  
352  
257  
289  
321  
353  
384  
416  
448  
480  
385  
417  
449  
481  
512  
544  
576  
608  
513  
545  
577  
609  
640  
672  
704  
736  
641  
673  
705  
737  
768  
800  
832  
864  
769  
801  
833  
865  
130  
162  
194  
226  
131  
163  
195  
227  
258  
290  
322  
354  
259  
291  
323  
355  
386  
418  
450  
482  
387  
419  
451  
483  
514  
546  
578  
610  
515  
547  
579  
611  
642  
674  
706  
738  
643  
675  
707  
739  
770  
802  
834  
866  
771  
803  
835  
867  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
38  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
9. DLP650LNIR 2xLVDS DMD Data Pixel Mapping D_A(15,13,11,9,7,5,3,1) (接下页)  
DCLK EDGE  
D_A(1)  
D_A(3)  
D_A(5)  
D_A(7  
D_A(9)  
D_A(11)  
D_A(13)  
D_A(15)  
910  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
896  
898  
900  
902  
904  
906  
908  
928  
930  
832  
934  
936  
938  
940  
942  
960  
962  
964  
966  
968  
970  
972  
974  
992  
994  
996  
998  
1000  
905  
1002  
907  
1004  
909  
1006  
911  
897  
899  
901  
903  
929  
931  
933  
935  
937  
939  
941  
943  
961  
963  
965  
967  
969  
971  
973  
975  
993  
995  
997  
999  
1001  
1032  
1064  
1096  
1128  
1033  
1065  
1097  
1129  
1160  
1192  
1224  
1256  
1161  
1193  
1225  
1257  
1003  
1034  
1066  
1098  
1130  
1035  
1067  
1099  
1131  
1162  
1194  
1226  
1258  
1163  
1195  
1227  
1259  
1005  
1036  
1068  
1100  
1132  
1037  
1069  
1101  
1133  
1164  
1196  
1228  
1260  
1165  
1197  
1229  
1261  
1007  
1038  
1070  
1102  
1134  
1039  
1071  
1103  
1135  
1166  
1198  
1230  
1262  
1167  
1199  
1231  
1263  
1024  
1056  
1088  
1120  
1025  
1057  
1089  
1121  
1152  
1184  
1216  
1248  
1153  
1185  
1217  
1249  
1026  
1058  
1090  
1122  
1027  
1059  
1091  
1123  
1154  
1186  
1218  
1250  
1155  
1187  
1219  
1251  
1028  
1060  
1092  
1124  
1029  
1061  
1093  
1125  
1156  
1188  
1220  
1252  
1157  
1189  
1221  
1253  
1030  
1062  
1094  
1126  
1031  
1063  
1095  
1127  
1158  
1190  
1222  
1254  
1159  
1191  
1223  
1255  
版权 © 2012–2019, Texas Instruments Incorporated  
39  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
10. DLP650LNIR 2xLVDS DMD Data Pixel Mapping D_B(15,13,11,9,7,5,3,1)  
DCLK EDGE  
0
D_B(1)  
16  
D_B(3)  
18  
D_B(5)  
20  
D_B(7)  
22  
D_B(9)  
24  
D_B(11)  
26  
D_B(13)  
28  
D_B(15)  
30  
1
48  
50  
52  
54  
56  
58  
60  
62  
2
80  
82  
84  
86  
88  
90  
92  
94  
3
112  
17  
114  
19  
116  
21  
118  
23  
120  
25  
122  
27  
124  
29  
126  
31  
4
5
49  
51  
53  
55  
57  
59  
61  
63  
6
81  
83  
85  
87  
89  
91  
93  
95  
7
113  
144  
176  
208  
240  
145  
177  
209  
241  
272  
304  
336  
368  
273  
305  
337  
369  
400  
432  
464  
496  
401  
433  
465  
497  
528  
560  
592  
624  
529  
561  
593  
625  
656  
688  
720  
752  
657  
689  
721  
753  
784  
816  
848  
880  
785  
817  
849  
881  
115  
146  
178  
210  
242  
147  
179  
211  
243  
274  
306  
338  
370  
275  
307  
339  
371  
402  
434  
466  
498  
403  
435  
467  
499  
530  
562  
594  
626  
531  
563  
595  
627  
658  
690  
722  
754  
659  
691  
723  
755  
786  
818  
850  
882  
787  
819  
851  
883  
117  
148  
180  
212  
244  
149  
181  
213  
245  
276  
308  
340  
372  
277  
309  
341  
373  
404  
436  
468  
500  
405  
437  
469  
501  
532  
564  
596  
628  
533  
565  
597  
629  
660  
692  
724  
756  
661  
693  
725  
757  
788  
820  
852  
884  
789  
821  
853  
885  
119  
150  
182  
214  
246  
151  
183  
215  
247  
278  
310  
342  
374  
279  
311  
343  
375  
406  
438  
470  
502  
407  
439  
471  
503  
534  
566  
598  
630  
535  
567  
599  
631  
662  
694  
726  
758  
663  
695  
727  
759  
790  
822  
854  
886  
791  
823  
855  
887  
121  
152  
184  
216  
248  
153  
185  
217  
249  
280  
312  
344  
376  
281  
313  
345  
377  
408  
440  
472  
504  
409  
441  
473  
505  
536  
568  
600  
632  
537  
569  
601  
633  
664  
696  
728  
760  
665  
697  
729  
761  
792  
824  
856  
888  
793  
825  
857  
889  
123  
154  
186  
218  
250  
155  
187  
219  
251  
282  
314  
346  
378  
283  
315  
347  
379  
410  
442  
474  
506  
411  
443  
475  
507  
538  
570  
602  
634  
539  
571  
603  
635  
666  
698  
730  
762  
667  
699  
731  
763  
794  
826  
858  
890  
795  
827  
859  
891  
125  
156  
188  
220  
252  
157  
189  
221  
253  
284  
316  
348  
380  
285  
317  
349  
381  
412  
444  
476  
508  
413  
445  
477  
509  
540  
572  
604  
636  
541  
573  
605  
637  
668  
700  
732  
764  
669  
701  
733  
765  
796  
828  
860  
892  
797  
829  
861  
893  
127  
158  
190  
222  
254  
159  
191  
223  
255  
286  
318  
350  
382  
287  
319  
351  
383  
414  
446  
478  
510  
415  
447  
479  
511  
542  
574  
606  
638  
543  
575  
607  
639  
670  
702  
734  
766  
671  
703  
735  
767  
798  
830  
862  
894  
799  
831  
863  
895  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
40  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
10. DLP650LNIR 2xLVDS DMD Data Pixel Mapping D_B(15,13,11,9,7,5,3,1) (接下页)  
DCLK EDGE  
D_B(1)  
D_B(3)  
D_B(5)  
D_B(7)  
D_B(9)  
D_B(11)  
D_B(13)  
D_B(15)  
926  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
912  
914  
916  
918  
920  
922  
924  
944  
946  
948  
950  
952  
954  
956  
958  
976  
978  
980  
982  
984  
986  
988  
990  
1008  
913  
1010  
915  
1012  
917  
1014  
919  
1016  
921  
1018  
923  
1020  
925  
1022  
927  
945  
947  
949  
951  
953  
955  
957  
959  
977  
979  
981  
983  
985  
987  
989  
991  
1009  
1040  
1072  
1104  
1136  
1041  
1073  
1105  
1137  
1168  
1200  
1232  
1264  
1169  
1201  
1233  
1265  
1011  
1042  
1074  
1106  
1138  
1043  
1075  
1107  
1139  
1170  
1202  
1234  
1266  
1171  
1203  
1235  
1267  
1013  
1044  
1076  
1108  
1140  
1045  
1077  
1109  
1141  
1172  
1204  
1236  
1268  
1173  
1205  
1237  
1269  
1015  
1046  
1078  
1110  
1142  
1047  
1079  
1111  
1143  
1174  
1206  
1238  
1270  
1175  
1207  
1239  
1271  
1017  
1048  
1080  
1112  
1144  
1049  
1081  
1113  
1145  
1176  
1208  
1240  
1272  
1177  
1209  
1241  
1273  
1019  
1050  
1082  
1114  
1146  
1051  
1083  
1115  
1147  
1178  
1210  
1242  
1274  
1179  
1211  
1243  
1275  
1021  
1052  
1084  
1116  
1148  
1053  
1085  
1117  
1149  
1180  
1212  
1244  
1276  
1181  
1213  
1245  
1277  
1023  
1054  
1086  
1118  
1150  
1055  
1087  
1119  
1151  
1182  
1214  
1246  
1278  
1183  
1215  
1247  
1279  
8.3.2 Data Bus Operations  
8.3.2.1 Row Addressing  
The DIN (input data), DCLKIN (input data clock), and DVALID (data valid) signals enable the DLPC410 to  
capture one row of customer input data and send that data to the DMD. For the DMD to know specifically to  
which row the data will be applied, the ROW_MD(1:0) (row mode), the ROW_AD(10:0) (row address), and the  
NS_FLIP (North/South Flip) signal inputs must be presented to the DLPC410 inputs during each row cycle. 11  
shows the number of rows for each DMD supported by the DLPC410.  
11. DMD Row and Columns  
CLOCKS PER  
ROW  
NO. OF DATA  
LINES  
TYPE  
COLUMNS  
ROWS  
DLP650LNIR DMD  
1280  
1024  
1920 (2048)(1)  
800  
768  
40  
16  
16  
16  
32  
64  
DLP7000 and DLP7000UV DMDs  
DLP9500 and DLP9500UV DMDs  
1080  
(1) The DLP9500 and DLP9500UV DMDs have 2048 memory cells per row . There are 64 bits at the beginning of each row and 64 bits at  
the end of each row which do not have corresponding DMD micromirrors. These 128 memory cells must be loaded with data but the  
data content can be arbitrary and will not affect the 1920 physical micromirrors within that row.  
DMD data is loaded into the DMD SRAM pixels one row of data at a time. The DLP9500 and DLP9500UV  
require pattern data input to all four input data buses (A,B,C,D) while the DLP650LNIR, DLP7000 and  
DLP7000UV require pattern data to be input to two input data buses (A,B). The DLP650LNIR uses only the odd  
data bus pins of input buses A and B. The DMD input data buses are provided by the following DLPC410  
outputs:  
DDC_DCLKOUT - high speed 2xLVDS data clock out to DMD  
SCTRL - high speed control bus to DMD  
DDC_DOUT[X:Y] - 2xLVDS data bus where X and Y depend on the DMD.  
版权 © 2012–2019, Texas Instruments Incorporated  
41  
 
