DLPC4430 [TI]

DLP® display controller for1080p and WUXGA DMD;
DLPC4430
型号: DLPC4430
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® display controller for1080p and WUXGA DMD

文件: 总48页 (文件大小:1605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC4430  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
DLPC4430 DLP® 显示控制器  
• 集成时钟生成电路  
1 特性  
– 通过单20MHz 晶体提供时钟  
– 集成扩频时钟  
• 外部存储器支持  
• 采用数字微镜器(DMD)为高WUXGA 分辨率  
显示提供DLP 控制器支持:  
– 用于微处理器PWM 序列的并行闪存  
516 Plastic Ball Grid Array (PBGA) 封装  
• 支LED 和激光混合照明  
120Hz 时高1920×12002D 3D)  
• 提供一30 位或两60 位输入像素接口:  
RGB 数据格式  
– 每种颜色89 10 位  
– 在单控制器30 位模式下像素时钟高达  
320MHz  
2 应用  
激光电视  
智能投影仪  
数字标牌  
企业投影仪  
• 高速低电压差分信(LVDS) DMD 接口  
150-MHz ARM946微处理器  
• 微处理器外设  
– 可编程脉宽调(PWM) 和捕捉计时器  
– 三I2C 端口、三UART 端口和三SSP 端  
3 说明  
DLPC4430 是用于 DLP® 显示芯片组的数字显示控制  
器。该芯片组包含 DLPC4430 显示控制器、DLP 数字  
微镜器件 (DMD)DLPA100 控制器电源管理器件和  
DLPA300 DMD 微镜驱动器请参阅 DMD 数据表。  
这款解决方案非常适合需要高分辨率、高亮度和系统简  
易性的显示系统。为了确保可靠运行须始终将  
DLPC4430 显示控制器与 DLP DMD 和相应的 DLP 电  
源管理器件配合使用。  
– 一USB 1.1 次级端口  
• 图像处理  
– 多种图像处理算法  
– 帧速率转换  
– 色彩坐标调整  
– 可编程色彩空间转换  
– 可编degamma 和启动界面  
– 针3D 显示的集成支持  
2-D 梯形校正  
器件信息  
器件型号(1)  
DLPC4430  
封装尺寸标称值)  
封装  
ZPC (516)  
27.00mm × 27.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS223  
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
Table of Contents  
7 Detailed Description......................................................26  
7.1 Overview...................................................................26  
7.2 Functional Block Diagram.........................................26  
7.3 Feature Description...................................................26  
7.4 Device Functional Modes..........................................29  
8 Application and Implementation..................................31  
8.1 Application Information............................................. 31  
8.2 Typical Application.................................................... 31  
9 Power Supply Recommendations................................34  
9.1 System Power Regulations.......................................34  
9.2 System Power-Up Sequence....................................34  
9.3 Power-On Sense (POSENSE) Support.................... 34  
9.4 System Environment and Defaults............................35  
10 Layout...........................................................................36  
10.1 Layout Guidelines................................................... 36  
11 Device and Documentation Support..........................42  
11.1 第三方产品免责声明................................................42  
11.2 Device Support........................................................42  
11.3 Documentation Support.......................................... 43  
11.4 接收文档更新通知................................................... 44  
11.5 支持资源..................................................................44  
11.6 Trademarks............................................................. 44  
11.7 静电放电警告...........................................................44  
11.8 术语表..................................................................... 44  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 13  
6.1 Absolute Maximum Ratings...................................... 13  
6.2 ESD Ratings............................................................. 13  
6.3 Recommended Operating Conditions.......................13  
6.4 Thermal Information..................................................14  
6.5 Electrical Characteristics...........................................14  
6.6 System Oscillators Timing Requirements................. 17  
6.7 Test and Reset Timing Requirements.......................17  
6.8 JTAG Interface: I/O Boundary Scan Application  
Timing Requirements.................................................. 18  
6.9 Port 1 Input Pixel Timing Requirements....................18  
6.10 Port 3 Input Pixel Interface (via GPIO) Timing  
Requirements..............................................................19  
6.11 DMD LVDS Interface Timing Requirements............21  
6.12 Synchronous Serial Port (SSP) Interface  
Timing Requirements.................................................. 21  
6.13 Programmable Output Clocks Switching  
Characteristics.............................................................22  
6.14 Synchronous Serial Port Interface (SSP)  
Switching Characteristics............................................ 22  
6.15 JTAG Interface: I/O Boundary Scan Application  
Switching Characteristics............................................ 23  
Information.................................................................... 45  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (February 2023)  
Page  
• 更新了中的措辞使之更加清晰................................................................................................................. 1  
• 更新........................................................................................................................................................1  
Updated Device Nomenclature and Device Marking sections .........................................................................43  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5 Pin Configuration and Functions  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
Power-on sense, high true, signal provided from an external voltage monitor circuit. This signal is driven active (high) when  
all ASIC supply voltages have reached 90% of their specified minimum voltage. This signal is driven inactive (low) after the  
falling edge of PWRGOOD as specified.  
POSENSE  
P22  
I4  
Power good, high true, signal from external power supply or voltage monitor. A high value indicates all power is within  
operating voltage specs and the system is safe to exit its reset state. A transition from high to low is used to indicate that the  
controller or DMD supply voltage drops below their rated minimum level. This transition must occur prior to the supply  
voltage drop as specified. During this interval, POSENSE must remain active high. This is a warning of an imminent power  
loss condition. This warning is required to enhance long term DMD reliability. A DMD park followed by a full controller reset  
is performed by the DLPC4430 controller when PWRGOOD goes low for the specified minimum, protecting the DMD. This  
minimum deassertion time is used to protect the input from glitches. Following this the DLPC4430 controller is held in its  
reset state as long as PWRGOOD is low. PWRGOOD must be driven high for normal operation. The DLPC4430 controller  
acknowledges PWRGOOD as active once it has been driven high for a specified minimum time. Uses hysteresis  
PWRGOOD  
T26  
I4  
General purpose, low true, reset output. This output is asserted low immediately upon asserting power-up reset (POSENSE)  
low and remains low while POSENSE remains low. EXT_ARSTZ continues to be held low after the release of power-up  
reset (that is, POSENSE set high) until released by software. EXT_ARSTZ is also asserted low approximately 5 µs after the  
detection of a PWRGOOD or any internally generated reset. In all cases it remains active for a minimum of 2 ms. Note that  
the ASIC contains a software register that can be used to independently drive this output.  
EXT_ARTZ  
MTR_ARTZ  
T24  
T25  
O2  
Color wheel motor controller, low true, reset output. This output is asserted low immediately upon asserting power-up reset  
(POSENSE) low and remains low while POSENSE remains low. MTR_ARSTZ continues to be held low after the release of  
power-up reset (that is, POSENSE is set high) until released by software. MTR_ARSTZ is also optionally asserted low  
approximately 5 µs after the detection of a PWRGOOD or any internally generated reset. In all cases, it remains active for a  
minimum of 2 ms. Note that the ASIC contains a software register that can be used to independently drive this output. The  
ASIC also contains a software register that can be used to disable the assertion of motor reset upon a lamp strike reset.  
O2  
BOARD LEVEL TEST AND INITIALIZATION (3)  
TDI  
N25  
N24  
P25  
P26  
N23  
N22  
I4  
I4  
JTAG serial data in  
TCK  
JTAG serial data clock  
JTAG test mode select  
JTAG test mode select  
JTAG serial data out  
JTAG serial data out  
TMS1  
TMS2  
TDO1  
TDO2  
I4  
I4  
O5  
O5  
JTAG reset. This signal includes an internal pullup and utilizes hysteresis. This pin is pulled high (or left unconnected) when  
the JTAG interface is in use for boundary scan or ARM debug. Connect this pin to ground otherwise. Failure to tie this pin  
low during normal operation causes startup and initialization problems.  
TRSTZ  
M23  
I4  
RTCK  
E4  
A4  
B5  
C6  
O2  
B2  
B2  
B2  
JTAG return clock  
ETM_PIPESTAT_2  
ETM_PIPESTAT_1  
ETM_PIPESTAT_0  
ETM trace port pipeline status. Indicates the pipeline status of the ARM core. These signals include internal pulldowns.  
ETM trace port synchronization signal, indicating the start of a branch sequence on the trace packet port. This signal  
includes an internal pulldown.  
ETM_TRACESYNC  
ETM_TRACECLK  
ICTSEN  
A5  
D7  
B2  
B2  
I4  
ETM trace port clock. This signal includes an internal pulldown.  
IC tristate enable (active high). Asserting high tristates all outputs except the JTAG interface. This signal includes an internal  
pulldown, however an external pulldown is recommended for added protection. Uses hysteresis.  
M24  
Test pin 7. This signal provides internal pulldowns.  
TSTPT_7  
TSTPT_6  
TSTPT_5  
TSTPT_4  
TSTPT_3  
E8  
B4  
C4  
E7  
D5  
B2  
B2  
B2  
B2  
B2  
Normal use: reserved for test output. Recommended to be left open or unconnected for normal use  
Test pin 6. This signal provides internal pulldowns.  
Normal use: reserved for test output. Recommended to be left open or unconnected for normal use  
Test pin 5. This signal provides internal pulldowns.  
Normal use: reserved for test output. Recommended to be left open or unconnected for normal use  
Test pin 4. This signal provides internal pulldowns.  
Normal use: reserved for test output. Recommended to be left open or unconnected for normal use  
Test pin 3. This signal provides internal pulldowns.  
Normal use: reserved for test output. Recommended to be left open or unconnected for normal use.  
Test pin 2. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for  
connecting TSTPT(2:0) to external pullups.  
TSTPT_2  
TSTPT_1  
E6  
D3  
C2  
B2  
B2  
B2  
Test pin 1. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for  
connecting TSTPT(2:0) to external pullups.  
Test pin 0. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for  
connecting TSTPT(2:0) to external pullups.  
TSTPT_0  
DEVICE TEST  
HW_TEST_EN  
Device manufacturing test enable. This signal includes an internal pulldown and utilizes hysteresis. It is recommended that  
this signal be tied to an external ground in normal operation for added protection.  
M25  
I4  
PORT1 and PORT 2 CHANNEL DATA and CONTROL (4) (5) (6) (7)  
Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or  
(A and B)). This signal includes an internal pulldown.  
P_CLK1  
AE22  
I4  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
P_CLK2  
NO.  
Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or  
(A and B)). This signal includes an internal pulldown.  
W25  
I4  
I4  
I4  
I4  
Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or  
(A and B)). This signal includes an internal pulldown.  
P_CLK3  
AF23  
AF22  
W24  
Active High Data Enable. Selectable as to which port it is associated with (A or B or (A and B)).This signal includes an  
internal pulldown.  
P_DATAEN1  
P_DATAEN2  
Active High Data Enable. Selectable as to which port it is associated with (A or B or (A and B)).This signal includes an  
internal pulldown.  