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
These signals are all output from the DLPC410 and are listed in Pin Configuration and Functions. Data and  
control from the DLPC410 are clocked into the DMD on both the rising and falling edges of the DDR data clocks:  
DDC_DCLKOUT_[A, B] for the 2 input bus DMDs and DDC_DCLKOUT_[A, B, C, D] for the 4 input bus DMDs.  
Data loading does not cause mirror state changes - mirrors transition to the next state only when a Mirror  
Clocking Pulse (Reset) operation is performed.  
The row load length in clocks can be determined by the following equation: number row clocks = number of  
pixels per row / (total data buses bit width × 2 edges per clock). The "2 edges per clock" in the denominator is a  
direct results of the Dual Data Rate (DDR) nature of the DMD input data bus. This equation yields the results  
shown in 11  
The DMD incorporates single row write operations using a row address counter that has different modes of  
operation. These modes are dependent on the state of the ROW_MD, ROW_AD, and NS_FLIP input signals. As  
shown in 12, ROW_MD(1:0) determines the row mode for a given Row Cycle, and, when ROW_MD = "10",  
then ROW_AD(10:0) selects the customer supplied single row address. ROW_MD and ROW_AD must be  
asserted and deasserted synchronously with DVALID and must be valid synchronous to the beginning of the  
data as shown in 10. If only one specific mode will be utilized in a customer system application, it is certainly  
acceptable to leave these values at their same desired input levels for as long as desired.  
Row address orientation depends on the North/South Flip Flag (NS_FLIP) input to the DLPC410. This input  
controls if the DMD starting row address starts at the top of the DMD (Row 0) and increments downward, or from  
the bottom of the DMD (last row) and decrements upward.  
The row address counter does not automatically wrap-around when using the increment row address pointer  
instructions. For example, after the final row is addressed, the row address pointer must be set to row 0.  
12. Row Modes and Row Addresses  
ROW_MD(1:0)  
ROW_AD(10:0)(1)  
"xxxxxxxxxxx"  
"xxxxxxxxxxx"  
"xxxxxxxxxxx"  
NS_FLIP(2)  
ACTION  
"00"  
"01"  
"01"  
"x"  
0
Row No-Op (No data write)  
Increment internal row address by '1' - write concurrent data into that row  
Decrement internal row address by '1' - write concurrent data into that row  
1
Set Random row address as specified on ROW_AD(10:0) inputs - write  
concurrent data into that row.  
"10"  
"11"  
"11"  
ROW_AD(10:0)  
"xxxxxxxxxxx"  
"xxxxxxxxxxx"  
"x"  
0
Set First row address (DMD Row 0) and write concurrent data into that row  
Set Last row address (DMD last row ) - write concurrent data into that row  
(Last row = 767 for DP7000, 799 for DLP650LNIR, 1079 for DLP9500)  
1
(1) "xxxxxxxxxxx" and "x" are don't care situations.  
(2) It is recommended NS_FLIP remain constant throughout the loading of the DMD and not change on a row cycle basis.  
8.3.2.2 Single Row Write Operation  
Once initialization is complete (INIT_ACTIVE = 0) the user is free to send data and control information to the  
DLPC410. When the user asserts the DVALID signal for the LVDS input buses, the DLPC410 samples the  
customer supplied binary input pattern data (DIN) as well as the Row Mode, Row Address, Block Mode, Block  
Address, and other control information. The DLPC410 then sends pattern data synchronously to the DMD along  
with row address and control information. The row cycle period is defined by the Clocks per Row in 11 and is  
synchronous with DVALID as shown in 10. If DVALID is removed midway in a Row Cycle, the DLPC410  
continues loading data regardless of data validity until the internal row cycle counter reaches the terminal count  
of Clocks/Row for that DMD.  
10 is an example of a single Row Cycle for the DLP7000 DMD. A total of 32 bits of input data are presented  
to the DLPC410 on each clock edge (16 bits on Bus A + 16 bits on Bus B) . An entire line must be written for  
data to be latched into DMD memory and it requires 16 DDR clock cycles to write a single row of 1024 bits.  
42  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
0
1
29 30  
31  
DCLKIN  
DVALID  
ROWMD/ROWAD  
BLK_MD/BLK_AD  
STEP_VCC/NS_FLIP/  
COMP_DATA  
DIN_A/B  
10. Single Row Write Operation (DLP7000 DMD)  
8.3.2.3 No-Op Row Cycle Description  
A Row No-Op is a row cycle in which setting ROW_MD = "00" commands the DLPC410 that within the current  
row cycle, no Row Write operation is to be performed. A Block No-Op is a row cycle in which BLK_MD = "00"  
commands the DLPC410 that within the current row cycle no Block Operation is to be performed. Row No-Ops  
can be inserted when only block operations are desired, Block No-ops can be inserted when only Row Write  
operations are desired, or both Row No-Ops and Block No-Ops can be performed at the same time when neither  
type of operation is desired (as shown in 11). No-Ops are frequently inserted in the stream of data and  
commands when delays are desired to complete on-going operations to avoid violating delay requirements.  
0
1
29  
30  
31  
DCLKIN  
DVALID  
00  
00  
ROWMD  
BLK_MD  
XXXX  
BLK_AD  
11. No-Op Row Cycle (DLP7000 example)  
8.3.3 DMD Block Operations  
Previous sections have described in detail how to send binary pattern data through the DLPC410 Controller to  
the connected DMD. Although the data loading process involves loading the specified data into the SRAM cells  
in the DMD array, this loading of data does not change the physical state of the DMD Micromirrors. The state of  
the mirrors can only be changed (or left the same if the data under the mirrors is unchanged) when a Mirror  
Clocking Pulse (Reset) is applied to the DMD MBRST pins from the DLPA200.  
A sequence of Mirror Clocking Pulses (Resets) begins by asserting a row cycle with BLK_MD and BLK_AD as  
described in 14. Shortly after the row cycle, RST_ACTIVE output to the customer transitions to logic '1' for  
approximately 4.5 µs indicating a Mirror Clocking Pulse operation is in progress. During this time, no additional  
Mirror Clocking Pulses may be initiated until RST_ACTIVE returns to logic '0'.  
RST_ACTIVE does not return to logic '0' unless:  
data load row cycles are issued to other DMD blocks as in 15 or,  
No-Op row cycles are provided to the DLPC410 to enable MCP or Block Clear operations to continue  
This is accomplished by asserting DVALID while holding ROWMD = “00” and BLKMD = “00” for the pre-requisite  
number of CLKS per ROW (11) clock cycles, as in 11. If no other blocks need to be loaded then continuous  
No-Op row cycles are applied as in 11 .  
版权 © 2012–2019, Texas Instruments Incorporated  
43  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8.3.3.1 Mirror Clocking Pulse (MCP)  
A Mirror Clocking Pulse is an analog voltage waveform provided to the DMD from the DLPA200 DMD  
Micromirror Driver. This waveform times the electrostatic forces which cause each micromirror to transition to its  
next state. This next state is determined by the data in the SRAM cell beneath each pixel. If the data has  
changed, the micromirror will rotate its position 24 degrees to the opposite state. If the data is unchanged, the  
mirror will remain in the same state. The DLPC410 instructions the DLPA200 to apply Mirror Clocking Pulses to  
the DLPA200 based on instructions from the user.  
A Mirror Clocking Pulse (MCP) is often referred to as a "Reset" operation.  
8.3.3.2 Reset Active (RST_ACTIVE)  
RST_ACTIVE is an output from the DLPC410 to indicate to the user that a user requested Reset (MCP) has  
been accepted by the DLPC410. Shortly after the user requests a Reset (MCP) by asserting the appropriate  
Block Control signals defined in DMD Block Control Signals, RST_ACTIVE output to the user will transition to  
logic '1' for approximately 4.5 µs indicating a Mirror Clocking Pulse operation is in progress. While RST_ACTIVE  
is logic '1', no additional Mirror Clocking Pulse requests may be initiated by the user until RST_ACTIVE returns to  
logic '0'. RST_ACTIVE is synchronized to a version of DCLKIN. As such, circuits in the application FPGA should  
consider this signal asynchronous and use standard synchronization techniques to assure reliable registering of  
this signal.  
After a Mirror Clocking Pulse or Clear command is given, RST_ACTIVE may not be  
asserted until up to 60ns after the command. During this time, no other command should  
be given.  
8.3.3.3 DMD Block Control Signals  
The DMD micromirrors and their corresponding SRAM pixels are organized into horizontal rows where data is  
loaded one row at a time. DMD Blocks are defined as a group of sequential rows of mirrors. Each mirror block is  
measured in groups of [ROWS per BLK] as described in 11. DMD blocks are typically numbered from 0 to 15  
with 0 being the block at the top of the DMD (row 0) and 15 being the block at the bottom of the DMD.  
13. DMD Block Characteristics  
ROWS PER  
BLOCK  
DMD TYPE  
COLUMNS  
ROWS  
BLOCKS  
DLP650LNIR DMD  
1280  
1024  
1920  
800  
768  
16  
16  
15  
50  
DLP7000 and DLP7000UV DMDs  
DLP9500 and DLP9500UV DMDs  
48  
1080  
72  
8.3.3.3.1 Block Mode - BLK_MD1:0)  
The Block Mode signals define the type of block operation the user would like to take place. The allowed  
operations which can be requested are defined in 14. These signals work along side the RST2BLK and the  
Block Address signals to provide the gamut of Block Operations that enable DMD mirrors to update to their next  
used desired state. These signals should be setup synchronously with the start of a row cycle.  
8.3.3.3.2 Block Address - BLK_AD(3:0)  
The Block Address signals help to specify which block or group of blocks will be acted upon in a user issued  
Block Operation. They work with the RST2BLK and Block Mode signals to indicate which block or group of  
blocks will see a Reset (MCP). These signals should be setup synchronously with the start of a row cycle.  
44  
版权 © 2012–2019, Texas Instruments Incorporated  
 
 
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
8.3.3.3.3 Reset 2 Blocks - RST2BLK  
The Reset 2 Blocks (RST2BLK) signal helps to signify a multiple block operation is requested by the user, where,  
depending on the state of RST2BLK, either two blocks or 4 blocks will be Reset together. The specific blocks to  
be Reset will then be determined by the Block Mode and Block Address. This signal should be setup  
synchronously with the start of a row cycle.  
RST2BLK needs to be kept low during initialization for proper setup of the system.  
8.3.3.4 DMD Block Operations  
Once a portion or all of the DMD is loaded with new data, the user typically requests a Block Operation to be  
performed. This operation causes the DLPC410 to initiate one of the many block related activities to a block or  
group of blocks to the DMD. Available Block operations are:  
Block No-Op - user requests via BLK_MD(1:0) = "00" that no block operations are to take place in this row  
cycle. This is typically the case for row cycles used for data loading purposes only without any block  
operations.  
Block Clear Request - user requests a single block to be cleared causing all SRAM cells within that block to  
be reset to logic '0'.  
Single Block Reset Request - user requests a single DMD block be provided a Reset (MCP) signal to cause  
the micromirrors within that block to update to their new values.  
Dual Block Reset Request - user requests two sequential DMD blocks be provided Reset (MCP) signals to  
cause the micromirrors within those blocks to update to their new values.  
Quad Block Reset Request - user requests four sequential DMD blocks be provided Reset (MCP) signals to  
cause the micromirrors within those blocks to update to their new values.  
Global Reset Request - user requests all DMD blocks be provided Reset (MCP) signals to cause all DMD  
micromirrors to update to their new values.  
DMD Park (Float) Request - user requests all DMD micromirrors be provided special Parking Reset (MCP)  
signals causing the micromirrors within those blocks to relax to their unbiased state. This request is intended  
to place the micromirrors in the Parked state prior to power removal (shutdown).  
Mirror blocks are addressed using the Block Address (BLK_AD[3:0]) signals for application of either a Mirror  
Clocking Pulse (Reset) or a Memory Clear operation by asserting the block control signals of 14 at the start of  
each row data load. RST2BLK, Block Mode (BLK_MD[1:0]), and BLK_AD[3:0] define the requested operation as  
shown in 14 and designate which mirror block or mirror blocks are issued a Mirror Clocking Pulse or are  
Cleared. The number of DMD blocks and BLOCKS/ROW is unique to each DMD - refer to the individual DMD  
data sheets for DMD block definition.  
版权 © 2012–2019, Texas Instruments Incorporated  
45  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
14. Block Control Signals and Operations  
RST2BLK  
BLK_MD(1:0)  
00  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
BLK_AD(3:0)  
xxxx  
OPERATION  
None  
OPERATION TYPE  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
0
0
1
1
1
1
x
x
Block No-OP  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
000x  
001x  
010x  
011x  
10xx  
11xx  
Clear block 00  
Clear block 01  
Clear block 02  
Clear block 03  
Clear block 04  
Clear block 05  
Clear block 06  
Clear block 07  
Clear block 08  
Clear block 09  
Clear block 10  
Clear block 11  
Clear block 12  
Clear block 13  
Clear block 14  
Clear block 15  
Reset block 00  
Reset block 01  
Reset block 02  
Reset block 03  
Reset block 04  
Reset block 05  
Reset block 06  
Reset block 07  
Reset block 08  
Reset block 09  
Reset block 10  
Reset block 11  
Reset block 12  
Reset block 13  
Reset block 14  
Reset block 15  
Reset blocks 00-01  
Reset blocks 02-03  
Reset blocks 04-05  
Reset blocks 06-07  
Reset blocks 08-09  
Reset blocks 10-11  
Reset blocks 12-13  
Reset blocks 14-15  
Reset blocks 00-03  
Reset blocks 04-07  
Reset blocks 08-11  
Reset blocks 12-15  
Reset blocks 00-15  
Float blocks 00-15  
Block Clear Request(1)(2)  
Single Block Reset Request  
Dual Block Reset Request  
Quad Block Reset Request  
Global Reset Request  
DMD Park Request  
(1) Each Block Clear operation for DLP650LNIR and DLP7000(UV) DMDs will clear all SRAM cells of one DMD block (reset to '0') within  
one row cycle duration.  
(2) Each Block Clear operation for DLP9500(UV) DMDs must be followed by two No-Op row cycles. To clear one DMD Block, one Block  
Clear Request row cycle followed by two consecutive No Op row cycles are required. In total, 15 Block Clear Request row cycles and 30  
No-Ops are required to clear the entire 15 block DMD array.  
46  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Block operations cause the DMD micromirrors to transition to their next state. Some notes and restrictions  
regarding block operations are:  
A Block No-Op row cycle causes no new block operations to occur. Block No-Op row cycles can be used to  
provide extended time for a previous operation.  
The Block Clear operation resets all SRAM pixels in the designated block to logic zero during the current row  
cycle.  
It is not necessary to Clear a block if it will be reloaded with new data (just like a normal memory cell).  
It is not possible to Clear a block while writing to a different block.  
It is possible to issue a Mirror Clocking Pulse to a block while data loading a different block.  
The DLP9500 and DLP9500UV DMDs have 15 blocks (block 0 – block 14). Block operations on block 15  
have no function for this DMD.  
RST2BLK should be set to one value and not adjusted during normal system operation. A change in  
RST2BLK is not immediately effective and will require more than one row load cycle to complete.  
8.3.3.4.1 Global Reset (MCP) Consideration  
A Global Reset (BLK_MD = 11 and BLK_AD = 10XX) is an operation which Resets (MCP) all DMD blocks at the  
same time. The Global Reset duration is the same as the Single, Dual, and Quad Block Reset (MCP). In addition  
to requiring a No-Op row cycle to initiate the Global Reset, row cycles (either No-Op row cycles or data loading  
row cycles) are required to continually be provided to complete the Global Reset operation. If continual provision  
of row cycles is not provided, the customer interface monitoring RST_ACTIVE may never see RST_ACTIVE  
transition back low to indicate the Reset is complete. Customers should always provide valid row cycles, either  
No-Ops or data loading row cycles. To know when the reset operation is complete, customers can either monitor  
RST_ACTIVE high-to-low transition, or use a counter to know when at least a 4.5 µs period has expired from the  
start of the Global Reset. From that point on, the customer also needs to count the mirror settling time of the  
DMD to expire prior to loading the next data into the DMD.  
Reset (MCP) operations to a specific block or consecutive blocks of the DMD are also  
referred to "Block Resets" or just "Reset" operations. This is because they are physically  
"resetting" the micromirrors of the block to their next physical positions based on the  
underlying data.  
(DLP9500 and DLP9500UV DMDs Only) To clear one Mirror Clocking Pulse (Reset)  
Group in the DMD Block, one Clear command followed by two consecutive No Operation  
commands (No-Ops) are required. Therefore, 15 total Block Clear commands and 30 total  
No-Ops commands are required to clear the entire DMD array.  
8.3.4 Other Data Control Inputs  
It is recommended that the Complement and Flip flags be set to one value and not adjusted during normal  
system operation. These controls are asserted through a different mechanism than the input data bus and row  
controls, hence their effect is asynchronous and cannot be expected to take effect immediately upon assertion.  
8.3.4.1 Complement Data  
By setting the COMP_DATA flag high, the user is able to command the DMD to internally complement its data  
inputs prior to loading the data into the mirror array. At least 0.6 ms is needed for the signal to be loaded. This  
signal should not be used to invert data on a row basis. When used with the “Clear” command, the mirrors are  
still set to zero regardless of the COMP_DATA bit. The COMP_DATA signal should be kept low during  
initialization to ensure proper setup of the system.  
8.3.4.2 North/South Flip  
NS_FLIP allows the user to specify the loading direction of rows in the DMD when used with ROWMD = “01”.  
This control has no effect if ROWMD = “10”.  
版权 © 2012–2019, Texas Instruments Incorporated  
47  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Row Addressing and 12 describe the effect of N/S flip. If NS_FLIP is set, this does not reverse the direction of  
Mirror Clocking Pulse groups (blocks). For example, the normal case is to Mirror Clocking Pulse blocks 0 – 15 in  
order. When NS_FLIP is set, the order of block Mirror Clocking Pulses must be reversed to 15 – 0.  
The NS_FLIP signal should be kept low during initialization to ensure proper setup of the system.  
8.3.5 Miscellaneous Control Inputs  
8.3.5.1 ARST  
ARST is an active low, asynchronous reset. This reset can be sourced from a voltage supervisor or from the  
customer interface. Be aware that the chipset will not operate correctly if all DLPC410 power supplies are not in  
range at the time this reset is released.  
8.3.5.2 CLKIN_R  
The reference clock, CLKIN_R, supplied from an oscillator must be 50 MHz. This is required for precise timing  
used to perform the DMD Mirror Clocking Pulse (Reset). This clock should be valid prior to releasing ARST.  
8.3.5.3 DMD_A_RESET  
DMD_A_RESET is an active low reset to the DMD. This signal is deasserted as appropriate at the end of system  
initialization.  
8.3.5.4 Watchdog Timer Enable (WDT_ENABLE)  
The DLPC410 contains a watchdog timer that initiates a global DMD Mirror Clocking Pulse in the event that the  
DMD has not received any Mirror Clocking Pulse by the user within the last 10 seconds. This auto-generated  
Mirror Clocking Pulse function is to provide Mirror Clockling Pulses to the DMD mirrors to prevent long term  
landed mirrors in the event the input data and source control has been inadvertently disrupted. This capability  
can be user disabled by setting WDT_ENABLE to logic '1'. Note that the global DMD Mirror Clocking Pulse  
generated by the watch dog timer is asynchronous to any/all activity on the DMD input data bus - therefore there  
is no guarantee as to the validity of the data displayed on the DMD once this pulse occurs, at least until new data  
is subsequently loaded and displayed.  
8.3.6 Miscellaneous Status Outputs  
8.3.6.1 INIT_ACTIVE  
The INIT_ACTIVE signal ins an output which indicates that the DMD, Digital Micromirror Driver, and the Digital  
Controller are in an initialization state after power is applied. During this initialization period, the DLPC410 is  
calibrating the data interface, initializing the DMD, and DLPA200(s). When this signal goes low, the system has  
completed initialization. See the section on System initialization  
8.3.6.2 DMD_Type(3:0)  
The DLPC410 only supports the DMDs indicated in 15.At power-up, the DLPC410 checks the DMD signature.  
If the DLPC410 finds the DMD is not supported, it will not allow the user to display data on the DMD and  
indicated that the DMD is unsupported.  
DMD_TYPE(3:0) is an output from the DLPC410 to the user FPGA which will indicate to the user which DMD is  
connected to the DLPC410, or in another case, the DMD is not supported or a DMD is not properly connected.  
15. DMD Characteristics  
DMD_TYPE(3:0)  
0000  
DMD Reported  
DLP9500 and DLP9500UV DMDs  
DLP7000 and DLP7000UV DMDs  
DLP650LNIR DMD  
0001  
0111  
1111  
Unsupported DMD / No DMD  
48  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
8.3.6.3 DDC_VERSION(3:0)  
These four pins identify the version of the DLPC410 determined by the contents of DLPR410. If a problem is  
encountered which encourages you to contact a Texas Instruments representative, please provide the version  
number along with the detailed information of the problem. See the DLPR410 datasheet (DLPS027) for the  
version number reported on these pins.  
8.3.6.4 LED0  
The LED0 signal is typically connected to an LED to show that the DLPC410 is operating normally. The signal is  
1 Hz with 50% duty cycle, otherwise known as the heartbeat.  
8.3.6.5 LED1  
The LED1 signal is typically connected to an LED indicator to show the status of system initialization and the  
status of the clock circuits. The LED1 signal is asserted only when system initialization is complete and clock  
circuits are initialized. Logically, these signals are ANDed together to show an indication of the health of the  
system. If the Phase Locked Loop (PLL) connected to the data clock and the DMD clock are functioning correctly  
after system initialization, the LED will be illuminated.  
8.3.6.6 DLPA200 Control Signals  
Coordinating the operation of the DLPA200 with the DMD is one of the primary functions of the DLPC410. During  
system initialization, the DLPC410 releases the reset pin (DAD_INIT) and communicates with the DLPA200 via a  
serial bus to configure the device. Once this is complete, the high voltage output pins are enabled to prepare for  
command execution. As the DLPC410 is commanded to load data and perform Mirror Clocking Pulses, the  
DAD_ADDR address, DAD_MODE mode, DAD_SEL select and DAD_STROBE strobe signals are asserted as  
appropriate to cause the Mirror Clocking Pulses. The operation of these signals are managed by the DLPC410  
and, besides board layout and good design practices, should be of little concern to the end user.  
8.3.6.7 ECM2M_TP_ (31:0)  
These are reserved signals for test signal output. Do not drive these signals.  
8.4 Device Functional Modes  
The DLPC410 has one basic function which is to receive customer data at the inputs of the DLPC410 and deliver  
that data and any appropriate DMD control information to the DMD for displaying of binary patterns at very high  
speeds. The Feature Description section describes how binary pattern data is loaded into the DMD and  
ultimately where that data is displayed on the DMD. The following subsections describe the different display  
modes of operation of the DMD as enabled by the DLPC410.  
8.4.1 DLPC410 Initialization and Training  
8.4.1.1 Initialization  
The INIT_ACTIVE signal indicates that the DMD, Digital Micromirror Driver, and the Digital Controller are in an  
initialization state after power is applied. During this initialization period, the DLPC410 is calibrating the data  
interface, initializing the DMD, and DLPA200(s). When this signal goes low, the system has completed  
initialization. System initialization takes approximately 220 ms to complete. Data and command row cycles must  
not be presented to the DLPC410 during the initialization. INIT_ACTIVE should be considered an asynchronous  
feedback signal to the user. Standard synchronization techniques should be applied. After initialization is  
complete, a delay of at least 64 DCLKIN clocks (on all input data buses being used) should be observed before  
the first DVALID is asserted on those data buses to ensure a clean start up process.  
Note: NS_FLIP, COMP_DATA, and RST2BLK signals should be kept low ('0') during  
initialization to ensure proper system setup.  
版权 © 2012–2019, Texas Instruments Incorporated  
49  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8.4.1.2 input Data Interface (DIN) Training Pattern  
The DLPC410 detects the phase differences between the ½ speed clock (used in the customer device driving the  
LVDS data) and the internally generated ½ speed data clocks and automatically corrects their alignment. This is  
done by the customer FPGA supplying a simple repeating pattern on all of the data inputs while the  
INIT_ACTIVE output of the DLPC410 is high/active. The details of the training pattern are described below.  
This is a simple block diagram of the training pattern insertion logic.  
Sys Clk  
IO Clk  
System Data  
0
4:1 Serdes  
Dout  
Training Data  
(0100)  
Din 3:0  
1
Init_active  
12. Block Diagram of Training Pattern Logic  
The expected training pattern is 0100. In 13 the data input to the 4:1 SERDES cells is captured on the rising  
edge of the ½ speed system clock. The output latency shown is based on the documentation for the Xilinx  
SERDES cells. Individual implementation may vary depending on the type of cells, technology, and design  
technique used.  
½ Speed  
System Clk  
Full Speed  
IO Clk  
4:1  
SERDES  
Data (at the  
interface)  
0100  
0100  
0100  
0100  
0100  
Output Data  
13. Training Pattern Alignment  
50  
版权 © 2012–2019, Texas Instruments Incorporated  
 
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
In Xilinx FPGAs (due to the construction of the ISERDES and OSERDES cells) a pattern  
of 0010 needs to be applied to the output/transmitting SERDES cells data pins (D1 = 0,  
D2 = 0, D3 = 1, D4 = 0) in order to receive a result of 0100 (Q1 = 0, Q2 = 1, Q3 = 0, Q4 =  
0) at the input/receiving SERDES cell.  
The patterns should be applied on all of the input data and DVALID pins. In this respect,  
the interface is treated as a 17 bit interface with DVALID being the 17th data bit. The  
receiving logic in the DLPC410 will shift the data until the correct pattern is seen at the  
inputs. The SERDES cells align the incoming data with the ½ speed system clock (derived  
from the full speed data clock). This allows DLPC410 to correctly align the DVALID signal  
and the incoming data and will contribute to a more robust interface. It is important that the  
training pattern is applied to the DVALID and data inputs of the DLPC410 before reset to  
the device is deasserted, as training commences immediately on the deassertion of reset.  
The INIT_ACTIVE signal is asserted while the device is held in reset in order to help  
facilitate this behavior.  
8.4.2 DLPC410 Operational Modes  
The following modes of operation are frequently used operational modes enabling customers to update DMD  
data and to control how, where, and how long their binary patterns are displayed on the DMD. Customers  
frequently pick the mode which provides the best performance and simplicity for their specific system.  
Combinations of these modes can also be used.  
8.4.2.1 Single Block Mode  
A single block of DMD memory cells can be updated by providing successive row cycles with valid data  
(DVALID) to the DLPC410 until the desired amount of data is presented. Since different DMDs have different row  
and block sizes (and therefore different number of clocks per row or per block), the amount of time it takes to  
load a block of DMD data will be different for each DMD. Leveraging 11 and 13, we can calculate the single  
block load time for each DMD by the following equation: Block Load Time = Clock Period × number CLKS per  
ROW × number ROWS per BLK. The results are shown in 16 for DLPC410 supported DMDs.  
16. DMD Block Load Time (400 MHz DMD Clock)  
DMD  
DMD BLOCK LOAD TIME  
5.00 µsec  
DLP650LNIR  
DLP7000 / DLP7000UV  
DLP9500 / DLP9500UV  
1.92 µsec  
2.88 µsec  
Once the block is loaded with data, a Block Reset (MCP) for that block must be initiated. This can be performed  
by providing a row cycle with BLKMD = "10" and with BLK_AD(3:0) equal to the block just loaded. Upon initiation  
of the Block Reset, RST_ACTIVE will transition high for approximately 4.5 μs indicating a Reset operation is  
taking place and that no additional Reset Requests will be accepted during that time. In the case of wanting to  
reload the same block with new data, one must wait for the 12.5 μs (RST_ACTIVE (4.5 μs) + the micromirror  
settling time (8 μs)) before the reload of the same block can start. Waiting this time allows for the DMD  
micromirrors in that block to settle to a stable state prior to reloading the memory cells underneath with new data.  
14 shows a single block load, Mirror Clocking Pulse and reload sequence with the 8 μs periods indicating  
micromirror settling times.  
版权 © 2012–2019, Texas Instruments Incorporated  
51  
 
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Load Block 8  
No-Op  
Row No-Op  
Load Block 8  
Row No-Op  
Load
DIN_A/B  
BLKMD/BLK_AD  
Block Rst 8  
Block No-op  
Block Rst 8  
Block No-Op  
RST_ACTIVE  
4.5 us  
8 us  
4.5 us  
8 us  
14. Block Load, Reset, and Same Block Reload  
Although 14shows that one must wait for the mirror settling time of the current block (Block=8 in this case) to  
complete before reloading data into the same block (8), it is possible to load data to a different block while  
waiting for Block 8 to settle. However, it must be a block which is not currently being Reset nor which has  
micromirrors which are still settling. This method is used in the Phased Mode of operation described in Single  
Block Phased Mode .  
The RST_ACTIVE and micromirror settling times indicated in this example are typical for  
many DMDs. See each individual DMD data sheet for more information on the micromirror  
switching and settling times.  
Customers do not have to load the entire block at one time unless specifically directed.  
The DLPC410 supports individual row loads and partial block loads. Customers can use  
ROW_AD(10:0) to load one (or more) specific Row Addresses within any block. These  
loading modes are defined in 12. Care must be taken to ensure all RST_ACTIVE time  
plus DMD mirror settling times are taken into account prior to re-loading any rows in the  
same block once a Reset has been requested.  
8.4.2.2 Single Block Phased Mode  
Single Block Phased Mode is best described as "phasing" the data load operation with the Block Reset  
operation. The major advantages of Phased Modes (Single, Dual, and Quad) in general are the idea of not  
having to wait for the micromirror settling time duration to complete prior to the next block reset, and for not  
having to wait for the Reset Request to complete prior to loading more data. In the example of 15, Block 15 is  
loaded with data while the Reset operation is taking place for Block 14 (Rst 14). The Reset Request (BLKMD  
and BLK_AD) for Block 14 needs to be one row cycle in duration minimum but can be extended to additional row  
cycles. Subsequent row cycles containing a valid Reset Request will be ignored until RST_ACTIVE goes low.  
Therefore, BLKMD and BLK_AD should transition from a Reset Request to a Block No-Op while RST_ACTIVE is  
still asserted as once RST_ACTIVE de-asserts there is the likelihood of an undesired Reset Request to be  
generated on the same block.  
In 15, Block 0 is issued a Block Reset concurrently with data being loaded into the next block (1). The Row  
Cycles of the Block 1 data loading capture the Reset Request for Block 0, and provide continued Row Cycles for  
the duration of both the Block Load and the Block Reset. Note that the loading of block 1 does not need to wait  
for the mirror settling time of Block 0. This is repeated until the last block is Reset (which might also contain  
loading the next Block 0 data). Since the DLP650LNIR block load time is already longer than the RST_ACTIVE  
time, full utilization of its bandwidth is readily achieved in a single block phased mode.  
52  
版权 © 2012–2019, Texas Instruments Incorporated  
 