P1_A_9  
P1_A_8  
P1_A_7  
P1_A_6  
P1_A_5  
P1_A_4  
P1_A_3  
P1_A_2  
P1_A_1  
P1_A_0  
P1_B_9  
P1_B_8  
P1_B_7  
P1_B_6  
P1_B_5  
P1_B_4  
P1_B_3  
P1_B_2  
P1_B_1  
P1_B_0  
P1_C_9  
P1_C_8  
P1_C_7  
P1_C_6  
P1_C_5  
P1_C_4  
P1_C_3  
P1_C_2  
P1_C_1  
P1_C_0  
AD15  
AE15  
AE14  
AE13  
AD13  
AC13  
AF14  
AF13  
AF12  
AE12  
AF18  
AB18  
AC15  
AC16  
AD16  
AE16  
AF16  
AF15  
AC14  
AD14  
AD20  
AE20  
AE21  
AF21  
AD19  
AE19  
AF19  
AF20  
AC19  
AE19  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Port 1 A Channel Input Pixel Data (bit weight 128)  
Port 1 A Channel Input Pixel Data (bit weight 64)  
Port 1 A Channel Input Pixel Data (bit weight 32)  
Port 1 A Channel Input Pixel Data (bit weight 16)  
Port 1 A Channel Input Pixel Data (bit weight 8)  
Port 1 A Channel Input Pixel Data (bit weight 4)  
Port 1 A Channel Input Pixel Data (bit weight 2)  
Port 1 A Channel Input Pixel Data (bit weight 1)  
Port 1 A Channel Input Pixel Data (bit weight 0.5)  
Port 1 A Channel Input Pixel Data (bit weight 0.25)  
Port 1 B Channel Input Pixel Data (bit weight 128)  
Port 1 B Channel Input Pixel Data (bit weight 64)  
Port 1 B Channel Input Pixel Data (bit weight 32)  
Port 1 B Channel Input Pixel Data (bit weight 16)  
Port 1 B Channel Input Pixel Data (bit weight 8)  
Port 1 B Channel Input Pixel Data (bit weight 4)  
Port 1 B Channel Input Pixel Data (bit weight 2)  
Port 1 B Channel Input Pixel Data (bit weight 1)  
Port 1 B Channel Input Pixel Data (bit weight 0.5)  
Port 1 B Channel Input Pixel Data (bit weight 0.25)  
Port 1 C Channel Input Pixel Data (bit weight 128)  
Port 1 C Channel Input Pixel Data (bit weight 64)  
Port 1 C Channel Input Pixel Data (bit weight 32)  
Port 1 C Channel Input Pixel Data (bit weight 16)  
Port 1 C Channel Input Pixel Data (bit weight 8)  
Port 1 C Channel Input Pixel Data (bit weight 4)  
Port 1 C Channel Input Pixel Data (bit weight 2)  
Port 1 C Channel Input Pixel Data (bit weight 1)  
Port 1 C Channel Input Pixel Data (bit weight 0.5)  
Port 1 C Channel Input Pixel Data (bit weight 0.25)  
Port 1 Vertical Sync. This signal includes an internal pulldown. While intended to be associated with Port 1, it can be  
programmed for use with Port 2.  
P1_VSYNC  
P1_HSYNC  
AC20  
AD21  
B2  
B2  
Port 1 Horizontal Sync. This signal includes an internal pulldown. While intended to be associated with Port 1, it can be  
programmed for use with Port 2.  
P2_A_9  
P2_A_8  
P2_A_7  
P2_A_6  
P2_A_5  
P2_A_4  
P2_A_3  
P2_A_2  
P2_A_1  
P2_A_0  
P2_B_9  
P2_B_8  
P2_B_7  
P2_B_6  
AD26  
AD25  
AB21  
AC22  
AD23  
AB20  
AC21  
AD22  
AE23  
AB19  
Y22  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Port 2 A Channel Input Pixel Data (bit weight 128)  
Port 2 A Channel Input Pixel Data (bit weight 64)  
Port 2 A Channel Input Pixel Data (bit weight 32)  
Port 2 A Channel Input Pixel Data (bit weight 16)  
Port 1 A Channel Input Pixel Data (bit weight 8)  
Port 2 A Channel Input Pixel Data (bit weight 4)  
Port 2 A Channel Input Pixel Data (bit weight 2)  
Port 2 A Channel Input Pixel Data (bit weight 1)  
Port 2 A Channel Input Pixel Data (bit weight 0.5)  
Port 2 A Channel Input Pixel Data (bit weight 0.25)  
Port 2 B Channel Input Pixel Data (bit weight 128)  
Port 2 B Channel Input Pixel Data (bit weight 64)  
Port 2 B Channel Input Pixel Data (bit weight 32)  
Port 2 B Channel Input Pixel Data (bit weight 16)  
AB26  
AA23  
AB25  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
P2_B_5  
NO.  
AA22  
AB24  
AC26  
AB23  
AC25  
AC24  
W23  
V22  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Port 2 B Channel Input Pixel Data (bit weight 8)  
Port 2 B Channel Input Pixel Data (bit weight 4)  
Port 2 B Channel Input Pixel Data (bit weight 2)  
Port 2 B Channel Input Pixel Data (bit weight 1)  
Port 2 B Channel Input Pixel Data (bit weight 0.5)  
Port 2 B Channel Input Pixel Data (bit weight 0.25)  
Port 2 C Channel Input Pixel Data (bit weight 128)  
Port 2 B Channel Input Pixel Data (bit weight 64)  
Port 2 C Channel Input Pixel Data (bit weight 32)  
Port 2 B Channel Input Pixel Data (bit weight 16)  
Port 2 C Channel Input Pixel Data (bit weight 8)  
Port 2 B Channel Input Pixel Data (bit weight 4)  
Port 2 C Channel Input Pixel Data (bit weight 2)  
Port 2 B Channel Input Pixel Data (bit weight 1)  
Port 2 C Channel Input Pixel Data (bit weight 0.5)  
Port 2 B Channel Input Pixel Data (bit weight 0.25)  
P2_B_4  
P2_B_3  
P2_B_2  
P2_B_1  
P2_B_0  
P2_C_9  
P2_C_8  
P2_C_7  
P2_C_6  
P2_C_5  
P2_C_4  
P2_C_3  
P2_C_2  
P2_C_1  
P2_C_0  
Y26  
Y25  
Y24  
Y23  
W22  
AA26  
AA25  
AA24  
Port 2 Vertical Sync. This signal includes an internal pulldown. While intended to be associated with Port 2, it can be  
programmed for use with Port 1.  
P2_VSYNC  
P2_HSYNC  
U22  
B2  
B2  
Port 2 Horizontal Sync. This signal includes an internal pulldown. While intended to be associated with Port 2, it can be  
programmed for use with Port1.  
W26  
ALF INPUT PORT CONTROL  
ALF_VSYNC  
ALF_HSYNC  
ALF_CSYNC  
AF11  
I4  
I4  
I4  
Autolock dedicated vertical sync. This signal includes an internal pulldown and uses hysteresis.  
Autolock dedicated horizontal sync. This signal includes an internal pulldown and uses hysteresis.  
Autolock dedicated composite sync (sync on green). This signal includes an internal pulldown and uses hysteresis.  
AD11  
AE11  
DMD RESET and BIAS CONTROL  
DADOEZ  
AE7  
AD6  
AE5  
AF4  
AB8  
AD7  
AE6  
AE4  
AC7  
AF5  
AC8  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
I4  
DAD (DLPA200 / DLPA300) Output Enable (active low)  
DAD address  
DADADDR_3  
DADADDR_2  
DADADDR_1  
DADADDR_0  
DADMODE_1  
DADMODE_0  
DADSEL_1  
DADSEL_0  
DADSTRB  
DAD_INTZ  
DMD LVDS INTERFACE  
DCKA_P  
DAD modes  
DAD select  
DAD strobe  
DAD interrupt (active low). This signal typically requires an external pullup and uses hysteresis.  
V4  
V3  
V2  
V1  
P4  
P3  
P2  
P1  
R1  
T4  
T3  
T2  
T1  
U4  
U3  
U2  
U1  
W4  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
DMD, LVDS I/F channel A, differential clock  
DCKA_N  
SCA_P  
DMD, LVDS I/F channel A, differential serial control  
SCA_N  
DDA_P_15  
DDA_N_15  
DDA_P_14  
DDA_N_14  
DDA_N_12  
DDA_P_11  
DDA_N_11  
DDA_P_10  
DDA_N_10  
DDA_P_9  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DDA_N_9  
DDA_P_8  
DDA_N_8  
DDA_P_7  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
DDA_N_7  
NO.  
W3  
W2  
W1  
Y2  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
O7  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential serial data  
DMD, LVDS I/F channel A, differential clock  
DDA_P_6  
DDA_N_6  
DDA_P_5  
DDA_N_5  
DDA_P_4  
DDA_N_4  
DDA_P_3  
DDA_N_3  
DDA_P_2  
DDA_N_2  
DDA_P_1  
DDA_N_1  
DDA_P_0  
DDA_N_0  
DCKB_P  
Y1  
Y4  
Y3  
AA2  
AA1  
AA4  
AA3  
AB2  
AB1  
AC2  
AC1  
J3  
DCKB_N  
J4  
DMD, LVDS I/F channel A, differential clock  
SCB_P  
J1  
DMD, LVDS I/F channel A, differential serial control  
DMD, LVDS I/F channel A, differential serial control  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
DMD, LVDS I/F channel B, differential serial data  
SCB_N  
J2  
DDB_P_15  
DDB_N_15  
DDB_P_14  
DDB_N_14  
DDB_P_13  
DDB_N_13  
DDB_P_12  
DDB_N_12  
DDB_P_11  
DDB_N_11  
DDB_P_10  
DDB_N_10  
DDB_P_9  
DDB_N_9  
DDB_P_8  
DDB_N_8  
DDB_P_7  
DDB_N_7  
DDB_P_6  
DDB_N_6  
DDB_P_5  
DDB_N_5  
DDB_P_4  
DDB_N_4  
DDB_P_3  
DDB_N_3  
DDB_P_2  
DDB_N_2  
DDB_P_1  
DDB_N_1  
DDB_P_0  
DDB_N_0  
N1  
N2  
N3  
N4  
M2  
M1  
M3  
M4  
L1  
L2  
L3  
L4  
K1  
K2  
K3  
K4  
H1  
H2  
H3  
H4  
G1  
G2  
G3  
G4  
F1  
F2  
F3  
F4  
E1  
E2  
D1  
D2  
PROGRAM MEMORY (Flash and SRAM) INTERFACE  
PM_CSZ_0 D13 O5  
Input Bus D Data bit 3.  
100-Ωinternal LVDS termination  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
PM_CSZ_1  
NO.  
E12  
O5  
O5  
Input Bus D Data bit 5.  
100-Ωinternal LVDS termination  
PM_CSZ_2  
A13  
A12  
PM_ADDR_22  
(GPIO 36)  
B5  
Input Bus D Data bit 10.  
100-Ωinternal LVDS termination  
PM_ADDR_21  
(GPIO 35)  
E11  
D12  
C12  
B5  
O5  
O5  
PM_ADDR_20  
PM_ADDR_19  
Input Bus D Data bit 11.  
100-Ωinternal LVDS termination  
PM_ADDR_18  
PM_ADDR_17  
PM_ADDR_16  
PM_ADDR_15  
PM_ADDR_14  
PM_ADDR_13  
PM_ADDR_12  
PM_ADDR_11  
PM_ADDR_10  
PM_ADDR_9  
PM_ADDR_8  
PM_ADDR_7  
PM_ADDR_6  
PM_ADDR_5  
PM_ADDR_4  
PM_ADDR_3  
PM_ADDR_2  
PM_ADDR_1  
PM_ADDR_0  
PM_WEZ  
B11  
A11  
D11  
C11  
E10  
D10  
C10  
B9  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
O5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
B5  
Input Bus D Data bit 12.  