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
. . . . . . .  
Load Block 15 Load Block 0 Load Block 1 Load Block 2  
DIN_A/B  
. . . . . . .  
. . . . . . .  
BLKMD/BLK_AD  
Rst 14 No-Op Rst 15 No-Op Rst 0 No-Op Rst 1 No-Op  
RST_ACTIVE  
R_A 14  
R_A 15  
R_A 0  
R_A 1  
15. Single Block Phased Mode with Longer Block Load Times  
Depending on the DMD type, the RST_ACTIVE duration of 4.5us may be longer than a single block load time.  
For example, the sequence shown in16 shows that when the Block Load time is shorter than RST_ACTIVE,  
one should include Row No-Ops to create a delay until the current RST_ACTIVE transitions low. Once  
RST_ACTIVE transitions low, the first row cycle of the next block data load can occur while also providing the  
Reset Request for the previously loaded block. At least one row cycle minimum must be completed to initiate the  
Reset Request and the next Reset Request must wait until the data is loaded and RST_ACTIVE transitions low.  
. . . . . . .  
DIN_A/B  
Ld 15 No-Op Ld 0 No-Op Ld 1 No-Op Ld 2 No-Op  
. . . . . . .  
. . . . . . .  
Rst 14 No-Op Rst 15 No-Op Rst 0 No-Op Rst 1 No-Op  
BLKMD/BLK_AD  
RST_ACT 14 RST_ACT 15  
RST_ACTIVE  
RST_ACT 0  
RST_ACT 1  
16. Single Block Phased Mode with Short Block Load TImes  
17 is nearly the same as Figure 16 except that the data loading of each block is timed such that it completes  
loading the block just about the same time the RST_ACTIVE signal goes low. Row No-Op cycles are used to  
provide the Reset Requests instead of data load row cycles. The benefit of this would be the delayed loading of  
data could provide more time for the customer application data processing upstream. In both cases, the next  
block Reset Request cannot be initiated until the previous Reset Request has completed.  
. . . . . . .  
DIN_A/B  
No-Op Ld 15 No-Op Ld 0 No-Op Ld 1 No-Op Ld 2  
. . . . . . .  
. . . . . . .  
Rst 14 No-Op Rst 15 No-Op Rst 0 No-Op Rst 1 No-Op  
BLKMD/BLK_AD  
RST_ACT 14 RST_ACT 15  
RST_ACTIVE  
RST_ACT 0  
RST_ACT 1  
17. 2nd Single Block Phased Mode with Short Block Load TImes  
8.4.2.3 Dual Block Mode  
Dual Block Mode can help to avoid the required delays (via No-Ops) encountered in a Single Phased Mode  
where the load time is less than the Reset duration. In the case of the DLP9500 DMD with a block load time of  
2.88 μs, loading two blocks ( 2 × 2.88 = 5.76 μs) takes more time than the Reset duration (4.5 μs) so once the  
data is loaded, a Dual Block Reset Request can be issued immediately (instead of waiting for RST_ACTIVE) to  
the two blocks by setting RST2BLK to “0” and BLK_MD to “11” and the appropriate address in BLK_AD. This  
method is indicated in 18.  
版权 © 2012–2019, Texas Instruments Incorporated  
53  
 