100-Ωinternal LVDS termination  
Input Bus D Data bit 13.  
100-Ωinternal LVDS termination  
Input Bus D Data bit 14.  
100-Ωinternal LVDS termination  
Input Bus D Data bit 15.  
100-Ωinternal LVDS termination  
A9  
E9  
Output Bus A Data bit 0 to DMD  
Output Bus A Data bit 1 to DMD  
Output Bus A Data bit 2 to DMD  
Output Bus A Data bit 3 to DMD  
Output Bus A Data bit 4 to DMD  
Output Bus A Data bit 5 to DMD  
Output Bus A Data bit 6 to DMD  
Output Bus A Data bit 7 to DMD  
Output Bus A Data bit 8 to DMD  
Output Bus A Data bit 9 to DMD  
Output Bus A Data bit 10 to DMD  
Output Bus A Data bit 11 to DMD  
Output Bus A Data bit 12 to DMD  
Output Bus A Data bit 13 to DMD  
Output Bus A Data bit 14 to DMD  
D9  
C9  
B8  
A8  
D8  
C8  
B7  
A7  
C7  
B12  
C13  
B6  
PM_OEZ  
PM_BLSZ_1  
PM_BLSZ_0  
PM_DATA_15  
PM_DATA_14  
PM_DATA_13  
PM_DATA_12  
PM_DATA_11  
PM_DATA_10  
PM_DATA_9  
PM_DATA_8  
PM_DATA_7  
PM_DATA_6  
PM_DATA_5  
PM_DATA_4  
PM_DATA_3  
PM_DATA_2  
PM_DATA_1  
PM_DATA_0  
A6  
C17  
B16  
A16  
A15  
B15  
D16  
C16  
E14  
D15  
C15  
B14  
A14  
E13  
D14  
C14  
B13  
PERIPHERAL INTERFACE  
I2C Bus 0, Clock. This bus support 400 kHz, fast mode operation. This signal requires an external pullup to 3.3 V. The  
minimum acceptable pullup value is 1 kΩ. This input is not 5-V tolerant.  
IIC0_SCL  
A10  
B10  
B8  
B8  
2C Bus 0, Data. This bus support 400 kHz, fast mode operation. This signal requires an external pullup to 3.3 V. The  
minimum acceptable pullup value is 1 kΩ. This input is not 5-V tolerant.  
IIC0_SDA  
SSP0_CLK  
SSP0_RXD  
AD4  
AD5  
B5  
I4  
Synchronous Serial Port 0, clock  
Synchronous Serial Port 0, receive data in  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
SSP0_TXD  
NO.  
AB7  
AC5  
AB6  
AC3  
AB3  
AD1  
AD2  
AE2  
C5  
O5  
B5  
B5  
B5  
O5  
O5  
O5  
I4  
Synchronous Serial Port 0, transmit data out  
Synchronous Serial Port 0, chip select 0 (active low)  
Synchronous Serial Port 0, chip select 1 (active low)  
Synchronous Serial Port 0, chip select 2 (active low)  
UART0 transmit data output  
SSP0_CSZ_0  
SSP0_CSZ_1  
SSP0_CSZ_2  
UART0_TXD  
UART0_RXD  
UART0_RTSZ  
UART0_CTSZ  
USB_DAT_N  
USB_DAT_P  
PMD_INTZ  
UART0 receive data input  
UART0 ready to send hardware flow control output (active low)  
UART0 clear to send hardware flow control input (active low)  
USB D- I/O  
B9  
B9  
I4  
D6  
USB D+ I/O  
AE8  
AD8  
AF7  
Interrupt from DLPA100 (active low). This signal requires an external pullup. Uses hysteresis  
Color wheel control PWM output  
CW_PWM  
O5  
O5  
CW_INDEX  
Color wheel index. Uses hysteresis  
GENERAL PURPOSE I/O (GPIO) (8)  
ALTERNATE FUNCTION 1  
N/A  
ALTERNATE FUNCTION 2  
GPIO_82  
GPIO_81  
GPIO_80  
GPIO_79  
GPIO_78  
GPIO_77  
GPIO_76  
GPIO_75  
GPIO_74  
GPIO_73  
GPIO_72  
GPIO_71  
GPIO_70  
GPIO_69  
GPIO_68  
GPIO_67  
GPIO_66  
GPIO_65  
GPIO_64  
GPIO_63  
GPIO_62  
GPIO_61  
GPIO_60  
GPIO_59  
GPIO_58  
GPIO_57  
GPIO_56  
GPIO_55  
GPIO_54  
GPIO_53  
GPIO_52  
GPIO_51  
GPIO_50  
GPIO_49  
GPIO_48  
GPIO_47  
GPIO_46  
GPIO_45  
GPIO_44  
GPIO_43  
E3  
AB10  
AD9  
AE9  
AF9  
AB11  
AC10  
AD10  
AE10  
AF10  
K24  
K23  
K22  
J26  
B5  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
N/A  
Reserved  
N/A  
IR_ENABLE (O)  
Reserved  
N/A  
N/A  
FIELD_3D_LR (I)  
SAS_INTGTR_EN (O)  
SAS_CSZ (O)  
SAS_DO (O)  
N/A  
SENSE_PWM_OUT (O)  
N/A  
SENSE_FREQ_IN (I)  
SENSE_COMP_IN (I)  
N/A  
SAS_DI (I)  
SAS_CLK (O)  
SSP2_DI (I)  
N/A  
SSP2_CLK (B)  
SSP2_CSZ_1 (B)  
SSP2_CSZ_0 (B)  
SSP2_DO (O)  
SP_Data_7 (O)  
SP_Data_6 (O)  
SP_Data_5 (O)  
SP_Data_4 (O)  
SP_Data_3 (O)  
SP_Data_2 (O)  
SP_Data_1 (O)  
SP_Data_0 (O)  
SP_WG_CLK (O)  
LED_SENSE_PULSE (O)  
Reserved  
N/A  
N/A  
N/A  
J25  
N/A  
J24  
SSP2_CSZ_2 (B)  
SSP0_CSZ_5 (B)  
N/A  
J23  
J22  
H26  
H25  
H24  
H23  
H22  
G26  
G25  
F25  
CW_PWM_2 (O)  
CW_INDEX_2 (I)  
SP_VC_FDBK (I)  
N/A  
N/A  
N/A  
N/A  
N/A  
G24  
G23  
F26  
UART2_RXD (O)  
UART2_TXD (O)  
PROG_AUX_7 (O)  
PROG_AUX_6 (O)  
CSP_Data (O)  
CSP_CLK (O)  
Reserved  
N/A  
N/A  
N/A  
E26  
AB12  
AC11  
V23  
V24  
V25  
V26  
T22  
N/A  
ALF_CLAMP (O)  
ALF_COAST (O)  
HBT_CLKOUT (O)  
HBT_DO (O)  
HBT_CLKIN_2 (I)  
HBT_DI_2 (I)  
HBT_CLKIN_1 (I)  
HBT_DI_1 (I)  
HBT_CLKIN_0 (I)  
HBT_DI_0 (I)  
Reserved  
Reserved  
Reserved  
Reserved  
U23  
U24  
U25  
Reserved  
Reserved  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
GPIO_42  
NO.  
U26  
R22  
T23  
F24  
E25  
G22  
A12  
E11  
F23  
D26  
E24  
F22  
D25  
E23  
C26  
AB4  
D24  
C25  
B26  
E21  
D22  
E20  
C23  
D21  
B24  
C22  
B23  
E19  
D20  
C21  
B22  
A23  
A22  
B21  
A21  
A20  
C20  
B20  
B19  
A19  
E18  
D19  
C19  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
Reserved  
Reserved  
SSP0_CSZ4 (B)  
DASYNC (I)  
GPIO_41  
GPIO_40  
GPIO_39  
GPIO_38  
GPIO_37  
GPIO_36  
GPIO_35  
GPIO_34  
GPIO_33  
GPIO_32  
GPIO_31  
GPIO_30  
GPIO_29  
GPIO_28  
GPIO_27  
GPIO_26  
GPIO_25  
GPIO_24  
GPIO_23  
GPIO_22  
GPIO_21  
GPIO_20  
GPIO_19  
GPIO_18  
GPIO_17  
GPIO_16  
GPIO_15  
GPIO_14  
GPIO_13  
GPIO_12  
GPIO_11  
GPIO_10  
GPIO_9  
Reserved  
FSD12 (O)  
SW reserved (Boot Hold)  
SW reserved (USB Enumeration Enable)  
N/A  
SW reserved (Boot Hold)  
SW reserved (USB Enumeration Enable)  
N/A  
PM_ADDR_22 (O)  
PM_ADDR_21 (O)  
SSP1_CSZ_1 (B)  
SSP1_CSZ_0 (B)  
SSP1_DO (O)  
I2C_2 SDA (B)  
I2C_2 SCL (B)  
N/A  
N/A  
N/A  
SSP1_DI (I)  
N/A  
SSP1_CLK (B)  
N/A  
IR1 (I)  
SSP2 BC CSZ (B)  
IR0 (I)  
SSP2 BC CSZ (B)  
SSP0_CSZ3 (B)  
Blue LED enable (O)  
Green LED enable (O)  
Red LED enable (O)  
LED Dual Current Control (O)  
LED Dual Current Control (O)  
LED Dual Current Control (O)  
N/A  
N/A  
UART2 TXD (O)  
LAMPSYNC (O)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
General Purpose Clock 2 (O)  
General Purpose Clock 1 (O)  
I2C_1 SDA (B)  
N/A  
N/A  
N/A  
I2C_1 SCL (B)  
N/A  
PWM IN_1 (I)  
I2C_2 SDA (B)  
I2C_2 SCL (B)  
N/A  
PWM IN_0 (I)  
PWM STD_7 (O)  
PWM STD_6 (O)  
PWM STD_5 (O)  
PWM STD_4 (O)  
PWM STD_3 (O)  
PWM STD_2 (O)  
PWM STD_1 (O)  
PWM STD_0 (O)  
UART1_RTSZ (O)  
UART1_CTSZ (I)  
UART1_RXD (I)  
UART1_TXD (O)  
N/A  
N/A  
GPIO_8  
N/A  
GPIO_7  
N/A  
GPIO_6  
N/A  
GPIO_5  
N/A  
GPIO_4  
N/A  
GPIO_3  
N/A  
GPIO_2  
N/A  
GPIO_1  
N/A  
GPIO_0  
N/A  
CLOCK and PLL SUPPORT  
System clock oscillator input (3.3-V LVTTL). Note that MOSC must be stable a maximum of 25 ms after POSENSE  
transitions from low to high.  
MOSC  
M26  
N26  
I10  
MOSCN  
O10  
MOSC crystal return  
General purpose output clock A. Targeted for driving the CW motor controller. The frequency is software programmable.  
Power-up default 787 KHz. Note that the output frequency is not affected by non-power-up reset operations (it will hold the  
last value programmed).  
OCLKA  
AF6  
O5  
DUAL CONTROLLER SUPPORT  
Sequence sync. This signal is used in multi-controller configurations only, in which case the SEQSYNC signal from each  
controller is connected together with an external pullup. This signal is either pulled high or pulled low and not allowed to float  
for single controller configurations.  