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Load Block 15  
No-Op  
Load Block 0  
Load Block 1  
Load Block 2  
Load Block 3  
Load Block 4  
Load Block 5  
Load Block 6  
Load Block 7  
DIN_A/B  
Dual Blk Reset 12-15  
RST_ACTIVE 14-15  
No-Op  
Dual Blk Reset 0-1  
RST_ACTIVE 0-1  
No-Op  
Dual Blk Reset 2-3  
RST_ACTIVE 2-3  
No-Op  
Dual Blk Reset 2-3  
No-Op  
BLKMD/BLK_AD  
RST_ACTIVE  
RST_ACTIVE 4-5  
18. Dual Block Mode  
8.4.2.4 Quad Block Mode  
Quad Block mode is very similar to Dual Block mode but in Quad Block Mode, 4 Blocks are loaded with data and  
then Reset. In the case of the DLP7000 DMD with a block load time of 1.92 μs, the loading of two blocks would  
still be less than the 4.5 μs required for the Reset to complete so No-Ops would be required. To avoid inserting  
No-Ops is this case, loading four blocks (4 × 1.92 = 7.68 μs) is longer than the RST_ACTIVE duration (4.5 μs) so  
once loaded, the 4 blocks can immediately be issued a Reset Request by settingRST2BLK to “1”, BLK_MD to  
“11”, and setting the appropriate BLK_AD address in the first row cycle of the next data block load.  
Load Block 15 Load Block 0 Load Block 1 Load Block 2 Load Block 3 Load Block 4 Load Block 5 Load Block 6 Load Block 7  
DIN_A/B  
Quad Blk Reset 12-15  
RST_ACTIVE 12-15  
Block No-Op  
Block No-Op  
Quad Blk Reset 0-3  
RST_ACTIVE 0-3  
BLKMD/BLK_AD  
RST_ACTIVE  
19. Quad Block Mode  
Quad Block mode tends to offer customers the fastest full-DMD pattern rates combined with the largest solid  
state illuminations windows. Pattern rates for Single Block Phased and Dual Block Phased modes can  
sometimes be as fast as Quad Block rates, but the illumination windows can be smaller or even negative,  
thereby requiring delays between patterns to widen the illumination windows for solid state illuminators. These  
added delays will decrease the resulting pattern rates.  
8.4.2.5 Global Mode  
One of the simplest and most frequently utilized modes, the Global Mode involves loading the entire DMD with  
new pattern data and then issuing a Global Reset to update all DMD mirrors at the same time. Loading the entire  
DMD with data involves loading every row of every block. The time it takes to load the DMD is the block load  
time × the number of blocks for that specific DMD. 17 shows the fastest DMD load times for DLPC410  
supported DMDs.  
17. DMD Load Times (Entire DMD)  
DMD  
DMD LOAD TIME (400 MHz Clock)  
DLP650LNIR  
80.0 µsec  
30.7 µsec  
43.2 µsec  
DLP7000 / DLP7000UV  
DLP9500 / DLP9500UV  
54  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
The Global Mode case is shown in 20. Following the loading of all rows in the device, a Row No-Op row cycle  
with a Global Reset Request must be issued to initiate the Reset Pulse and No-Ops should continue until ready  
to load the DMD again. If the global Reset Pulse is asserted prior to loading all rows of the device, rows which  
were not updated will show old data. Global mode is similar to Single Block Mode in that the mirror settling time  
must be taken into account prior to reloading the DMD data after a Reset Request is provided. This additional  
delay makes the Global Mode of operation inherently slower. However, if speed is not as important in a customer  
application, Global mode is great for its simplicity of DMD loading and Resetting.  
8 us  
.. ..  
Load Block 0 Load Block 1  
Load Block 14 Load Block 15  
Row No-Op  
Load Block 0  
DIN_A/B  
Global Rst  
Block No-Op  
Block No-Op  
BLKMD/BLK_AD  
RST_ACTIVE  
4.5 us  
20. Full Device Load with Global Reset  
8.4.2.6 DMD Park Mode  
Park Mode places the DMD in a state where the micromirrors are not biased to either the plus or the minus side,  
but are instead floating in an unbiased and uncontrolled state. Hence, this is also referred to as Mirror Float  
mode. Parking (floating) the DMD mirrors should be performed when powering down the DMD to avoid leaving a  
static image on the DMD during down time or storage. The mirror can be Parked in one of two ways:  
1. PWR_FLOAT input pin (recommended method) : asserting this input to the DLPC410 will cause the  
DLPC410 to automatically Park the mirrors in preparation for power removal. This operation is independent  
of any activity on the input data bus or Block operations. It is often best to drive this pin from both a power  
supervisor circuit which provides immediate DMD parking upon detecting input power removal, and from a  
programmable/controllable output from the customer application FPGA or processor.  
2. DMD Park (Float Blocks 0-15) operation per 14: A mirror float sequence begins with a row cycle with  
assertion of the proper BLK_MD and BLK_AD as described in 14. Following the row cycle, the DMD  
releases the tension under each mirror so that all mirrors relax to a relatively flat position. The float operation  
takes approximately 3 µs to complete, during which time RST_ACTIVE is asserted.  
Park the DMD only when DC power is going to be removed from the DMD. Recovery from  
a PWR_FLOAT input pin assertion requires either a DLPC410 logic reset or a complete  
power cycle.  
8.4.2.7 DMD Idle Mode  
When not powering down the DMD yet it is desired to place the system in an idle (non-functioning) state,  
regardless of end application, all DMDs benefit from continuously operating the DMD near 50% landed on/off  
duty cycle. This requires customers to understand how they can provide the DMD a sequence of patterns which  
approximate a 50/50 duty cycle without interfering with normal operation of their system. See section 3 (Duty  
Cycle Considerations) in application note DLPA052 - System Design Considerations Using TI DLP® Technology  
down to 400 nm. Also see  
DLPA060 - System Design Considerations Using TI DLP® Technology in UVA, and  
DLPA104 - DLP® High-Power NIR Thermal Design Guide  
for additional information.  
版权 © 2012–2019, Texas Instruments Incorporated  
55  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
8.4.3 LOAD4 Functionality (enabled with DLPR410A)  
The DLPR410A PROM enables a new LOAD4 feature for the DLPC410 and attached DMD. The LOAD4  
capability enables the DMD to load 4 rows for every row of data provided by the DLPC410, thereby reducing the  
number of rows to be transferred to 1/4 of the total of DMD rows, and the pattern load time to ¼ the total of row  
cycles, all at the expense of vertical resolution (1/4). Faster global binary pattern rates at the expense of vertical  
addressable resolution may make sense for certain applications like shutter/chopper solutions and vertical  
structured light patterns. LOAD4 reduces data load time only and does not reduce the “Mirror Clocking Pulse”  
and “Settling Time” durations.  
8.4.3.1 Enabling LOAD4  
LOAD4 is enabled by setting the DLPC410 input signal "LOAD4" to a logic '0'. When not using LOAD4, this input  
should driven or pulled up to logic '1'.  
The LOAD4 pin on the DLPC410 was previously defined as "DDC_SPARE_0" pin.  
DLPC410 referenceschematics may still show this signal as DDC_SPARE_0 even though  
the DLPR410A enables the LOAD4 capability using this pin. LOAD4 capability is available  
starting with the DLPR410A and is not available with the DLPR410.  
8.4.3.2 Loading Data with LOAD4  
LOAD4 enables the attached DMD to load four rows of the same data for every one row of provided pattern data.  
“Automatic Increment” mode and “Row Address” mode can be used as before, however the largest addressable  
row will be the Vertical Resolution (VRes) of the attached DMD divided by four. For example, using LOAD4 the  
XGA DMD will have 1024/4 = 256 addressable rows (0 . . . 255). The addressable vertical resolution is reduced  
by four, although the physical mirror resolution remains unchanged.  
“Automatic Increment” address mode will automatically increment the Row Address input by one (or decrement  
by one for N/S flip). The Row Address input will be re-mapped as shown in the next section.  
8.4.3.3 Row Mapping with LOAD4  
The DMD row addresses are re-mapped per 18.  
18. LOAD4 Row Address Mapping  
Row Address Input  
Physical Rows loaded on DMD  
0
0, 1, 2, 3  
1
4, 5, 6, 7  
2
8, 9, 10, 11  
3
12, 13, 14, 15  
. . .  
N
. . .  
4N, 4N+1, 4N+2, 4N+3  
. . .  
. . .  
(VRes/4) -1  
VRes-4, VRes-3, VRes-2, VRes-1  
56  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
21. LOAD4 Row Address Mapping  
8.4.3.4 Using Block Clear with LOAD4  
While LOAD4 is enabled, Block Clear operations will be ignored. To use LOAD4 followed by Block Clear  
operations, simply de-assert LOAD4 at the beginning of the Reset request(s) preceding the Block Clear  
request(s). Re-assert LOAD4 at the beginning of the Reset request(s) preceding the next desired LOAD4  
operation. This will ensure that the DLPC410 Controller has sufficient time to disable or enable LOAD4 before  
data is loaded or Block Clear(s) are requested.  
8.4.3.5 Timing Requirements for LOAD4  
LOAD4 functionality is primarily intended to be used with Global Resets. However, It is possible to use a subset  
of the DMD array including Block Resets. The driving software/hardware MUST ensure that the average “Reset”  
(MCP) rate does not exceed an average rate of 50,000 MCPs/sec as this is the specification limit of the  
DLPA200 Micromirror Driver device (see . The driving software/hardware MUST also ensure that the “Mirror  
Settling Time” is not violated for any Block.  
Average rate means averaged over 2-3 Load/Clear cycles. For example if a pattern is loaded and displayed with  
a Mirror Clocking Pulse followed by a Block Clear and a Mirror Clocking Pulse the “on” display time is very short.  
However, If the next pattern is loaded and displayed immediately, the average MCP rate may be exceeded,  
depending on the DMD and the number of Blocks in use. Therefore idle time must be added in the Load or Block  
Clear cycle to ensure an average MCP rate of 50,000 MCPs/sec or lower. Typically the smallest pattern display  
time is desired so that the time is added during the Load cycle rather than the Block Clear cycle so that the “off”  
time is extended, not the pattern display time.  
8.4.3.6 Global Binary Pattern Rate increases using LOAD4  
19 shows the improvements in binary pattern rates for the DLPC410 supported DMDs when using LOAD4  
enhanced functionality of the DLPR410A PROM. When using solid state illuminators (which can be switched on  
and off quickly), the illumination window is the period of time between when a solid state illuminator can be  
turned on after the micromirrors have settled to when the micromirrors start to transition to their next state (after  
the load and a Reset). This illumination window is typically equal to the DMD load time. When the DMD load time  
is long (without LOAD4) there is a longer allowed illumination window for the application. As one moves to using  
LOAD4 but yet keeps the illumination window unchanged, the illumination window becomes a higher percentage  
of pattern period, and more the limiter of the maximum binary pattern rate.  
版权 © 2012–2019, Texas Instruments Incorporated  
57  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
19. DMD Block Load Time at 400MHz DMD Clock  
DMD  
Global Frame Rate  
(without LOAD4)  
Global Frame Rate (with  
LOAD4 mode)  
DLP650LNIR  
DLP7000  
11k binary patterns/sec  
23k binary patterns/sec  
18k binary patterns/sec  
30k binary patterns/sec  
48k binary patterns/sec  
42k binary patterns/sec  
DLP9500  
8.4.3.7 Special LOAD4 considerations  
Take precautions when using LOAD4 mode with the DLP650LNIR DMD, or similar DMDs where the number of  
rows per reset block is not evenly divisible by 4. In the case of the DLP650LNIR, the number of rows per block  
for this DMD is 50 rows which is not evenly divisible by 4. Therefore, loading the last two rows of an even  
number block (n = 0,2,4,...14) concurrently loads the first two rows in the subsequent odd number block (n+1).  
Conversely, to address and load an odd block using LOAD4, the last two rows of the preceding even number  
block will be loaded first, else the first two rows of the odd block will not be loaded with new data.  
8.5 Programming  
The DLPC410 has no software interfaces and is therefore not programmable from a software perspective. All  
operational modes involve externally applied hardware signals.  
58  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DLP650LNIR, DLP7000, DLP7000UV, DLP9500, and DLP9500UV devices require they be coupled with the  
DLPC410 controller to provide a reliable solution for many different applications. The DMDs are spatial light  
modulators which reflect incoming light from an illumination source to one of two directions, with the primary  
direction being into a projection collection optic. Each application is derived primarily from the optical architecture  
of the system and the format of the data coming into the DLPC410. Applications of interest include industrial,  
medical, and intelligent display.  
9.1.1 Device Description  
The DLPC410 Controller based chipsets offer developers a convenient way to design a wide variety of industrial,  
medical, and advanced display applications by delivering maximum flexibility in formatting and sequencing  
customer binary pattern data for display as projected light patterns from DMDs of varying resolutions.  
These chipsets include the following components:  
DLPC410 DMD Digital Controller  
Captures 2xLVDS input pattern data plus control from the user.  
Provides data and additional control to the DMD for high speed binary pattern display.  
Commands the DLPA200 to generate Resets Pulses (MCP) with highly specific timing.  
Supports random DMD row addressing, clear operations, and LOAD4 capability.  
DLPR410 Configuration PROM  
Contains DLPC410 Controller power up configuration information.  
DLPA200 DMD Micromirror Driver  
Creates Reset Pulses (MCP) to the DMD to initiate mirror transitions to the next state.  
DMD: Digital Micromirror Device, a 2-dimensional array of aluminum micromirrors  
DMD micromirrors tilt +12 degrees and -12 degrees to steer light in one of two directions.  
DLP650LNIR DMD: 0.65-inch array diagonal, 1280 x 800 micromirror array, WXGA resolution.  
DLP7000(UV) DMDs: 0.7-inch array diagonal, 1024 x 768 micromirror array, XGA resolution.  
DLP9500(UV) DMDs: 0.95-inch array diagonal, 1920 x 1080 micromirror array, 1080p resolution.  
Reliable function and operation of the DLP650LNIR, DLP7000, DLP7000UV, DLP9500, and DLP9500UV DMDs  
require the DMDs to be used in conjunction with the components listed in 1. This document describes the  
proper integration and use of the chipset components.  
The DLPC410 chipset can be combined with a user programmable Application FPGA (not included) to create  
high performance systems.  
9.2 Typical Application  
A typical embedded system application using the DLPC410 controller is shown in 22. The DLPC410, the  
DMD, and their associated DLP components do not specifically determine the application in which the  
components are used - customer applications and use cases may vary widely, from Digital Image Lithography to  
3D Printing to 3D Scanners using Structured Light. The DMD is capable of being used with multiple illumination  
source types, from Lasers and LEDs to wide band wavelength mercury halide lamps. The DLPC410 supported  
DMDs cover applications utilizing ultraviolet (UV), visible, and/or near-infrared (NIR) wavelengths. The duration of  
each binary pattern displayed on the DMD is totally under control of the Applications Processor. The displayed  
patterns could be strictly binary patterns or could be bit weight exposures of varying durations representing  
版权 © 2012–2019, Texas Instruments Incorporated  
59  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Typical Application (接下页)  
encoded PWM-based gray scales. The timing of the micromirrors and the illumination sources are controlled at  
the discretion of a Customer Applications Processor and in many solid state cases, provide best performance  
when source illuminators are synchronous to the commanded DMD micromirror transitions. The speed, diversity,  
programmability, and flexibility of the DLPC410 building blocks provide an electro-optical cornerstone for  
customers to build upon to create applications limited only by customer ingenuity.  
In 22, the MBRST 2 signals and the C, D LVDS Data buses are shown with dashed lines to indicate that some  
DMDs do not require these signals to be used. TI's Reference Design and Evaluation Modules leverage a  
DLPC410 Controller Board which supports all 5 of the DLPC410 supported DMDs. The performance differences  
for each application are determined by which DMD Board is plugged into the Controller Board. This provides a  
single DLPC410 design platform which can then be used for multiple customer SKUs within an application  
platform for product segmentation purposes.  
NIR  
PWMs/Triggers  
LED/Laser/Lamp Driver  
Laser Sensor  
Cameras  
LEDs/Laser/Lamp  
Optical Power Sense  
LVDS Data Bus(A,B)  
LVDS Data Bus(C, D)  
LVDS Data Bus  
Row, Block Signals  
Control Signals  
User Interface  
Connectivity  
(USB, E-Net,etc.)  
DLPC410 Info Signals  
JTAG  
User  
Main Processor  
FPGA  
DLPC410  
MBRST 2  
DLPA200 Control  
DLPA200  
DLPA200  
DLPR410  
DLPA200 Control  
SCP Bus  
MBRST 1  
Volatile and non-  
Volatile Storage  
DLP650LNIR  
DLP7000  
DLP7000UV  
DLP9500  
OSC  
DLP9500UV  
Power Management  
AC Power  
DLP Components  
GND  
22. DLPC410 Application Example Block Diagram  
9.2.1 Design Requirements  
All applications using the DLP650LNIR, DLP7000(UV) or DLP9500(UV) DMDs require the DLPC410  
Controller, DLPR410 PROM, and one or two DLPA200 Micromirror Drivers for proper operation. The chipset  
has several system interfaces and requires some support circuitry. The following interfaces and support  
circuitry for the DLPC410 are required:  
DLPC410 Application System Interfaces to the customer electronics and software:  
Input LVDS Data Buses A, B, C, D  
Row Address to specify DMD row to load  
Block address and Block Mode to specify which DMD block(s) to "Reset" (MCP)  
RST_ACTIVE feedback to indicated a "Reset" is in progress  
Miscellaneous control inputs  
Miscellaneous feedback signals  
Power Supply inputs  
DLPC410 to other DLP Component Interfaces  
Output LVDS Data Buses A, B, C, D to DMD  
Output control signals (SCP bus) to DMD  
Output commands to DLPA200 for MCP generation  
60  
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
Typical Application (接下页)  
9.2.2 Detailed Design Procedure  
The DLP7000 and DLP9500 DMD are designed to be operated by the DLPC410 controller and are well suited for  
visible light applications requiring fast, spatially programmable light patterns using the micromirror array. In  
addition the DLP7000UV and DLP9500UV are well suited for direct imaging lithography, 3D printing applications,  
and other applications requiring ultraviolet light (UVA). The DLP650LNIR DMD is optimal for high power Near-  
Infrared light (NIR) applications like 3D additive manufacturing (SLS), marking and coding, and FPD repair and  
ablation. See the block diagrams in Functional Block Diagrams to see the connections between the  
DLP650LNIR, DLP7000 / DLP7000UV or DLP9500 / DLP9500UV DMD, the DLPC410 digital controller, the  
DLPR410 Configuration PROM, and the DLPA200 DMD micromirror drivers. Layout guidelines should be  
followed for reliability.  
9.2.3 Application Curves  
24. DLP7000UV and DLP9500UV Transmittance (UV  
23. DLP7000 and DLP9500 Transmittance (Visible  
Window)  
Window)  
25. DLP650LNIR Transmittance (NIR2 Window)  
9.3 Initialization Setup  
9.3.1 Debugging Guidelines  
Prior to checking the DLPC410 signals, make sure the reference clock to the DLPC410 is running at 50 MHz.  
Check that DONE_DDC (pin K10) signal is asserted indicating the DLPR410 PROM has correctly programmed  
the DLPC410 FPGA.  
9.3.2 Initialization  
Initialization will automatically start after ARST (pin AC13) is deasserted. The initialization process includes the  
following components in the order presented here:  
1. Calibration  
2. DLPA200 number 1 Initialization (all DMDs)  
版权 © 2012–2019, Texas Instruments Incorporated  
61  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
Initialization Setup (接下页)  
3. DMD Initialization  
4. DLPA200 number 2 Initialization (DLP9500 & DLP9500UV only)  
5. Command Sequence  
9.3.2.1 Calibration  
Calibration is done on each of the data (DDC_DIN) and DVALID signal pairs using the training pattern as  
specified in input Data Interface (DIN) Training Pattern. When calibration is successful, the Initialization will move  
on to initializing the first DLPA200.  
The training pattern going into the SERDES on the transmit side is different than the  
pattern on the receive SERDES. On the receive side the value should be “0100”.  
However, this could translate to “0010” on the transmit side. Please see input Data  
Interface (DIN) Training Pattern for more information. An improper training pattern could  
cause the part to not perform the commands correctly.  
9.3.2.2 DLPA200 Number 1 Initialization  
The DLPC410 will initialize the first DLPA200 (number 1) regardless of connected DMD type. The DLPC410  
output DAD_A_SCPEN (pin AE3) signal will assert indicating that the DLPC410 is ready to communicate with  
DLPA200 number 1. Signaling should be seen on SCPCLK (pin AB15), SCPDO (pin AA15 - SCP output from the  
DLPC410) and SCPDI (pin AA15 - SCP input to the DLPC410) traces. Be sure that the direction of the SCP  
input and output signals are connected correctly.  
When DLPA200 Number 1 initialization is complete, check VBIAS, VRESET, and VOFFSET voltage values on the  
DLPA200 number 1 and compare against the DLPA200 data sheet specifications for the particular DMD being  
used with the DLPC410.  
9.3.2.3 DMD Initialization  
During DMD initialization, the DLPC410 output DMD_A_SCPEN (pin AB14) signal will assert indicating that the  
DLPC410 is ready to communicate to the DMD. Signaling can be seen on SCPCLK (pin AB15), SCPDO (pin  
AA15 - SCP output from the DLPC410) and SCPDI (pin AA15 - SCP input to the DLPC410) lines. Be sure that  
the direction of the SCP input and output signals are connected correctly.  
9.3.2.3.1 DMD Device ID Check  
If the DLPC410 has successfully initialized the DMD, the four DMD_TYPE(3:0) pins (AA17, AC16, AB17, and  
AD15)) will provide the DMD type as identified by the DLPC410. The possible DMD_TYPE values are shown in  
15. DMD_TYPE(3:0) will return "1111" if the DMD is not attached or not recognized.  
Only the DMDs listed in 1 are supported by the DLPC410. The DLPC410 will not  
function for unsupported DMDs or when a DMD is not installed.  
9.3.2.3.2 DMD Device OK  
The signals ECP2_M_TP11 (pin AA10) and ECP2_M_TP12 (pin Y10) indicate the status of the DMD buses:  
20. DMD Device OK Status  
ECP2_M_TP12 (PIN  
Y10 - A/B SIDE)  
ECP2_M_TP13 (PIN  
AC11 - C/D SIDE)  
NOTE  
0
0
DMD not supported or not initialized  
62  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
20. DMD Device OK Status (接下页)  
ECP2_M_TP12 (PIN  
Y10 - A/B SIDE)  
ECP2_M_TP13 (PIN  
AC11 - C/D SIDE)  
NOTE  
A/B side is attached and initialized.  
(Expected for DLP650LNIR, DLP7000, DLP7000  
UV DMDs but indicates a problem with C/D side  
connection if DMD is DLP9500 or DLP9500UV )  
1
0
0
1
1
1
Invalid output  
All buses (A/B and C/D) are attached and initialized  
(DLP9500, DLP9500UV only)  
9.3.2.4 DLPA200 Number 2 Initialization  
The DLPC410 will only initialize the second DLPA200 (number 2) when it detects a DLP9500 or DLP9500UV  
DMD is connected. The DLPC410 output DAD_B_SCPEN (pin AB19) signal will assert indicating that the  
DLPC410 is ready to communicate with DLPA200 number 2. Signaling should be seen on SCPCLK (pin AB15),  
SCPDO (pin AA15 - SCP output from the DLPC410) and SCPDI (pin AA15 - SCP input to the DLPC410) traces.  
Be sure that the direction of the SCP input and output signals are connected correctly.  
When DLPA200 Number 2 initialization is complete, check VBIAS, VRESET, and VOFFSET voltage values on the  
DLPA200 number 2 and compare against the DLPA200 data sheet specifications for the DLP9500 or  
DLP9500UV DMD.  
9.3.2.5 Command Sequence Initialization  
The last portion of the initialization process involves a series of commands sent from the DLPC410 to the DMD.  
During this step, check the output of the DLPA200(s). One should expect to see several Mirror Clocking Pulse  
waveforms indicating the DLPA200(s) is (are) initialized correctly.  
This will complete the initialization process. When the initialization process starts, the INIT_ACTIVE ouput signal  
(pin AA18) will assert (go high) indicating that the initialization sequence is in process. At the end of the  
initialization sequence, if the initialization is successful, the INIT_ACTIVE ouput signal (pin AA18) will deassert  
(go low) indicating that the initialization process is complete.  
Initialization complete indicates that the initialization sequence of the DLPC410 has  
completed, but does not ensure that each step was completed correctly, only that it  
finished. For example the initialization of a DLPA200 may complete, but if the voltages set  
are incorrect further investigation is needed to uncover the reason.  
9.3.3 Image Display Issues  
There are three steps to displaying an image on the DMD, each of which can cause an image to fail to display  
correctly or in some case not at all. These steps are:  
1. Present Data to DLPC410 – Pattern data generated by the users device.  
2. Load Data to the DMD – The DLPC410 loads data into the attached DMD CMOS memory array.  
3. Issue Reset (MCP) – A Reset pulse (MCP) is issued to block(s) to change the state of the micromirrors  
based on the data loaded in step two. See Mirror Clocking Pulse (MCP) .  
9.3.3.1 Present Data to DLPC410  
If there is a problem with the image displayed, one of the first places to check is the data being presented to the  
DLPC410. This data is generated by customer application hardware/software and is then presented to the inputs  
of the DLPC410. If the data is formatted incorrectly or the control information is incorrect, the DLPC410 may not  
properly receive the data. Please see Row Addressing for a description of how to send data to the DLPC410.  
版权 © 2012–2019, Texas Instruments Incorporated  
63  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
9.3.3.2 Load Data to DMD  
After data and commands are sent to the DLPC410, the DLPC410 processes the information and passes it to the  
DMD. If there is no image displayed, first check the data output and SCTRL lines of the DLPC410 to see if there  
is data coming out. Data output (DDC_DOUT...) and DDC_SCTRL pins can be found in the Pin Configuration  
and Functions.  
PWR_FLOAT (pin AC17) will prevent the data from coming out of the DLPC410 if asserted. Check to make sure  
that it is at logic level 0.  
A Float blocks 00-15 command will also prevent data from the DLPC410. Please see the last entry of 14.  
9.3.3.3 Mirror Clocking Pulse  
For a new image to appear on the DMD, Mirror Clocking Pulses must be received for the DMD block or blocks  
that have received new data. Check DAD_A_STROBE (pin AF3) and DAD_B_STROBE (pin AB20) [if applicable]  
for pulses to verify that requests for mirror clocking pulses are being sent to the DLPA200(s). Also check the  
DLPA200(s) output is enabled by checking that DAD_OE (pin AF5) is low.  
64  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
10 Power Supply Recommendations  
10.1 Power Down Operation  
For correct operation of the DMD, the following power down procedure must be executed. Prior to power  
removal, assert PWR_FLOAT and allow approximately 300 µs for the procedure to complete. This procedure will  
assure the mirrors are in a flat state, similar to the float operation. Following this procedure, the power can be  
safely removed.  
To restart after assertion of PWR_FLOAT the DLPC410 must be reset (ARST low then high) or power must be  
cycled.  
11 Layout  
11.1 Layout Guidelines  
The DLPC410 is part of a chipset that is controls a DLP650LNIR, DLP7000 / DLP7000UV or DLP9500 /  
DLP9500UV DMD in conjunction with the DLPA200 driver(s). These guidelines are targeted at designing a PCB  
board with these components.  
11.1.1 Impedance Requirements  
Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs  
(DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn), which should be matched to 100 Ω ±10% across  
each pair.  
11.1.2 PCB Signal Routing  
When designing a PCB board for the DLP650LNIR, DLPC7000 / DLP7000UV or DLP9500 / DLP9500UV  
controlled by the DLPC410 in conjunction with the DLPA200(s), the following are recommended:  
Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces  
routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2  
Memory, DMD (LVDS signals), then DLPA200 signals.  
TI does not recommend signal routing on power or ground planes.  
TI does not recommend ground plane slots.  
High speed signal traces should not cross over slots in adjacent power and/or ground planes.  
21. Important Signal Trace Constraints  
SIGNAL  
CONSTRAINTS  
P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle  
<2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn)  
Trace width: 4 mil (0.1 mm)  
Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm)  
Maximum recommended trace length <6 inches (150 mm)  
LVDS (DMD_DAT_xnn,  
DMD_DCKL_xn, and  
DMD_SCTRL_xn)  
22. Power Trace Widths and Spacing  
MINIMUM TRACE  
MINIMUM TRACE  
SPACING  
SIGNAL NAME  
GND  
LAYOUT REQUIREMENTS  
WIDTH  
Maximize  
5 mil (0.13 mm)  
Maximize trace width to connecting pin as a minimum  
Create mini planes and connect to devices as necessary with  
multiple vias  
P2P5V, P1P0V  
50 mil (1.3 mm)  
10 mil (0.25 mm)  
30 mil (0.76 mm) -  
stub width  
P2P5V, P1P0V  
10 mil (0.25 mm)  
Stub width to connecting IC pins; maximize width when possible  
版权 © 2012–2019, Texas Instruments Incorporated  
65  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
11.1.3 Fiducials  
Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad). Fiducials  
for optical auto insertion are placed on three corners of both sides of the PCB.  
11.1.4 PCB Layout Guidelines  
A target impedance of 50 for single ended signals and 100 between LVDS signals (P/N) is specified for all  
signal layers.  
11.1.4.1 DMD Interface  
The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz.  
DDR Data is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz.  
The LVDS signals should have 100-differential impedance. The differential signals should be matched but kept  
as short as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is  
not necessary.  
11.1.4.1.1 Trace Length Matching  
The require precise length matching. LVDS data bus differential pairs should have an impedance of 100 (with  
5% tolerance). It is important that the propagation delays are matched. The maximum differential pair uncoupled  
length is 150 mils with a relative propagation delay of ±25 mil between the p and n. Matching all signals exactly  
will maximize the channel margin. The signal path through all boards, flex cables and internal DMD routing must  
be considered in this calculation.  
11.1.4.2 DLPC410 DMD Decoupling  
General decoupling capacitors for the DMD should be distributed around the PCB and placed to minimize the  
distance from IC voltage and ground pads. Each decoupling capacitor (0.1 µF recommended) should have vias  
directly to the ground and power planes. Via sharing between components (discreet or integrated) is  
discouraged. The power and ground pads of the DMD should be tied to the voltage and ground planes with their  
own vias.  
11.1.4.2.1 Decoupling Capacitors  
Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and  
ground pin of the component. It is recommended that the placement of and routing for the decoupling capacitors  
meet the following guidelines:  
The supply voltage pin of the capacitor should be located close to the device supply voltage pin(s). The  
decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to  
the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be  
tied to the voltage or ground plane through separate vias.  
The trace lengths of the voltage and ground connections for decoupling capacitors and components should  
be less than 0.1 inch to minimize inductance.  
The trace width of the power and ground connection to decoupling capacitors and components should be as  
wide as possible to minimize inductance.  
Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance  
and improve noise performance.  
Decoupling performance can be improved by utilizing low ESR and low ESL capacitors.  
11.1.4.3 VCC and VCC2  
The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should  
be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each  
decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND  
pads of the DMD should be tied to the VCC and ground planes with their own vias.  
The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the  
distance from the VCC2 and ground pads of the DMD. Using wide etch from the decoupling capacitors to the  
DMD connection will reduce inductance and improve decoupling performance.  
66  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
11.1.4.4 DMD Layout  
See the respective sections in this data sheet for package dimensions, timing and pin out information.  
11.1.4.5 DLPA200  
The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the  
DLPA200 should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil. The VCC and  
VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum trace width and  
spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet for mechanical package and  
layout information.  
11.2 Layout Example  
For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the  
dashed lines, 26 shows correct matching of signal pair lengths with serpentine sections to maintain the correct  
impedance.  
26. Mitering LVDS Traces to Match Lengths  
版权 © 2012–2019, Texas Instruments Incorporated  
67  
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
11.3 DLPC410 Chipset Connections  
The following tables list the signal connections between components of the Chipset when used with the  
DLP650LNIR DMD, the DLP7000 / DLP700UV DMD, and with the DLP9500 / DLP9500UV DMD. These tables  