SEQ_SYNC  
AB9  
B3  
POWER and GROUND  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
F20, F17, F11,  
F8, L21, R21,  
Y21, AA19, AA16,  
AA10, AA7  
VDD33  
POWER  
3.3-V I/O power  
C1, F5, G6, K6,  
M5, P5, T5, W6,  
AA5, AE1, H5,  
N6, T6, AA13,  
U21, P21, H21,  
F14  
VDD18  
VDD11  
POWER  
POWER  
1.8-V internal DRAM and LVDS I/O power  
F19, F16, F13,  
F10, F7, H6, L6,  
P6, U6, Y6, AA8,  
AA11, AA14,  
1.15-V core power  
AA17, AA20,  
W21, T21, N21,  
K21, G21, L11,  
T11, T16, L16  
VDD_PLLD  
VSS_PLLD  
VAD_PLLD  
VAS_PLLD  
VDD_PLLM1  
VSS_PLLM1  
VAD_PLLM1  
VAS_PLLM1  
VDD_PLLM2  
VSS_PLLM2  
VAD_PLLM2  
VAS_PLLM2  
VAD_PLLS  
VAS_PLLS  
L22  
L23  
K25  
K26  
L26  
M22  
L24  
L25  
P23  
P24  
R25  
R26  
R23  
R24  
POWER  
GROUND  
POWER  
GROUND  
POWER  
GROUND  
POWER  
GROUND  
POWER  
GROUND  
POWER  
GROUND  
POWER  
GROUND  
1.15-V DMD clock generator PLL digital power  
1.15-V DMD clock generator PLL digital ground  
1.8-V DMD clock generator PLL analog power  
1.8-V DMD clock generator PLL analog ground  
1.15-V master-LS clock generator PLL digital power  
1.15-V master-LS clock generator PLL digital ground  
1.8-V master-LS clock generator PLL analog power  
1.8-V master-LS clock generator PLL analog ground  
master-HS clock generator PLL digital power  
master-HS clock generator PLL digital ground  
1.8-V master-HS clock generator PLL analog power  
1.8-V master-HS clock generator PLL analog ground  
video-2X clock generator PLL analog power  
video-2X clock generator PLL analog ground  
B18, D18, B17,  
E17, A18, C18,  
A17, D17, AE17,  
AC17, AF17,  
AC18, AB16,  
AD17, AB17,  
AD18  
L-VDQPAD_[7:0],  
R-VDQPAD_[7:0]  
RESERVED  
These pins have to be tied directly to ground for normal operation.  
CFO_VDD33  
AE26  
RESERVED  
RESERVED  
This pin has to be tied directly to 3.3 I/O power (VDD33) for normal operation.  
These pins have to be tied directly to ground for normal operation.  
VTEST1, VTEST2, AB14, AB15, E15,  
VTEST3, VTEST4  
E16  
V5, K5  
AC6  
LVDS_AVS1,  
LVDS_AVS2  
POWER  
POWER  
These pins have to be tied directly to ground for normal operation.  
This pin has to be tied directly to ground for normal operation.  
VPGM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
A26, A25, A24,  
B25, C24, D23,  
E22, F21, F18,  
F15, F12, F9, F6,  
E5, D4, C3, B3,  
A3, B2, A2, B1,  
A1 G5, J5, J6, L5,  
M6, N5, R5, R6,  
U5, V6, W5, Y5,  
AA6, AB5, AC4,  
AD3, AE3, AF3,  
AF2, AF1, AA9,  
AA12, AA15,  
AA18, AA21,  
AB22, AC23,  
AD24, AE24,  
GROUND  
GROUND  
Common ground  
AF24, AE25,  
AF25, AF26, V21,  
M21, J21, L15,  
L14, L13, L12,  
M16, M15, M14,  
M13, M12, M11,  
N16, N15, N14,  
N13, N12, N11,  
P16, P15, P14,  
P13, P12, P11,  
R16, R15, R14,  
R13, R12, R11,  
T15, T14, T13,  
T12  
(1) For instructions on handling unused pins, see General Handling Guidelines for Unused CMOS-Type Pins.  
(2) I/O Type: I = Input, O = Output, B = Bidirectional, and H = Hysteresis. See 5-2 for subscript explanation.  
(3) All JTAG signals are LVTTL compatible.  
(4) Ports 1 and 2 can each be used to support multiple source options for a given product (for example AFE and HDMI). To do so, the data  
bus from both source components must be connected to the same port pins (1 or 2) and control given to the DLPC4430 device to  
tristate the "inactive" source. Tying them together like this causes some signal degradation due to reflections on the tristated path.  
Given the clock is the most critical signal, three Port clocks (1, 2, and 3) are provided to provide an option to improve the signal  
integrity.  
(5) Ports 1 and 2 can be used separately as two 30-bit ports, or can be combined into one 60-bit port (typically for high data rate sources)  
for transmission of two pixels per clock.  
(6) The A, B, C input data channels of Ports 1 and 2 can be internally reconfigured/ remapped for optimum board layout.  
(7) Sources feeding less than the full 10-bits per color component channel have to be MSB justified when connected to the DLPC4430  
controller and the LSBs tied off to zero. For example an 8-bit per color input has to be connected to bits 9:2 of the corresponding A, B,  
C input channel.  
(8) GPIO signals must be configured by software for input, output, bidirectional, or open-drain. Some GPIOs have one or more alternate  
use modes, which are also software configurable. The reset default for all optional GPIOs is as an input signal. However, any alternate  
function connected to these GPIO pins with the exception of general-purpose clocks and PWM generation, are reset. An external  
pullup to the 3.3-V supply is required for each signal configured as open-drain. External pullup or pulldown resistors may be required to  
ensure stable operation before software is able to configure these ports.  
5-2. I/O Type Subscript Definition  
SUBSCRIPT  
DESCRIPTION  
3.3-V LVTTL I/O buffer with 8-mA drive  
3.3-V LVTTL I/O buffer with 12-mA drive  
3.3-V LVTTL receiver  
ESD STRUCTURE  
2
3
4
5
3.3-V LVTTL I/O buffer with 8-mA drive, with slew rate control  
3.3-V LVTTL I/O buffer, with programmable 4-mA, 8-mA, or 12-  
mA drive  
6
ESD diode to VDD33 and GROUND  
7
8
1.8-V LVDS (DMD I/F)  
3.3-V I2C with 3 mA sink  
9
USB Compatible (3.3 V)  
10  
OSC 3.3-V I/O Compatible LVTTL  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
ELECTRICAL  
VDD11 (Core)  
1.60  
2.50  
3.90  
0.30  
0.30  
0.30  
VDD18 (LVDS I/O and Internal DRAM)  
VDD33 (I/O)  
VDD_PLLD (DMD clock generator -  
Digital)  
1.60  
1.60  
1.60  
2.50  
2.50  
2.50  
0.30  
0.30  
0.30  
0.30  
0.30  
0.30  
VDD_PLLM1 (Master - LS clock  
generator - Digital)  
Supply Voltage(1)  
V
VDD_PLLM2 (Master - HS clock  
generator - Digital)  
VDD_PLLD (1.8-V DMD clock  
generator - Analog)  
VDD_PLLM1 (1.8-V Master - LS  
clock generator - Analog)  
VDD_PLLM2 (1.8-V Master - HS  
clock generator - Analog)  
VDD_PLLS ( Video 2X - Analog)  
1.40  
5.25  
0.50  
1.0  
0.3  
0.3  
0.5  
1.0  
0.3  
0.3  
0.5  
USB  
OSC  
VDD33 + 0.3  
3.6  
VI Input Voltage(2)  
VO Output Voltage  
V
V
3.3-V LVTTL  
3.3-V I2C  
USB  
3.8  
5.25  
OSC  
2.2  
3.3-V LVTTL  
3.3-V I2C  
3.6  
3.8  
ENVIRONMENTAL  
TJ operating junction temperature  
Tstg storage temperature range  
0
111  
125  
°C  
°C  
40  
(1) All voltage values are with respect to GROUND.  
(2) Applies to external input and bidirectional buffers  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins (1)  
± 1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins (2)  
+500/300  
(1) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(2) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
I/O(1)  
MIN  
NOM  
MAX UNIT  
ELECTRICAL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLPC4430  
 
 
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
MAX UNIT  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
over operating free-air temperature range (unless otherwise noted)  
I/O(1)  
MIN  
3.135  
1.71  
1.100  
1.71  
1.71  
1.71  
1.090  
1.090  
1.090  
1.090  
0
NOM  
3.3  
VDD33  
3.3-V supply voltage, I/O  
3.465  
1.89  
V
V
V
V
V
V
V
V
V
V
VDD18  
1.8-V supply voltage, LVDS and DRAM  
1.15-V supply voltage, core logic  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8-V supply voltage, PLL analog  
1.8  
VDD11  
1.15  
1.8  
1.200  
1.89  
VDD_PLLD  
VDD_PLLM1  
VDD_PLLM2  
VDD_PLLD  
VDD_PLLM1  
VDD_PLLM2  
VDD_PLLS  
1.8  
1.89  
1.8  
1.89  
1.15  
1.15  
1.15  
1.15  
1.200  
1.200  
1.200  
1.200  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
55  
USB (9)  
OSC (10)  
0
VI  
Input voltage  
V
V
3.3-V LVTTL (1,2,3,4)  
3.3-V I2C (8)  
USB (8)  
0
0
0
3.3-V LVTTL (1,2,3,4)  
3.3-V I2C (8)  
1.8-V LVDS (7)  
See(2) (3)  
0
vo  
Output voltage  
0
0
TA  
TC  
TJ  
Operating ambient temperature range  
Operating top center case temperature  
Operating junction temperature  
0
°C  
°C  
°C  
See(3) (4)  
0
109.16  
111  
0
(1) The number inside each parenthesis for the I/O refers to the type defined in the I/O type subscript definition section.  
(2) Assumes minimum 1 m/s airflow along with the JEDEC thermal resistance and associated conditions listed at www.ti.com/packaging.  
Thus, this is an approximate value that varies with environment and PCB design.  
(3) Maximum thermal values assume max power of 4.6 watts.  
(4) Assume PsiJT equals 0.4 C/W  
6.4 Thermal Information  
DLPC4430  
THERMAL METRIC(1)  
ZPC (BGA)  
516 PINS  
14.4  
UNIT  
RθJA  
RθJC  
Junction-to-ambient thermal resistance(2)  
Junction-to-case thermal resistance  
°C/W  
°C/W  
4.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report.  
(2) In still air  
6.5 Electrical Characteristics  
over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
MAX UNIT  
USB (9)  
2.0  
2.0  
2.0  
2.4  
OSC (10)  
High-level input  
voltage  
VIH  
V
3.3-V LVTTL (1,2,3,4)  
3.3-V I2C (8)  
VDD33VDD33+0.5  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.5 Electrical Characteristics (continued)  
over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
MAX UNIT  
USB (9)  
0.8  
OSC (10)  
0.8  
V
Low-level input  
voltage  
VIL  
3.3-V LVTTL (1,2,3,4)  
3.3-V I2C (8)  
0.8  
1.0  
mV  
0.5  
Differential Input  
Voltage  
VDIS  
VICM  
USB(9)  
USB(9)  
200  
Differential cross  
point voltage  
0.8  
2.5  
V
USB(9)  
200  
400  
Hysteresis (VT+ –  
VHYS  
3.3-V LVTTL (1,2,3,4)  
3.3-V I2C (8)  
USB (9)  
mV  
V T-  
)
300 550  
2.8  
600  
High-level output  
voltage  
1.8-V LVDS (7)  
1.520  
VOH  
V
IOH = Max  
Rated  
3.3-V LVTTL (1,2,3)  
2.7  
0.0  
USB (9)  
0.3  
1.8-V LVDS (7)  
0.880  
Low-level output  
voltage  
VOL  
V
V
IOL = Max  
Rated  
3.3-V LVTTL (1,2,3)  
3.3-V I2C (8)  
1.8-V LVDS (7)  
USB(9)  
0.4  
0.4  
IOL = 3-mA sink  
Output differential  
voltage  
VOD  
0.065  
0.440  
200  
10  
10.0  
OSC (10)  
High-level input  
current  
3.3-V LVTTL (1-4) without internal  
pulldown  
10.0  
IIH  
VIH = VDD33  
10 µA  
200.0  
3.3-V LVTTL (1-4) with internal  
pulldown  
VIH = VDD33  
VIH = VDD33  
10.0  
3.3-V I2C (8)  
10.0  
10.0  
10.0  
USB(9)  
10.0  
OSC (10)  
10.0  
10.0  
Low-level input  
current  
IIL  
3.3-V LVTTL (14) without internal  
pulldown  
µA  
10.0  
VOH = VDD33  
3.3-V LVTTL (1-4) with internal  
pulldown  
10.0  
VOH = VDD33  
VOH = VDD33  
200  
3.3-V I2C (8)  
10.0  
18.4  
USB(9)  
1.8-V LVDS (7) (VOD = 300 mV)  
3.3-V LVTTL (1)  
VO = 1.4 V  
VO = 2.4 V  
VO = 2.4 V  
6.5  
4.0  
8.0  
High-level output  
current  
IOH  
mA  
3.3-V LVTTL (2)  
12.0  
3.3-V LVTTL (3)  
VO = 2.4 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
MAX UNIT  
mA  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.5 Electrical Characteristics (continued)  
over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
USB (9)  
19.1  
6.5  
1.8-V LVDS (7) (VOD = 300 mV)  
VO = 1.0 V  
VO = 0.4 V  
VO = 0.4 V  
VO = 0.4 V  
3.3-V LVTTL (1)  
3.3-V LVTTL (2)  
3.3-V LVTTL (3)  
3.3-V I2C (8)  
USB (9)  
4.0  
Low-level output  
current  
IOL  
8.0  
12.0  
3.0  
10  
10  
10  
10  
11.84  
3.75  
3.75  
3.75  
5.26  
LVDS (7)  
High-impedance  
leakage current  
IOZ  
pF  
3.3-V LVTTL (1,2,3)  
3.3-V I2C (8)  
USB (9)  
17.07  
3.3-V LVTTL (1)  
3.3-V LVTTL (2)  
3.3-V LVTTL (4)  
3.3-V I2C (8)  
5.52  
CI  
Input capacitance  
5.52 pF  
5.52  
6.54  
ICC11  
ICC18  
Supply voltage, 1.15-V core power  
Normal Mode  
Normal Mode  
2368 mA  
Supply voltage, 1.8-V power (LVDS I/O and internal  
DRAM)  
1005 mA  
ICC33  
Supply voltage, 3.3-V I/O power  
Normal Mode  
Normal Mode  
33 mA  
6.2 mA  
ICC11_PLLD  
Supply voltage, DMD PLL Digital Power ( 1.15V)  
4.4  
4.4  
Supply voltage, Master-LS Clock Generator PLL Digital  
power ( 1.15V)  
ICC11_PLLM1  
Normal Mode  
6.2 mA  
Supply voltage, Master-HS Clock Generator PLL Digital  
power ( 1.15V)  
ICC11_PLLM2  
ICC18_PLLD  
ICC18_PLLM1  
Normal Mode  
Normal Mode  
Normal Mode  
4.4  
8.0  
8.0  
6.2 mA  
10.2 mA  
10.2 mA  
Supply voltage, DMD PLL Analog Power (1.8 V)  
Supply voltage, Master-LS Clock Generator PLL Analog  
power (1.8 V)  
Supply voltage, Master-HS Clock Generator PLL Analog  
power (1.8 V)  
ICC18_PLLM2  
ICC11_PLLS  
Normal Mode  
8.0  
10.2 mA  
2.9 mA  
Supply voltage, Video-2X PLL Analog Power ( 1.15 V)  
Total Power  
Normal Mode  
Normal Mode  
4.76  
21 mA  
mA  
W
Low Power  
Mode  
ICC11  
Supply voltage, 1.15V core power  
Supply voltage, 1.8-V power (LVDS I/O and internal  
DRAM)  
Low Power  
Mode  
ICC18  
0
Low Power  
Mode  
ICC33  
Supply voltage, 3.3-V I/O power  
18 mA  
2.03 mA  
2.03 mA  
2.03 mA  
5.42 mA  
5.42 mA  
Low Power  
Mode  
ICC11_PLLD  
ICC11_PLLM1  
ICC11_PLLM2  
ICC18_PLLD  
ICC18_PLLM1  
Supply voltage, DMD PLL Digital Power ( 1.15V)  
Supply voltage, Master-LS Clock Generator PLL Digital  
power ( 1.15V)  
Low Power  
Mode  
Supply voltage, Master-HS Clock Generator PLL Digital  
power ( 1.15V)  
Low Power  
Mode  
Low Power  
Mode  
Supply voltage, DMD PLL Analog Power (1.8 V)  
Supply voltage, Master-LS Clock Generator PLL Analog  
power (1.8 V)  
Low Power  
Mode  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.5 Electrical Characteristics (continued)  
over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
MAX UNIT  
5.42 mA  
.03 mA  
Supply voltage, Master-HS Clock Generator PLL Analog  
Low Power  
Mode  
ICC18_PLLM2  
power (1.8 V)  
Low Power  
Mode  
ICC11_PLLS  
Supply voltage, Video-2X PLL Analog Power ( 1.15V)  
Total Power  
Low Power  
Mode  
106 mW  
6.6 System Oscillators Timing Requirements  
over operating free-air temperature range(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
SYSTEM OSCILLATORS  
fclock  
tc  
Clock frequency, MOSC(1)  
19.998  
49.995  
20  
20.002  
50.005  
MHz  
MHz  
ns  
Cycle time, MOSC(1)  
tw(H)  
Pulse duration(2), MOSC, high  
50% to 50% reference points  
(signal)  
tw(L)  
tt  
Pulse duration(2), MOSC, low  
50% to 50% reference points  
(signal)  
20  
ns  
ns  
ps  
Transition time(2), MOSC, tt = tf /tr  
20% to 80% reference points  
(signal)  
12  
18  
tjp  
Period Jitter(2), MOSC (This is the deviation  
in period from the ideal period due solely to  
high frequency jitter).  
(1) The frequency range for MOSC is 20 MHz with +/-100 PPM accuracy (it includes impact to accuracy due to aging, temperature and  
trim sensitivity). The MOSC input cannot support spread spectrum clock spreading.  
(2) Applies only when driven via an external digital oscillator.  
6.7 Test and Reset Timing Requirements  
MIN  
MAX  
UNIT  
tW1(L)  
tW1(L)  
tt1  
Pulse duration, inactive low, PWRGOOD  
Pulse duration, inactive low, PWRGOOD  
Transition time, PWRGOOD, tt1= tf/tr  
Pulse duration, inactive low, POSENSE  
Pulse duration, inactive low, POSENSE  
Transition time, POSENSE, tt1= tf/tr  
50% to 50% reference points  
(signal)  
4.0  
µs  
50% to 50% reference points  
(signal)  
1000(2)  
625  
ms  
µs  
µs  
ms  
µs  
µs  
µs  
ms  
20% to 80% reference points  
(signal)  
tW2(L)  
tW2(L)  
tt2  
50% to 50% reference points  
(signal)  
500  
50% to 50% reference points  
(signal)  
1000(2)  
25(1)  
20% to 80% reference points  
(signal)  
tPH  
Power Hold time, POSENSE remains active after  
PWRGOOD is de-asserted  
20% to 80% reference points  
(signal)  
500  
500  
tEW  
Early Warning time, PWRGOOD goes inactive low prior to  
any power supply voltage going below its specification  
tW1(L)  
The sum of PWRGOOD and POSENSE inactive time  
1050(2)  
+tW2(L)  
(1) As long as noise on this signal is below the hysteresis threshold.  
(2) With 1.8 V power applied. If the 1.8 V power is disabled by the controller command (For example if system is placed in Low Power  
mode where the controller disables 1.8 V power), these signals can be placed and remain in their inactive state indefinitely.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLPC4430  
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.8 JTAG Interface: I/O Boundary Scan Application Timing Requirements  
MIN  
MAX  
10  
UNIT  
MHZ  
ns  
fclock  
tC  
Clock frequency, TCK  
Cycle time, TCK  
100  
40  
tW(H)  
Pulse duration, high  
50% to 50% reference points  
(signal)  
ns  
tW(L)  
tt  
Pulse duration, low  
50% to 50% reference points  
(signal)  
40  
ns  
ns  
Transition time, tt= tf/tr  
20% to 80% reference points  
(signal)  
5
tSU  
th  
tSU  
th  
8
2
8
2
ns  
ns  
ns  
ns  
Setup time, TDI valid before TCK↑  
Hold time, TDI valid after TCK↑  
Setup time, TMS1 valid before TCK↑  
Hold time, TMS1 valid before TCK↑  
6.9 Port 1 Input Pixel Timing Requirements  
TEST CONDITIONS  
MIN  
12  
MAX  
175  
UNIT  
MHz  
MHz  
ns  
fclock  
fclock  
tC  
Clock frequency, P_CLK1, P_CLK2, P_CLK3 (30-bit bus)  
Clock frequency, P_CLK1, P_CLK2, P_CLK3 (60-bit bus)  
Cycle Time, P_CLK1, P_CLK2, P_CLK3  
Pulse Duration, high  
12  
141  
5.714  
2.3  
83.33  
tW(H)  
50% to 50% reference points  
(signal)  
ns  
tW(L)  
Pulse Duration, low  
50% to 50% reference points  
(signal)  
2.3  
ns  
tjp  
tt  
Clock period jitter, P_CLK1, P_CLK2, P_CLK3  
Transition time, tt=tf/tr, P_CLK1, P_CLK2, P_CLK3  
See (2)  
2.0  
ps  
ns  
Max ƒclock  
20% to 80% reference points  
(signal)  
0.6  
0.6  
0.6  
tt  
tt  
Transition time, tt=tf/tr, P1_A(9-0), P1_B(9-0), P1_C(9-0),  
P1_HSYNC, P1_VSYNC, P1_DATAEN  
20% to 80% reference points  
(signal)  
3.0  
3.0  
ns  
ns  
Transition time, tt=tf/tr, ALF_HSYNC, ALF_VSYNC,  
ALF_CSYNC(1)  
20% to 80% reference points  
(signal)  
SETUP AND HOLD TIMES  
tsu  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, P1_A(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
Hold time, P1_A(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
Setup time, P1_B(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
Hold time, P1_B(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
Setup time, P1_C(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
Hold time, P1_C(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
Setup time, P1_VSYNC, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
th  
Hold time, P1_VSYNC valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
Setup time, P1_HSYNC, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.9 Port 1 Input Pixel Timing Requirements (continued)  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
th  
0.8  
ns  
Hold time, P1_HSYNC valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
ns  
Setup time, P2_A(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P2_A(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
ns  
Setup time, P2_B(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P2_B(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
ns  
Setup time, P2_C(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P2_C(9-0), valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
ns  
Setup time, P2_VSYNC, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P2_VSYNC valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
ns  
Setup time, P2_HSYNC, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P2_HSYNC valid before P_CLK1↑↓, P_CLK2  
↑↓, or P_CLK3↑↓  
tsu  
ns  
Setup time, P_DATAEN1, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
th  
ns  
ns  
Hold time, P_DATAEN1 valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
tsu  
Setup time, P_DATAEN2, valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
th  
ns  
Hold time, P_DATAEN2 valid before P_CLK1↑↓,  
P_CLK2↑↓, or P_CLK3↑↓  
tw(A)  
tw(A)  
VSYNC Active Pulse Width  
HSYNC Active Pulse Width  
1
Video Line  
16  
Pixel  
Clocks  
(1) ALF_CSYNC, ALF_VSYNC and ALF_HSYNC are Asynchronous signals.  