do not include power, ground, pull-up, pull-down, termination, or any other connection requirements. Please see  
the Pin Functions table in the respective data sheet of each chipset component for connection requirements.  
23. DLPC410 Chipset Connections with the DLP650LNIR  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 (MICROMIRROR  
DRIVER)  
DLP650LNIR (DMD)  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
K10  
NAME  
NO.  
B4  
NAME  
NO.  
NAME  
NO.  
DONE_DDC  
CE  
INTB_DDC  
J11  
J18  
J10  
K11  
U11  
V11  
V12  
E1  
OE/RESET  
CF  
A3  
D1  
C2  
H6  
H3  
E6  
E2  
PROGB_DDC  
PROM_CCK_DDC  
PROM_D0_DDC  
TCK_JTAG  
CLKOUT  
D0  
TCK  
TDO_XCF16DDC  
TMS_JTAG  
TDO  
TMS  
DAD_A_ADDR0  
DAD_A_ADDR1  
DAD_A_ADDR2  
DAD_A_ADDR3  
DAD_A_MODE0  
DAD_A_MODE1  
DAD_A_SEL0  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
MODE0  
MODE1  
SEL0  
19  
18  
17  
16  
3
E2  
E3  
F3  
C1  
D1  
2
AB12  
AC12  
AF3  
AF4  
AF5  
AE3  
AB15  
AA15  
AA14  
AB14  
AD14  
N1  
5
DAD_A_SEL1  
SEL1  
4
DAD_A_STROBE  
DAD_INIT  
STROBE  
RESET  
OE  
15  
59  
6
DAD_OE  
DAD_A_SCPEN  
SCPCLK  
SCPEN  
SCPCLK  
SCPDO  
SCPDI  
58  
56  
57  
42  
SCPCLK  
E3  
SCPDI  
SCPDO  
B2  
SCPDO  
SCPDI  
F4  
DMD_A_SCPEN  
DMD_A_RESET  
DDC_DCLKOUT_A_DPN  
DDC_DCLKOUT_A_DPP  
DDC_DCLKOUT_B_DPN  
DDC_DCLKOUT_B_DPP  
DDC_DOUT_A1_DPN  
DDC_DOUT_A1_DPP  
DDC_DOUT_A3_DPN  
DDC_DOUT_A3_DPP  
DDC_DOUT_A5_DPN  
DDC_DOUT_A5_DPP  
DDC_DOUT_A7_DPN  
DDC_DOUT_A7_DPP  
DDC_DOUT_A9_DPN  
DDC_DOUT_A9_DPP  
SCPEN  
D4  
PWRDN  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
D_AN(1)  
D_AP(1)  
D_AN(3)  
D_AP(3)  
D_AN(5)  
D_AP(5)  
D_AN(7)  
D_AP(7)  
D_AN(9)  
D_AP(9)  
C3  
B22  
B24  
AB22  
AB24  
A13  
A11  
C17  
C15  
A17  
A19  
D22  
D20  
D28  
B28  
M1  
Y5  
Y6  
AD1  
AE1  
AB1  
AB2  
W1  
Y1  
U1  
U2  
N2  
M2  
68  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
DLPC410 Chipset Connections (接下页)  
23. DLPC410 Chipset Connections with the DLP650LNIR (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 (MICROMIRROR  
DRIVER)  
DLP650LNIR (DMD)  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
K2  
NAME  
NO.  
NAME  
NO.  
NAME  
D_AN(11)  
NO.  
DDC_DOUT_A11_DPN  
F26  
DDC_DOUT_A11_DPP  
DDC_DOUT_A13_DPN  
DDC_DOUT_A13_DPP  
DDC_DOUT_A15_DPN  
DDC_DOUT_A15_DPP  
DDC_DOUT_B1_DPN  
DDC_DOUT_B1_DPP  
DDC_DOUT_B3_DPN  
DDC_DOUT_B3_DPP  
DDC_DOUT_B5_DPN  
DDC_DOUT_B5_DPP  
DDC_DOUT_B7_DPN  
DDC_DOUT_B7_DPP  
DDC_DOUT_B9_DPN  
DDC_DOUT_B9_DPP  
DDC_DOUT_B11_DPN  
DDC_DOUT_B11_DPP  
DDC_DOUT_B13_DPN  
DDC_DOUT_B13_DPP  
DDC_DOUT_B15_DPN  
DDC_DOUT_B15_DPP  
DDC_SCTRL_AN  
K3  
D_AP(11)  
D_AN(13)  
D_AP(13)  
D_AN(15)  
D_AP(15)  
D_BN(1)  
D26  
H2  
H28  
J1  
H30  
G2  
K26  
F2  
K28  
AD3  
AD4  
AC3  
AC4  
AB7  
AC6  
AA7  
Y7  
AC13  
AC11  
AA17  
AA15  
AC17  
AC19  
Y22  
D_BP(1)  
D_BN(3)  
D_BP(3)  
D_BN(5)  
D_BP(5)  
D_BN(7)  
D_BP(7)  
Y20  
W4  
V4  
D_BN(9)  
Y28  
D_BP(9)  
AB28  
V26  
V7  
D_BN(11)  
D_BP(11)  
D_BN(13)  
D_BP(13)  
D_BN(15)  
D_BP(15)  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
V6  
Y26  
T4  
R29  
T5  
T28  
U7  
N27  
T7  
P26  
R1  
C21  
DDC_SCTRL_AP  
P1  
C23  
DDC_SCTRL_BN  
AA3  
AB4  
AA21  
AA23  
DDC_SCTRL_BP  
24. DLPC410 Chipset Connections with the DLP7000  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 (MICROMIRROR  
DRIVER)  
DLP7000 / UV (DMD)  
PIN  
NAME  
PIN  
PIN  
PIN  
NAME  
NO.  
K10  
NAME  
NO.  
B4  
NAME  
NO.  
NO.  
DONE_DDC  
INTB_DDC  
CE  
J11  
J18  
J10  
K11  
U11  
V11  
V12  
E1  
OE/RESET  
CF  
A3  
D1  
C2  
H6  
H3  
E6  
E2  
PROGB_DDC  
PROM_CCK_DDC  
PROM_D0_DDC  
TCK_JTAG  
CLKOUT  
D0  
TCK  
TDO_XCF16DDC  
TMS_JTAG  
TDO  
TMS  
DAD_A_ADDR0  
DAD_A_ADDR1  
DAD_A_ADDR2  
ADDR0  
ADDR1  
ADDR2  
19  
18  
17  
E2  
E3  
版权 © 2012–2019, Texas Instruments Incorporated  
69  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
24. DLPC410 Chipset Connections with the DLP7000 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 (MICROMIRROR  
DRIVER)  
DLP7000 / UV (DMD)  
PIN  
PIN  
PIN  
PIN  
NAME  
NAME  
NO.  
F3  
NAME  
NO.  
NAME  
NO.  
NO.  
DAD_A_ADDR3  
ADDR3  
MODE0  
MODE1  
SEL0  
16  
3
DAD_A_MODE0  
C1  
DAD_A_MODE1  
D1  
2
DAD_A_SEL0  
AB12  
AC12  
AF3  
AF4  
AF5  
AE3  
AB15  
AA15  
AA14  
AB14  
AD14  
N1  
5
DAD_A_SEL1  
SEL1  
4
DAD_A_STROBE  
STROBE  
RESET  
OE  
15  
59  
6
DAD_INIT  
DAD_OE  
DAD_A_SCPEN  
SCPEN  
SCPCLK  
SCPDO  
SCPDI  
58  
56  
57  
42  
SCPCLK  
SCPCLK  
E3  
SCPDI  
SCPDO  
B2  
SCPDO  
SCPDI  
F4  
DMD_A_SCPEN  
SCPEN  
D4  
DMD_A_RESET  
PWRDN  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
D_AN(0)  
D_AP(0)  
D_AN(1)  
D_AP(1)  
D_AN(2)  
D_AP(2)  
D_AN(3)  
D_AP(3)  
D_AN(4)  
D_AP(4)  
D_AN(5)  
D_AP(5)  
D_AN(6)  
D_AP(6)  
D_AN(7)  
D_AP(7)  
D_AN(8)  
D_AP(8)  
D_AN(9)  
D_AP(9)  
D_AN(10)  
D_AP(10)  
D_AN(11)  
D_AP(11)  
D_AN(12)  
D_AP(12)  
D_AN(13)  
C3  
DDC_DCLKOUT_A_DPN  
DDC_DCLKOUT_A_DPP  
DDC_DCLKOUT_B_DPN  
DDC_DCLKOUT_B_DPP  
DDC_DOUT_A0_DPN  
DDC_DOUT_A0_DPP  
DDC_DOUT_A1_DPN  
DDC_DOUT_A1_DPP  
DDC_DOUT_A2_DPN  
DDC_DOUT_A2_DPP  
DDC_DOUT_A3_DPN  
DDC_DOUT_A3_DPP  
DDC_DOUT_A4_DPN  
DDC_DOUT_A4_DPP  
DDC_DOUT_A5_DPN  
DDC_DOUT_A5_DPP  
DDC_DOUT_A6_DPN  
DDC_DOUT_A6_DPP  
DDC_DOUT_A7_DPN  
DDC_DOUT_A7_DPP  
DDC_DOUT_A8_DPN  
DDC_DOUT_A8_DPP  
DDC_DOUT_A9_DPN  
DDC_DOUT_A9_DPP  
DDC_DOUT_A10_DPN  
DDC_DOUT_A10_DPP  
DDC_DOUT_A11_DPN  
DDC_DOUT_A11_DPP  
DDC_DOUT_A12_DPN  
DDC_DOUT_A12_DPP  
DDC_DOUT_A13_DPN  
B22  
B24  
AB22  
AB24  
B10  
B12  
A13  
A11  
D16  
D14  
C17  
C15  
B18  
B16  
A17  
A19  
A25  
A23  
D22  
D20  
C29  
A29  
D28  
B28  
E27  
C27  
F26  
D26  
G29  
F30  
H28  
M1  
Y5  
Y6  
AE2  
AF2  
AD1  
AE1  
AC1  
AC2  
AB1  
AB2  
Y2  
AA2  
W1  
Y1  
V1  
V2  
U1  
U2  
R2  
T2  
N2  
M2  
K1  
L2  
K2  
K3  
J3  
H3  
H2  
70  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
24. DLPC410 Chipset Connections with the DLP7000 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 (MICROMIRROR  
DRIVER)  
DLP7000 / UV (DMD)  
PIN  
PIN  
NAME  
PIN  
PIN  
NO.  
J1  
NAME  
NO.  
NAME  
NO.  
NAME  
D_AP(13)  
NO.  
DDC_DOUT_A13_DPP  
DDC_DOUT_A14_DPN  
DDC_DOUT_A14_DPP  
DDC_DOUT_A15_DPN  
DDC_DOUT_A15_DPP  
DDC_DOUT_B0_DPN  
DDC_DOUT_B0_DPP  
DDC_DOUT_B1_DPN  
DDC_DOUT_B1_DPP  
DDC_DOUT_B2_DPN  
DDC_DOUT_B2_DPP  
DDC_DOUT_B3_DPN  
DDC_DOUT_B3_DPP  
DDC_DOUT_B4_DPN  
DDC_DOUT_B4_DPP  
DDC_DOUT_B5_DPN  
DDC_DOUT_B5_DPP  
DDC_DOUT_B6_DPN  
DDC_DOUT_B6_DPP  
DDC_DOUT_B7_DPN  
DDC_DOUT_B7_DPP  
DDC_DOUT_B8_DPN  
DDC_DOUT_B8_DPP  
DDC_DOUT_B9_DPN  
DDC_DOUT_B9_DPP  
DDC_DOUT_B10_DPN  
DDC_DOUT_B10_DPP  
DDC_DOUT_B11_DPN  
DDC_DOUT_B11_DPP  
DDC_DOUT_B12_DPN  
DDC_DOUT_B12_DPP  
DDC_DOUT_B13_DPN  
DDC_DOUT_B13_DPP  
DDC_DOUT_B14_DPN  
DDC_DOUT_B14_DPP  
DDC_DOUT_B15_DPN  
DDC_DOUT_B15_DPP  
DDC_SCTRL_AN  
H30  
H1  
D_AN(14)  
D_AP(14)  
D_AN(15)  
D_AP(15)  
D_BN(0)  
D_BP(0)  
J27  
G1  
J29  
G2  
K26  
F2  
K28  
AE5  
AE6  
AD3  
AD4  
AD5  
AD6  
AC3  
AC4  
AB5  
AB6  
AB7  
AC6  
AA5  
AA4  
AA7  
Y7  
AB10  
AB12  
AC13  
AC11  
Y16  
D_BN(1)  
D_BP(1)  
D_BN(2)  
D_BP(2)  
Y14  
D_BN(3)  
D_BP(3)  
AA17  
AA15  
AB18  
AB16  
AC17  
AC19  
AC25  
AC23  
Y22  
D_BN(4)  
D_BP(4)  
D_BN(5)  
D_BP(5)  
D_BN(6)  
D_BP(6)  
D_BN(7)  
D_BP(7)  
Y20  
Y3  
D_BN(8)  
D_BP(8)  
AA29  
AC29  
Y28  
W3  
W4  
V4  
D_BN(9)  
D_BP(9)  
AB28  
W27  
AA27  
V26  
W6  
W5  
V7  
D_BN(10)  
D_BP(10)  
D_BN(11)  
D_BP(11)  
D_BN(12)  
D_BP(12)  
D_BN(13)  
D_BP(13)  
D_BN(14)  
D_BP(14)  
D_BN(15)  
D_BP(15)  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
V6  
Y26  
U4  
T30  
V3  
U29  
T4  
R29  
T5  
T28  
U6  
R27  
U5  
P28  
U7  
N27  
T7  
P26  
R1  
C21  
DDC_SCTRL_AP  
P1  
C23  
DDC_SCTRL_BN  
AA3  
AB4  
AA21  
AA23  
DDC_SCTRL_BP  
版权 © 2012–2019, Texas Instruments Incorporated  
71  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
25. DLPC410 Chipset Connections with the DLP9500  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 Number 1  
(MICROMIRROR  
DRIVER)  
DLPA200 Number 2  
(MICROMIRROR  
DRIVER)  
DLP9500 or UV  
(DMD)  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
K10  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
DONE_DDC  
CE  
B4  
A3  
D1  
C2  
H6  
H3  
E6  
E2  
INTB_DDC  
J11  
OE/RESET  
CF  
PROGB_DDC  
J18  
PROM_CCK_DDC  
PROM_D0_DDC  
TCK_JTAG  
J10  
CLKOUT  
D0  
K11  
U11  
V11  
V12  
E1  
TCK  
TDO_XCF16DDC  
TMS_JTAG  
TDO  
TMS  
DAD_A_ADDR0  
DAD_A_ADDR1  
DAD_A_ADDR2  
DAD_A_ADDR3  
DAD_A_MODE0  
DAD_A_MODE1  
DAD_A_SEL0  
ADDR0  
19  
E2  
ADDR1  
ADDR2  
ADDR3  
MODE0  
MODE1  
SEL0  
18  
17  
16  
3
E3  
F3  
C1  
D1  
2
AB12  
AC12  
AF3  
E26  
E25  
F25  
F24  
D26  
D25  
R22  
R23  
AB20  
AF4  
AF5  
AE3  
AB19  
AB15  
AA15  
AA14  
AB14  
AD14  
N1  
5
DAD_A_SEL1  
SEL1  
4
DAD_A_STROBE  
DAD_B_ADDR0  
DAD_B_ADDR1  
DAD_B_ADDR2  
DAD_B_ADDR3  
DAD_B_MODE0  
DAD_B_MODE1  
DAD_B_SEL0  
STROBE  
15  
ADDR0  
19  
ADDR1  
ADDR2  
ADDR3  
MODE0  
MODE1  
SEL0  
18  
17  
16  
3
2
5
DAD_B_SEL1  
SEL1  
4
DAD_B_STROBE  
DAD_INIT  
STROBE  
RESET  
OE  
15  
59  
6
RESET  
OE  
59  
6
DAD_OE  
DAD_A_SCPEN  
DAD_B_SCPEN  
SCPCLK  
SCPEN  
58  
SCPEN  
SCPCLK  
SCPDO  
SCPDI  
58  
56  
57  
42  
SCPCLK  
SCPDO  
SCPDI  
56  
57  
42  
SCPCLK  
SCPDO  
AE1  
SCPDI  
AC3  
AD2  
AD4  
B4  
SCPDO  
SCPDI  
DMD_A_SCPEN  
DMD_A_RESET  
DDC_DCLKOUT_A_DPN  
DDC_DCLKOUT_A_DPP  
DDC_DCLKOUT_B_DPN  
DDC_DCLKOUT_B_DPP  
DDC_DCLKOUT_C_DPN  
DDC_DCLKOUT_C_DPP  
DDC_DCLKOUT_D_DPN  
DDC_DCLKOUT_D_DPP  
DDC_DOUT_A0_DPN  
SCPEN  
PWRDN  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
DCLK_CN  
DCLK_CP  
DCLK_DN  
DCLK_DP  
D_AN(0)  
D10  
D8  
M1  
Y5  
AJ11  
AJ9  
C23  
C21  
AJ23  
AJ21  
F2  
Y6  
AA22  
AB22  
M26  
M25  
AE2  
72  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
25. DLPC410 Chipset Connections with the DLP9500 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 Number 1  
(MICROMIRROR  
DRIVER)  
DLPA200 Number 2  
(MICROMIRROR  
DRIVER)  
DLP9500 or UV  
(DMD)  
PIN  
NAME  
PIN  
PIN  
PIN  
PIN  
NO.  
AF2  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
NAME  
D_AP(0)  
D_AN(1)  
D_AP(1)  
D_AN(2)  
D_AP(2)  
D_AN(3)  
D_AP(3)  
D_AN(4)  
D_AP(4)  
D_AN(5)  
D_AP(5)  
D_AN(6)  
D_AP(6)  
D_AN(7)  
D_AP(7)  
D_AN(8)  
D_AP(8)  
D_AN(9)  
D_AP(9)  
D_AN(10)  
D_AP(10)  
D_AN(11)  
D_AP(11)  
D_AN(12)  
D_AP(12)  
D_AN(13)  
D_AP(13)  
D_AN(14)  
D_AP(14)  
D_AN(15)  
D_AP(15)  
D_BN(0)  
D_BP(0)  
D_BN(1)  
D_BP(1)  
D_BN(2)  
D_BP(2)  
D_BN(3)  
D_BP(3)  
D_BN(4)  
D_BP(4)  
D_BN(5)  
D_BP(5)  
D_BN(6)  
NO.  
DDC_DOUT_A0_DPP  
DDC_DOUT_A1_DPN  
DDC_DOUT_A1_DPP  
DDC_DOUT_A2_DPN  
DDC_DOUT_A2_DPP  
DDC_DOUT_A3_DPN  
DDC_DOUT_A3_DPP  
DDC_DOUT_A4_DPN  
DDC_DOUT_A4_DPP  
DDC_DOUT_A5_DPN  
DDC_DOUT_A5_DPP  
DDC_DOUT_A6_DPN  
DDC_DOUT_A6_DPP  
DDC_DOUT_A7_DPN  
DDC_DOUT_A7_DPP  
DDC_DOUT_A8_DPN  
DDC_DOUT_A8_DPP  
DDC_DOUT_A9_DPN  
DDC_DOUT_A9_DPP  
DDC_DOUT_A10_DPN  
DDC_DOUT_A10_DPP  
DDC_DOUT_A11_DPN  
DDC_DOUT_A11_DPP  
DDC_DOUT_A12_DPN  
DDC_DOUT_A12_DPP  
DDC_DOUT_A13_DPN  
DDC_DOUT_A13_DPP  
DDC_DOUT_A14_DPN  
DDC_DOUT_A14_DPP  
DDC_DOUT_A15_DPN  
DDC_DOUT_A15_DPP  
DDC_DOUT_B0_DPN  
DDC_DOUT_B0_DPP  
DDC_DOUT_B1_DPN  
DDC_DOUT_B1_DPP  
DDC_DOUT_B2_DPN  
DDC_DOUT_B2_DPP  
DDC_DOUT_B3_DPN  
DDC_DOUT_B3_DPP  
DDC_DOUT_B4_DPN  
DDC_DOUT_B4_DPP  
DDC_DOUT_B5_DPN  
DDC_DOUT_B5_DPP  
DDC_DOUT_B6_DPN  
F4  
AD1  
AE1  
AC1  
AC2  
AB1  
AB2  
Y2  
H8  
H10  
E5  
E3  
G9  
G11  
D2  
AA2  
W1  
Y1  
D4  
G3  
G5  
V1  
E11  
E9  
V2  
U1  
F8  
U2  
F10  
C9  
R2  
T2  
C11  
H2  
N2  
M2  
H4  
K1  
B10  
B8  
L2  
K2  
G15  
H14  
D14  
D16  
F14  
F16  
C17  
C15  
H16  
G17  
AH2  
AH4  
AD8  
AD10  
AJ5  
AJ3  
AE3  
AE5  
AG9  
AG11  
AE11  
AE9  
AH10  
K3  
J3  
H3  
H2  
J1  
H1  
G1  
G2  
F2  
AE5  
AE6  
AD3  
AD4  
AD5  
AD6  
AC3  
AC4  
AB5  
AB6  
AB7  
AC6  
AA5  
版权 © 2012–2019, Texas Instruments Incorporated  
73  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
25. DLPC410 Chipset Connections with the DLP9500 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 Number 1  
(MICROMIRROR  
DRIVER)  
DLPA200 Number 2  
(MICROMIRROR  
DRIVER)  
DLP9500 or UV  
(DMD)  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
AA4  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
AH8  
DDC_DOUT_B6_DPP  
D_BP(6)  
D_BN(7)  
D_BP(7)  
D_BN(8)  
D_BP(8)  
D_BN(9)  
D_BP(9)  
D_BN(10)  
D_BP(10)  
D_BN(11)  
D_BP(11)  
D_BN(12)  
D_BP(12)  
D_BN(13)  
D_BP(13)  
D_BN(14)  
D_BP(14)  
D_BN(15)  
D_BP(15)  
D_CN(0)  
D_CP(0)  
D_CN(1)  
D_CP(1)  
D_CN(2)  
D_CP(2)  
D_CN(3)  
D_CP(3)  
D_CN(4)  
D_CP(4)  
D_CN(5)  
D_CP(5)  
D_CN(6)  
D_CP(6)  
D_CN(7)  
D_CP(7)  
D_CN(8)  
D_CP(8)  
D_CN(9)  
D_CP(9)  
D_CN(10)  
D_CP(10)  
D_CN(11)  
D_CP(11)  
D_CN(12)  
DDC_DOUT_B7_DPN  
DDC_DOUT_B7_DPP  
DDC_DOUT_B8_DPN  
DDC_DOUT_B8_DPP  
DDC_DOUT_B9_DPN  
DDC_DOUT_B9_DPP  
DDC_DOUT_B10_DPN  
DDC_DOUT_B10_DPP  
DDC_DOUT_B11_DPN  
DDC_DOUT_B11_DPP  
DDC_DOUT_B12_DPN  
DDC_DOUT_B12_DPP  
DDC_DOUT_B13_DPN  
DDC_DOUT_B13_DPP  
DDC_DOUT_B14_DPN  
DDC_DOUT_B14_DPP  
DDC_DOUT_B15_DPN  
DDC_DOUT_B15_DPP  
DDC_DOUT_C0_DPN  
DDC_DOUT_C0_DPP  
DDC_DOUT_C1_DPN  
DDC_DOUT_C1_DPP  
DDC_DOUT_C2_DPN  
DDC_DOUT_C2_DPP  
DDC_DOUT_C3_DPN  
DDC_DOUT_C3_DPP  
DDC_DOUT_C4_DPN  
DDC_DOUT_C4_DPP  
DDC_DOUT_C5_DPN  
DDC_DOUT_C5_DPP  
DDC_DOUT_C6_DPN  
DDC_DOUT_C6_DPP  
DDC_DOUT_C7_DPN  
DDC_DOUT_C7_DPP  
DDC_DOUT_C8_DPN  
DDC_DOUT_C8_DPP  
DDC_DOUT_C9_DPN  
DDC_DOUT_C9_DPP  
DDC_DOUT_C10_DPN  
DDC_DOUT_C10_DPP  
DDC_DOUT_C11_DPN  
DDC_DOUT_C11_DPP  
DDC_DOUT_C12_DPN  
AA7  
Y7  
AF10  
AF8  
AK8  
AK10  
AG5  
AG3  
AL11  
AL9  
Y3  
W3  
W4  
V4  
W6  
W5  
V7  
AE15  
AD14  
AH14  
AH16  
AF14  
AF16  
AJ17  
AJ15  
AD16  
AE17  
B14  
V6  
U4  
V3  
T4  
T5  
U6  
U5  
U7  
T7  
T22  
T23  
R20  
R21  
T19  
T20  
U21  
U22  
U20  
U19  
V23  
V24  
V22  
V21  
W19  
V19  
W23  
W24  
Y22  
Y23  
Y20  
Y21  
AA24  
AA23  
AA19  
B16  
E15  
E17  
A17  
A15  
G21  
H20  
B20  
B22  
F20  
F22  
D22  
D20  
G23  
H22  
B26  
B28  
F28  
F26  
C29  
C27  
G27  
G29  
D26  
74  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
25. DLPC410 Chipset Connections with the DLP9500 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 Number 1  
(MICROMIRROR  
DRIVER)  
DLPA200 Number 2  
(MICROMIRROR  
DRIVER)  
DLP9500 or UV  
(DMD)  
PIN  
NAME  
PIN  
PIN  
PIN  
PIN  
NO.  
AA20  
AC24  
AB24  
AC19  
AD19  
AC22  
AC23  
AB26  
AC26  
AA25  
AB25  
Y26  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
NAME  
D_CP(12)  
D_CN(13)  
D_CP(13)  
D_CN(14)  
D_CP(14)  
D_CN(15)  
D_CP(15)  
D_DN(0)  
D_DP(0)  
NO.  
DDC_DOUT_C12_DPP  
DDC_DOUT_C13_DPN  
DDC_DOUT_C13_DPP  
DDC_DOUT_C14_DPN  
DDC_DOUT_C14_DPP  
DDC_DOUT_C15_DPN  
DDC_DOUT_C15_DPP  
DDC_DOUT_D0_DPN  
DDC_DOUT_D0_DPP  
DDC_DOUT_D1_DPN  
DDC_DOUT_D1_DPP  
DDC_DOUT_D2_DPN  
DDC_DOUT_D2_DPP  
DDC_DOUT_D3_DPN  
DDC_DOUT_D3_DPP  
DDC_DOUT_D4_DPN  
DDC_DOUT_D4_DPP  
DDC_DOUT_D5_DPN  
DDC_DOUT_D5_DPP  
DDC_DOUT_D6_DPN  
DDC_DOUT_D6_DPP  
DDC_DOUT_D7_DPN  
DDC_DOUT_D7_DPP  
DDC_DOUT_D8_DPN  
DDC_DOUT_D8_DPP  
DDC_DOUT_D9_DPN  
DDC_DOUT_D9_DPP  
DDC_DOUT_D10_DPN  
DDC_DOUT_D10_DPP  
DDC_DOUT_D11_DPN  
DDC_DOUT_D11_DPP  
DDC_DOUT_D12_DPN  
DDC_DOUT_D12_DPP  
DDC_DOUT_D13_DPN  
DDC_DOUT_D13_DPP  
DDC_DOUT_D14_DPN  
DDC_DOUT_D14_DPP  
DDC_DOUT_D15_DPN  
DDC_DOUT_D15_DPP  
DDC_SCTRL_AN  
D28  
H28  
H26  
E29  
E27  
J29  
J27  
AK14  
AK16  
AG15  
AG17  
AL17  
AL15  
AE21  
AD20  
AK20  
AK22  
AF20  
AF22  
AH22  
AH20  
AE23  
AD22  
AK26  
AK28  
AF28  
AF26  
AJ29  
AJ27  
AE27  
AE29  
AH26  
AH28  
AD28  
AD26  
AG29  
AG27  
AC29  
AC27  
J3  
D_DN(1)  
D_DP(1)  
D_DN(2)  
D_DP(2)  
Y25  
W26  
W25  
U26  
V26  
D_DN(3)  
D_DP(3)  
D_DN(4)  
D_DP(4)  
U25  
U24  
T25  
D_DN(5)  
D_DP(5)  
D_DN(6)  
D_DP(6)  
T24  
R26  
R25  
P24  
D_DN(7)  
D_DP(7)  
D_DN(8)  
D_DP(8)  
P25  
N24  
M24  
L25  
D_DN(9)  
D_DP(9)  
D_DN(10)  
D_DP(10)  
D_DN(11)  
D_DP(11)  
D_DN(12)  
D_DP(12)  
D_DN(13)  
D_DP(13)  
D_DN(14)  
D_DP(14)  
D_DN(15)  
D_DP(15)  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
SCTRL_CN  
L24  
K26  
K25  
J26  
J25  
J24  
H24  
H26  
G26  
G25  
G24  
R1  
DDC_SCTRL_AP  
P1  
J5  
DDC_SCTRL_BN  
AA3  
AB4  
W20  
AF4  
DDC_SCTRL_BP  
AF2  
DDC_SCTRL_CN  
E23  
版权 © 2012–2019, Texas Instruments Incorporated  
75  
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
25. DLPC410 Chipset Connections with the DLP9500 (接下页)  
DLPC410 (CONTROLLER)  
DLPR410 (PROM)  
DLPA200 Number 1  
(MICROMIRROR  
DRIVER)  
DLPA200 Number 2  
(MICROMIRROR  
DRIVER)  
DLP9500 or UV  
(DMD)  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
W21  
N26  
P26  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
NAME  
NO.  
E21  
DDC_SCTRL_CP  
SCTRL_CP  
SCTRL_DN  
SCTRL_DP  
DDC_SCTRL_DN  
DDC_SCTRL_DP  
AG23  
AG21  
76  
版权 © 2012–2019, Texas Instruments Incorporated  
DLPC410  
www.ti.com.cn  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件标记  
27 显示了为 DLPC410 器件配置的典型 Xilinx XC5VLX30 FPGA。  
27. Xilinx XC5VLX30 FGPA 图  
28 提供了读取该 DLP 器件的 Xilinx 器件标志图例。  
XC5VLX30-1FFG676C  
Temperature Range  
Number of Pins  
PB-Free  
Device Type  
Speed Grade  
Package Type  
28. 图例  
12.1.2 器件命名规则  
29 提供了读取任一 DLP 器件完整器件名称的图例。  
DLPC410 ZYR  
Package Type  
Device Descriptor  
29. 器件命名规则  
版权 © 2012–2019, Texas Instruments Incorporated  
77  
 