(2) For frequencies (fclock) less than 175 MHZ, use following formula to obtain the jitter: Max Clock Jitter = +/- [ (1/ƒclock) 5414 ps]  
6.10 Port 3 Input Pixel Interface (via GPIO) Timing Requirements  
PARAMETER  
Clock Frequency, P3_CLK  
TEST CONDITIONS  
MIN  
27  
MAX  
54  
UNIT  
MHz  
ns  
fclock  
tc  
Cycle time, P3_CLK  
Pulse Duration, high  
18.5  
7.4  
37.1  
tW(H)  
50% to 50% reference points  
(signal)  
ns  
tW(L)  
Pulse Duration, low  
50% to 50% reference points  
(signal)  
7.4  
ns  
tjp  
tt  
Clock period jitter, P3_CLK  
See (1)  
1.0  
See (1)  
5.0  
ps  
ns  
Max ƒclock  
Transition time, tt= tf/tr, P3_CLK  
20% to 80% reference points  
(signal)  
tt  
Transition time, tt= tf/tr, P3_DATA(9-0)  
20% to 80% reference points  
(signal)  
1.0  
2.0  
5.0  
ns  
ns  
tsu  
Setup time, P3_DATA(9-0) valid before P3_CLK↑↓  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLPC4430  
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
th  
2.0  
ns  
Hold time, P3_DATA(9-0) valid after P3_CLK↑↓  
(1) For frequencies less than 54 MHZ, use following formula to obtain the jitter: Jitter = [ (1/F) 5414 ps].  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.11 DMD LVDS Interface Timing Requirements  
FROM (INPUT)  
TO (OUTPUT)  
DCK_A  
MIN  
100  
MAX UNIT  
fclock  
tC  
Clock frequency, DCK_A  
Cycle time, DCK_A(1)  
N/A  
N/A  
N/A  
N/A  
N/A  
400 MHz  
DCK_A  
2475.3  
1093  
1093  
100  
ps  
ps  
ps  
tW(H)  
tW(L)  
tt  
Pulse duration, high  
DCK_A  
Pulse duration, low  
DCK_A  
Transition time, tt= tf/tr  
DCK_A  
400  
ps  
ps  
ps  
tosu  
toh  
fclock  
tC  
Output Setup time at max clock rate(2)  
Output hold time at max clock rate(2)  
Clock frequency, DCK_B  
Cycle time, DCK_B(1)  
SCA, DDA(15:0)  
SCA, DDA(15:0)  
DCK_B  
438  
DCK_A↑↓  
DCK_A↑↓  
N/A  
438  
100  
400 MHz  
N/A  
DCK_B  
2475.3  
1093  
1093  
100  
ps  
ps  
ps  
tW(H)  
tW(L)  
tt  
Pulse duration, high  
N/A  
DCK_B  
Pulse duration, low  
N/A  
DCK_B  
Transition time, tt= tf/tr  
N/A  
DCK_B  
400  
250  
ps  
ps  
ps  
ps  
tosu  
toh  
Output Setup time at max clock rate(2)  
Output hold time at max clock rate(2)  
Output Skew, Channel A to Channel B  
SCA, DDB(15:0)  
SCA, DDB(15:0)  
438  
DCK_B↑↓  
DCK_B↑↓  
DCK_A↑  
438  
tsk  
DCK_B↑  
(1) The minimum cycle time (tc) for DCK_A and DCL_B includes 1.0% spread spectrum modulation. User must verify that DMD can  
support this rate.  
(2) Output Setup and Hold times for DMD clock frequencies below the maximum can be calculated as follows: tosu(fclock) = tosu(fmax) +  
250000 × (1/fclock 1/400) and toh(fclock) = toh(fmax) + 250000 × (1/fclock 1/400) where fclock is in MHz.  
6.12 Synchronous Serial Port (SSP) Interface Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
SSP Primary  
tsu  
tsu  
th  
Setup time, SSPx_DI valid before SSPx_CLK  
Setup time, SSPx_DI valid before SSPx_CLK  
Hold time, SSPx_DI valid after SSPx_CLK  
Hold time, SSPx_DI valid after SSPx_CLK  
Transition time, SSPx_DI, tt= tf/tr  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
th  
0
tt  
20% to 80% reference points  
(signal)  
1.5  
SSP Secondary  
tsu  
tsu  
th  
Setup time, SSPx_DI valid before SSPx_CLK  
12  
12  
12  
12  
ns  
ns  
ns  
ns  
ns  
Setup time, SSPx_DI valid before SSPx_CLK  
Hold time, SSPx_DI valid after SSPx_CLK  
Hold time, SSPx_DI valid after SSPx_CLK  
Transition time, SSPx_DI, tt= tf/tr  
th  
tt  
20% to 80% reference points  
(signal)  
1.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLPC4430  
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6.13 Programmable Output Clocks Switching Characteristics  
over operating free air temperature range, CL(min timing) = 5 pF, CL(max timing) = 50 pF (unless otherwise noted)  
PARAMETER  
Clock frequency, OCLKA(1)  
Cycle Time, OCLKA  
TEST CONDITIONS  
TO (OUTPUT)  
OCLKA  
OCLKA  
MIN  
MAX UNIT  
fclock  
tC  
0.787  
50 MHz  
20 1270.6  
ns  
ns  
tW(H)  
Pulse Duration, high(2)  
50% to 50% reference points OCLKA  
(signal)  
(tC/2_-2)  
tW(L)  
Pulse Duration, low(2)  
50% to 50% reference points OCLKA  
(signal)  
(tC/2_-2)  
ns  
ps  
Jitter  
OCLKA  
OCLKB  
OCLKB  
350  
fclock  
tC  
Clock frequency, OCLKB(1)  
Cycle Time, OCLKB  
Pulse Duration, high(2)  
0.787  
50 MHz  
20 1270.6  
ns  
ns  
tW(H)  
50% to 50% reference points OCLKB  
(signal)  
(tC/2_-2)  
tW(L)  
Pulse Duration, low(2)  
50% to 50% reference points OCLKB  
(signal)  
(tC/2_-2)  
ns  
ps  
Jitter  
OCLKB  
OCLKC  
OCLKC  
350  
fclock  
tC  
Clock frequency, OCLKC(1)  
Cycle Time, OCLKC(2)  
Pulse Duration, high  
0.787  
50 MHz  
20 1270.6  
ns  
ns  
tW(H)  
50% to 50% reference points OCLKC  
(signal)  
(tC/2_-2)  
tW(L)  
Pulse Duration, low(2)  
Jitter  
50% to 50% reference points OCLKC  
(signal)  
(tC/2_-2)  
ns  
ps  
OCLKC  
350  
(1) The frequency of OCLKA thru OCLKC is programmable.  
(2) The Duty Cycle of OCLKA thru OCLKC is within +/- 2 ns of 50%.  
6.14 Synchronous Serial Port Interface (SSP) Switching Characteristics  
over operating free-air temperature range, CL(min timing) = 5 pF, CL(max timing) = 50 pF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
FROM (INPUT)  
TO (OUTPUT)  
MIN  
MAX UNIT  
fclock  
Clock Frequency,  
SSPx_CLK  
N/A  
N/A  
SSPx_CLK  
73 25000  
kHz  
tc  
Cycle time, SSPx_CLK  
Pulse Duration, high  
SSPx_CLK  
SSPx_CLK  
0.040  
40%  
13.6  
µs  
tW(H)  
50% to 50% reference N/A  
points (signal)  
tW(L)  
Pulse Duration, low  
50% to 50% reference N/A  
points (signal)  
SSPx_CLK  
40%  
SSP Primary (1)  
tpd  
Output Propagation, Clock  
SSPx_DO  
SSPx_DO  
-5  
-5  
5
5
ns  
ns  
SSPx_CLK↓  
to Q, SSPx_DO(2)  
tpd  
Output Propagation, Clock  
to Q, SSPx_DO(2)  
SSPx_CLK↑  
SSP Secondary (1)  
tpd  
Output Propagation, Clock  
SSPx_DO  
SSPx_DO  
0
0
34  
34  
ns  
ns  
SSPx_CLK↓  
SSPx_CLK↑  
to Q, SSPx_DO(2)  
tpd  
Output Propagation, Clock  
to Q, SSPx_DO(2)  
(1) The SSP can be used as an SSP Primary, or as an SSP Secondary. When used as a Primary, the SSP can be configured to sample DI  
with the same internal clock edge used to transmit the next DO, which provides a full cycle rather than a half cycle timing path, allowing  
operation at higher SPI clock frequencies.  
(2) The SSP can be configured into four different operational modes/configurations.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6-1. SSP Clock Operational Modes  
SPI Clocking Mode  
SPI Clock Polarity (CPOL)  
SPI Clock Phase (CPHA)  
0
1
2
3
0
0
1
1
0
1
0
1
6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics  
over operating free-air temperature range, CL(min timing) = 5 pF, CL(max timing) = 85 pF (unless otherwise noted)  
PARAMETER  
FROM INPUT  
TO OUTPUT  
MIN  
MAX  
UNIT  
tpd  
Output Propagation, Clock to Q  
TDO1  
3
12  
ns  
TCK↓  
6-1. System Oscillators  
6-2. Power Up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6-3. Power Down  
6-4. I/O Boundary Scan  
6-5. Programmable Output Clocks  
6-6. Port1, Port2, and Port3 Input Interface  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
6-7. Synchronous Serial Port InterfacePrimary  
6-8. Synchronous Serial Port InterfaceSecondary  
6-9. DMD LVDS Interface  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
7 Detailed Description  
7.1 Overview  
As with prior DLP electronics solutions, image data is 100% digital from the DLPC4430 input port to the image  
projected on to the display screen. The image stays in digital form and is never converted into an analog signal.  
The DLPC4430 processes the digital input image and converts the data into bit-plane format as needed by the  
DMD. The DLPC4430 display controller is optimized for high-resolution and high-brightness display applications.  
Applications include home theatre, smart display, digital signage, and laser TV.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 System Reset Operation  
7.3.1.1 Power-Up Reset Operation  
Immediately following a power-up event, the DLPC4430 hardware automatically brings up the primary PLL and  
places the controller in normal power mode. Then, the hardware follows the standard system reset procedure  
(see 7.3.1.2).  
7.3.1.2 System Reset Operation  
Immediately following any type of system reset (power-up reset, PWRGOOD reset, watchdog timer timeout,  
lamp-strike reset), the DLPC4430 device automatically returns to NORMAL power mode in the following state:  
All GPIO are tristated.  
The primary PLL remains active (it is reset only after a power-up reset sequence) and most of the derived  
clocks are active. However, only those resets associated with the ARM9 processor and its peripherals are  
released (the ARM9 is responsible for releasing all other resets).  
ARM9 associated clocks default to their full clock rates. (Boot-up is a full speed.)  
All front-end clocks derived are disabled.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
The PLL feeding the LVDS DMD I/F (PLLD) defaults to its power-down mode and all derived clocks are  
inactive with corresponding resets asserted. (The ARM9 is responsible for enabling these clocks and  
releasing associated resets.)  
LVDS I/O defaults to its power-down mode with outputs tristated.  
All resets output by the DLPC4430 device remain asserted until released by the ARM9 (after boot-up).  
The ARM9 processor boots-up from external flash.  
When the ARM9 boots-up, the ARM9 API:  
Configures the programmable DDR Clock Generator (DCG) clock rates (that is, the DMD LVDS I/F rate)  
Enables the DCG PLL (PLLD) while holding divider logic in reset  
When the DCG PLL locks, ARM9 software sets DMD clock rates  
API software then releases DCG divider logic resets, which in turn, enable all derived DCG clocks  
Release external resets  
Application software then typically waits for a wake-up command (through the soft power switch on the projector)  
from the end user. When the projector is requested to wake-up, the software places the ASIC back in normal  
mode, re-initialize clocks, and resets as required.  
7.3.2 Spread Spectrum Clock Generator Support  
The DLPC4430 controller supports limited, internally-controlled, spread spectrum clock spreading on the DMD  
interface. The purpose of this is to frequency spread all signals on this high-speed, external interface to reduce  
EMI emissions. Clock spreading is limited to triangular waveforms. The DLPC4430 controller provides  
modulation options of 0%, +/-0.5% and +/-1.0% (center-spread modulation).  
7.3.3 GPIO Interface  
The DLPC4430 controller provides 83 software-programmable, general-purpose I/O pins. Each GPIO pin is  
individually configurable as either input or output. In addition, each GPIO output can be either configured as  
push-pull or open-drain. Some GPIO have one or more alternate-use modes, which are also software  
configurable. The reset default for all GPIO is as an input signal. However, any alternate function connected to  
these GPIO pins, with the exception of general purpose clocks and PWM generation, stay in reset. When  
configured as open-drain, the outputs must be externally pulled-up (to the 3.3-V supply). External pull-up or  
pulldown resistors may be required to ensure stable operation before software is able to configure these ports.  
7.3.4 Source Input Blanking  
Vertical and horizontal blanking requirements for both input ports are defined as follows (See Video Timing  
Parameter Definitions).  
Minimum port 1 and port 2 vertical blanking  
Vertical back porch (VBP): 370 µs  
Vertical front porch (VFP): 1 line  
Total vertical blanking (TVB): 370 µs + 2 lines  
Minimum port1 and port 2 horizontal blanking  
Horizontal back porch (HBP): 10 pixels  
Horizontal front porch (HFP): 0 pixels  
Total horizontal blanking (THB): 80 pixels  
7.3.5 Video Graphics Processing Delay  
The DLPC4430 controller introduces a variable number of field/ frame delays dependent on the source type and  
selected processing steps performed on the source. For optimum audio/ video synchronization this delay must  
be matched in the audio path. The following tables define various video delay scenarios to aid in audio matching.  
Frame and Fields in table refer to source frames and fields.  
For 2-D sources, Nis defined to be the ratio of the primary channel source frame rate (or field rate for  
interlaced video) to the display frame/ field rate.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
For 3-D sources, Mis defined to be the ratio of the primary channel source frame rate (or field rate for  
interlaced video) required to obtain both the left and right image, to the display frame/field rate (The rate at  
which each eye is displayed).  
7-1. Primary Channel/Video-Graphics Processing Delay  
Source  
48 Hz Graphics  
Frame Rate Conversion  
FRC Type  
Sync (1:1)  
Sync (1:1)  
Sync (1:1)  
Sync (1:1)  
Formatter Buffer  
Total Delay  
1 + N Frames  
1 + N Frames  
1 + N Frames  
1 + N Frames  
1 Frame  
N Frames  
50 Hz Graphics  
1 Frame  
N Frames  
N Frames  
N Frames  
60 Hz Graphics  
1 Frame  
100 and 120 Hz Graphics  
1 Frame  
100 and 120 Hz Graphics  
(3D)  
1 Frame  
Sync (1:2)  
M Frames  
1 + M Frames  
7.3.6 Program Memory Flash/SRAM Interface  
The DLPC4430 controller provides three external program memory chip selects:  
PM_CSZ_0 available for optional SRAM or flash device (128 Mb)  
PM_CSZ_1 dedicated CS for boot flash device (ie. Standard NOR-type flash, 128 Mb)  
PM_CSZ_2 available for optional SRAM or flash device (128 Mb)  
Flash and SRAM access timing is software programmable up to 31 wait states. Wait state resolution is 6.7 ns in  
normal mode and 53.33 ns in low power modes. Wait state program values for typical flash access times are  
shown in the 7-2.  
7-2. Wait State Program Values for Typical Flash Access Times  
Normal Mode (1)  
Low Power Mode(1)  
Formula to Calculate the  
Required Wait State Value  
= Roundup  
(Device_Access_Time / 53.33 ns)  
= Roundup (Device_Access_Time / 6.7 ns)  
Max Supported Device Access  
Time  
207 ns  
1660 ns  
(1) Assumes a maximum single direction trace length of 75 mm.  
Note that when another device such as an SRAM or additional flash is used in conjunction with the boot flash,  
care must be taken to keep stub length short and located as close as possible to the flash end of the route.  
The DLPC4430 controller provides enough Program Memory Address pins to support a flash or SRAM device up  
to 128 Mb. For systems not requiring this capacity, up to two address pins can be used as GPIO instead.  
Specifically, the two most significant address bits (i.e. PM_ADDR_22 and PM_ADDR_21) are shared on pins  
GPIO_36 and GPIO_35 respectively. Like other GPIO pins, these pins float in a high-impedance input state  
following reset; therefore, if these GPIO pins are to be reconfigured as Program Memory Address pins, they  
require board-level pull-down resistors to prevent any flash address bits from floating until software is able to  
reconfigure the pins from GPIO to Program Memory Address. Also note that until software reconfigures the pins  
from GPIO to Program Memory Address, upper portions of flash memory are not accessible.  
7-3 shows typical GPIO_35 and GPIO36 pin configuration for various flash sizes.  
7-3. Typical GPIO_35 and GPIO_36 Pin Configurations for Various Flash Sizes  
FLASH SIZE  
32 Mb or less  
64 Mb  
GPIO_36 Pin Configuration  
GPIO_35 Pin Configuration  
GPIO_36  
GPIO_35  
GPIO_36  
PM_ADDR_21(1)  
PM_ADDR_21(1)  
128 Mb  
PM_ADDR_22(1)  
(1) Board-level pulldown resistor required.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
7.3.7 Calibration and Debug Support  
The DLPC4430 controller contains a test point output port, TSTPT_(7:0), which provides selected system  
calibration support as well as ASIC debug support. These test points are inputs while reset is applied and switch  
to outputs when reset is released. The state of these signals is sampled upon the release of system reset and  
the captured value configures the test mode until the next time reset is applied. Each test point includes an  
internal pull-down resistor and thus external pull-ups are used to modify the default test configuration. The  
default configuration (x00) corresponds to the TSTPT_(7:0) outputs being driven low for reduce switching activity  
during normal operation. For maximum flexibility, an option to jumper to an external pull-up is recommended for  
TSTPT_(3:0). Note that adding pull-up to TSTPT_(7:4) may have adverse affects for normal operation and are  
not recommended. Note that these external pull-ups are only sampled upon a zero to one transition on  
POSENSE and thus changing their configuration after reset has been released does not have any effect until the  
next time reset is asserted and released. 7-4 defines the test mode selection for 3 of the 16 programmable  
scenarios defined by TSTPT_(3:0):  
7-4. Test Mode Selection  
No Switching Activity  
System Calibration  
ARM Debug Signal Set  
x1  
TSTPT(3:0) Capture Value  
TSTPT(0)  
x0  
0
x8  
Vertical Sync  
ARM9_Debug (0)  
ARM9_Debug (1)  
ARM9_Debug (2)  
ARM9_Debug (3)  
ARM9_Debug (4)  
ARM9_Debug (5)  
ARM9_Debug (6)  
ARM9_Debug (7)  
TSTPT(1)  
0
Delayed CW Index  
Sequence Index  
CW Spoke Test Pt  
CW Revolution Test Pt  
Reset Seq. Aux Bit 0  
Reset Seq. Aux Bit 1  
Reset Seq. Aux Bit 2  
TSTPT(2)  
0
TSTPT(3)  
0
TSTPT(4)  
0
TSTPT(5)  
0
TSTPT(6)  
0
TSTPT(7)  
0
7.3.8 Board Level Test Support  
The in-circuit tristate enable signal (ICTSEN) is a board level test control signal. By driving ICTSEN to a logic  
high state, all controller outputs (except TDO1 and TDO2) are tristated.  
The DLPC4430 controller also provides JTAG boundary scan support on all I/O except non-digital I/O and a few  
special signals. 7-5 defines these exceptions.  
7-5. DLPC4430 Signals Not Covered by JTAG  
SIGNAL NAME  
HW_TEST_EN  
MOSC  
PKG BALL  
M25  
M26  
N26  
MOSCN  
USB_DAT_N  
USB_DAT_P  
TCK  
C5  
D6  
N24  
TDI  
N25  
TRSTZ  
M23  
N23  
TDO1  
TDO2  
N22  
TMS1  
P25  
TMS2  
P26  
7.4 Device Functional Modes  
The DLPC4430 has two functional modes which are enabled via software command via the Host control  
interface. These modes are Standby and Active.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLPC4430  
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
7.4.1 Standby Mode  
The system is powered up and active, however, some blocks within the controller have been shut down to  
conserve power. Only the µProcessor and its peripherals are active (supporting a dormant projector waiting to be  
woken up). In this mode the DMD is parked and no image can be displayed.  
7.4.2 Active Mode  
The system is powered up and fully operational, capable of projecting internal or external video sources.  
7.4.2.1 Normal Configuration  
This configuration enables the full functionality of the DLPC4430.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DLPC4430 display controller coupled with supported DMDs comprise the chipset. The controller integrates  
all system image processing, DMD control and data formatting onto a single integrated circuit (IC), as well as  
LED or LPCW illumination systems and multiple image processing algorithms. Applications include Home  
Theatre, Smart Display, Digital Signage, and Laser TV.  
8.2 Typical Application  
The DLPC4430 controller is ideal for applications requiring high brightness and high resolution displays. When  
one DLPC4430 display controller is combined with the DLP DMD, a power management and motor driver device  
(DLPA100), and other electrical, optical and mechanical components the chipset enables bright, affordable, high  
resolution display solutions. A typical DLP system application using the DLPC4430 controller and supported DLP  
DMD is shown below.  