 
 
DLPC410  
ZHCSA85F AUGUST 2012REVISED FEBRUARY 2019  
www.ti.com.cn  
12.2 文档支持  
12.2.1 相关文档  
26. 相关文档  
文档  
TI 文献编号  
DLPS136  
DLPS026  
DLPS061  
DLPS025  
DLPS033  
DLPS015  
DLPS027  
DLP650LNIR 0.65 NIR WXGA S450 DMD 数据表  
DLP7000 DLP 0.7 XGA 2x LVDS A DMD 数据表  
DLP7000UV DLP 0.7 UV XGA 2x LVDS A DMD 数据表  
DLP9500 DLP 0.95 1080p 2x LVDS A DMD 数据表  
DLP9500UV DLP 0.95 UV 1080p 2x LVDS A DMD 数据表  
DLPA200 DMD 微镜驱动器数据表》  
DLPR410 配置 PROM 数据表  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
78  
版权 © 2012–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC410ZYR  
ACTIVE  
676  
1
TBD  
Call TI  
Call TI  
0 to 85  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLPC410ZYR

Digital controller for DLP650LNIR, DLP7000/7000UV & DLP9500/DLP9500UV digital micromirror devices | DLP | 676 | 0 to 85
TI

DLPC4420

DLP® display controller for 4K UHD DMD
TI

DLPC4420ZPC

DLP® display controller for 4K UHD DMD | ZPC | 516 | 0 to 55
TI

DLPC4430

DLP® display controller for1080p and WUXGA DMD
TI

DLPC4430ZPC

DLP® display controller for1080p and WUXGA DMD | ZPC | 516 | 0 to 55
TI

DLPC6401

DLP® display controller for high-brightness portable displays
TI

DLPC6401ZFF

DLP® display controller for high-brightness portable displays | ZFF | 419 | 0 to 55
TI

DLPC6540

适用于 DLP471TP(0.47 英寸 4K UHD)数字微镜器件 (DMD) 的 DLP® 显示控制器
TI

DLPC6540ZDC

DLP® display controller for DLP471TP (0.47 4K UHD) DMD | ZDC | 676 | 0 to 70
TI

DLPC7540

DLP® display controller for 4K UHD and 1080p DMD
TI

DLPC7540ZDC

DLP® display controller for 4K UHD and 1080p DMD | ZDC | 676 | 0 to 55
TI

DLPC900

适用于 DLP6500、DLP670S、DLP500YX 和 DLP9000 数字微镜器件的数字控制器
TI