8-1. Typical LED Display Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLPC4430  
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
12V  
12V  
1.21V  
1.8V  
3.3V  
5V  
1.21V  
1.8V  
3.3V  
5V  
DLPA100  
Controller  
PMIC  
DLPA100  
Controller  
PMIC  
Flash  
(23) (16)  
CW Driver  
CW Driver  
ADDR  
DATA  
Wheel Motor #2  
CTRL  
Wheel Motor #1  
CTRL  
CW_INDEX1  
CW_INDEX1  
FE CTRL  
DATA  
3D L/R  
CTRL  
2xLVDS  
SCP CTRL  
DLPC4430  
Controller  
Front End Device  
DLP DMD  
1.8 V  
USB CTRL  
GPIO  
1.15V  
1.8V  
3.3V  
VBIAS  
VOFFSET  
VRESET  
CTRL  
3.3V  
DMD PMIC  
(Power Management IC)  
(3)  
I2C  
EEPROM  
TI DLP chipset  
Third party component  
8-2. Typical LPCW Display Application  
8.2.1 Design Requirements  
The display controller is the digital interface between the DMD and the rest of the system. The display controller  
takes digital input from front end digital receivers and drives the DMD over a high speed interface. The display  
controller also generates the necessary signals (data, protocols, timings) required to display images on the  
DMD. Some systems require a dual controller to format the incoming data before sending it to the DMD. Reliable  
operation of the DMD is only insured when the DMD and the controller are used together in a system. In addition  
to the DLP devices included in the chipset, other devices may be needed such as a flash part to store the  
software and firmware.  
8.2.1.1 Recommended MOSC Crystal Oscillator Configuration  
8-1. Crystal Port Characteristics  
PARAMETER  
NOMINAL  
UNIT  
pF  
MOSC TO GROUND Capacitance  
MOSCZ TO GROUND Capacitance  
1.5  
1.5  
pF  
8-2. Recommended Crystal Configuration  
PARAMETER  
Crystal circuit configuration  
Crystal type  
RECOMMENDED  
Parallel resonant  
Fundamental (1st harmonic)  
20  
UNIT  
Crystal nominal frequency  
Crystal frequency temperature stability  
MHz  
PPM  
+/30  
Overall crystal frequency tolerance (including  
accuracy, stability, aging, and trim sensitivity)  
PPM  
+/100  
Crystal Equivalent Series Resistor (ESR)  
Crystal load  
50 max  
20  
Ω
pF  
pF  
Crystal shunt load  
7 max  
100  
RS drive resistor (nominal)  
Ω
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
8-2. Recommended Crystal Configuration (continued)  
PARAMETER  
RECOMMENDED  
UNIT  
MΩ  
pF  
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor (MOSC)  
CL2 external crystal load capacitor (MOSCN)  
1
See (1)  
See (1)  
.
.
pF  
A ground isolation ring around the crystal is  
recommended.  
PCB layout  
(1) Typical drive level with the XSA020000FK1H-OCX Crystal (ESRmax = 40 Ω) = 50 µW.  
8-3. Recommended Crystal Oscillator Configuration  
Typically, the external crystal oscillator stabilizes within 50 ms after stable power is applied.  
8.2.2 Detailed Design Procedure  
For connecting the DLPC4430 controller and the DLP DMD together, see the reference design schematic. The  
layout guidelines must be followed to achieve a reliable system. To complete the DLP system, an optical module  
or light engine is required that contains the DLP DMD, associated illumination sources, optical elements, and  
necessary mechanical components.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
9 Power Supply Recommendations  
9.1 System Power Regulations  
It is strongly recommended that the VDD18_PLLD, VDD18_PLLM1, and VDD18_PLLM2 power feeding internal  
PLLs be derived from an isolated linear regulator in order to minimize the AC Noise component. The  
VDD11_PLLD, VDD11_PLLM1, VDD11_PLLM2, and VDD11_PLLS can be derived from the same regulator as  
the core VDD11, but they have to be filtered.  
9.2 System Power-Up Sequence  
Although the DLPC4430 controller requires an array of power supply voltages (1.15V, 1.8V, 3.3V), there are no  
restrictions regarding the relative order of power supply sequencing for both power-up and power-down  
scenarios. Similarly, there is no minimum time between powering-up or powering-down the different supplies  
feeding the DLP controller. However, note that it is not uncommon for there to be power sequencing  
requirements for the devices that share the supplies with the DLP controller.  
1.15V core power is applied whenever any I/O power is applied to ensures the state of the associated I/O that  
are powered are controlled to a known state. Thus, it is recommended to apply core power first. Other  
supplies are applied only after the 1.1V core has ramped up.  
All DLPC4430 device power must be applied before POSENSE is asserted to ensure proper power-up  
initialization.  
Typically the DLPC4430 controller power-up sequencing is handled by external hardware. An external power  
monitor will hold the controller in system reset during power-up (i.e. POSENSE = 0). During this time all DLP  
controller I/Os are tri-stated. The primary PLL (PLLM1) is released from reset upon the low to high transition of  
POSENSE but the controller keeps the rest of the device in reset for an additional 60 ms to allow the PLL to lock  
and stabilize its outputs. After this 60 ms delay the ARM-9 related internal resets are de-asserted causing the  
microprocessor to begin its boot-up routine.  
9-1. System Power-Up Sequence  
9.3 Power-On Sense (POSENSE) Support  
In order to set up the power monitor to trip within the DLPC4430 controller minimum supply voltage  
specifications, it is recommended that the external power monitor generating POSENSE targets its threshold to  
90% of the minimum supply voltage specifications and ensures that POSENSE remains low a sufficient amount  
of time for all supply voltages to reach minimum device requirements and stabilize. Note that the trip voltage for  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
detecting the loss of power, as well as the reaction time to respond to a low voltage condition is not critical for  
POSENSE as PWRGOOD is used for this purpose. As such, PWRGOOD has critical requirements in these  
areas.  
9.4 System Environment and Defaults  
9.4.1 DLPC4430 System Power-Up and Reset Default Conditions  
Following system power-up, the DLPC4430 controller performs a power-up initialization routine that defaults the  
device to a normal power mode, in which ARM9-related clocks are enabled at their full rate and associated  
resets are released. Most other clocks default to disabled state with associated resets asserted until released by  
the processor. In addition, the default for system power gating enables all power. These same defaults are also  
applied as part of all system reset events (Watch Dog timer timeout etc.) that occur without removing or cycling  
power, with the possible exception of power for the LVDS I/O and internal DRAM. For an extended reset  
condition, the OEM is expected to place the controller in Low Power mode prior to reset, in which case the 1.8V  
power for the LVDS I/O and internal DRAM are disabled. When this reset is released, the 1.8V power does not  
get enabled until the ARM9 has been initialized and is executing the system initialization routines.  
Following power-up or system reset initialization, the ARM9 boots from an external flash memory after which it  
enables the 1.8V power (from the DLPA100), enables the rest of the controller clocks, and initializes the internal  
DRAM. Once system initialization is complete the Application software determines if and when to enter low  
power mode.  
9.4.2 1.15V System Power  
The DLPC4430 controller can support a low cost power delivery system with a single 1.15V power source  
derived from a switching regulator. To enable this approach, appropriate filtering must be provided for the 1.1V  
power pins of the PLLs.  
9.4.3 1.8V System Power  
It is recommended that the DLPC4430 controller power delivery system provides two independent 1.8V power  
sources. One of the 1.8V power sources is used to supply 1.8V power to the controller LVDS I/O and internal  
DRAM. Power for these functions is fed from a common source which is recommended to be a linear regulator.  
The second 1.8V power source is used (along with appropriate filtering as discussed in the PCB layout  
guidelines for internal ASIC PLL power section of this document) to supply all of the DLPC4430 controller  
internal PLLs. In order to keep this power as clean as possible, a dedicated linear regulator for the 1.8V power to  
the PLLs is recommended.  
9.4.4 3.3V System Power  
The DLPC4430 controller can support a low cost power delivery system with a single 3.3V power source derived  
from a switching regulator. This 3.3V source supplies power to all LVTTL I/O and the Crystal Oscillator cell. The  
3.3V power must remain active in all power modes for which 1.1V core power is applied.  
9.4.5 Power Good (PWRGOOD) Support  
The PWRGOOD signal is defined as an early warning signal that alerts the DLPC4430 controller a specified  
amount of time before the DC supply voltages drop below specifications, which allows the controller to park the  
DMD and to place the system into reset, ensuring the integrity of future operation. For practical reasons, it is  
recommended that the monitor sensing PWRGOOD be on the input side of supply regulators.  
9.4.6 5V Tolerant Support  
With the exception of USB_DAT, the DLPC4430 controller does not support any other 5V tolerant I/Os. However,  
note that source signals ALF_HSYNC, ALF_VSYNC and I2C typically have 5V requirements and special  
measures must be taken to support them. Also, 5V to 3.3V level shifter is recommended.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
10 Layout  
10.1 Layout Guidelines  
To achieve the needed thermal connectivity, 2-ounce copper planes in the PCB design are recommended.  
10.1.1 PCB Layout Guidelines for Internal DLPC4430 Power  
The following guidelines to achieve desired controller performance relative to internal PLLs are recommended:  
The DLPC4430 controller contains four PLLs (PLLM1, PLLM2, PLLD and PLLS), each of which have a  
dedicated 1.15V digital supply, and three (PLLM1, PLLM2 and PLLD) which have a dedicated 1.8-V analog  
supply. It is important to have filtering on the supply pins that covers a broad frequency range. Each 1.15V  
PLL supply pin must have individual high frequency filtering in the form of a ferrite bead and a 0.1µF ceramic  
capacitor. These components must be located very close to the individual PLL supply balls. The impedance  
of the ferrite bead must be greater than that of the capacitor at frequencies above 10MHz. The 1.15V to the  
PLL supply pins must also have low frequency filtering in the form of an RC filter. This filter can be common  
to all the PLLs. The voltage drop across the resistor is limited by the 1.15V regulator tolerance and the  
DLPC4430 device voltage tolerance. A resistance of 0.36 Ωand a 100 µF ceramic are recommended.  
The analog 1.8V PLL power pins must have a similar filter topology as the 1.15V. In addition, it is  
recommended that the 1.8V be generated with a dedicated linear regulator.  
When designing the overall supply filter network, care must be taken to ensure no resonance occurs.  
Particular care must be taken around the 1 to 2MHz band, as this coincides with the PLL natural loop  
frequency.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
10-1. PLL Filter Layout  
High frequency decoupling is required for both 1.15V and 1.8V PLL supplies and must be provided as close as  
possible to each of the PLL supply package pins. It is recommended to place decoupling capacitors under the  
package on the opposite side of the board. Use high quality, low-ESR, monolithic, surface mount capacitors.  
Typically 0.1µF for each PLL supply is sufficient. The length of a connecting trace increases the parasitic  
inductance of the mounting and thus, tracing should be avoided, allowing the via to butt up against the land  
itself. Additionally, the connecting trace has to be made as wide as possible. Further improvement can be made  
by placing vias to the side of the capacitor lands or doubling the number of vias.  
The location of bulk decoupling depends on the system design.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
10.1.2 PCB Layout Guidelines for Auto-Lock Performance  
One of the most important factors in getting good performance from Auto-Lock is to design the PCB with the  
highest signal integrity possible by following the recommendations below:  
Place the ADC chip as close to the VESA/Video connectors as possible.  
Avoid crosstalk to the analog signals by keeping them away from digital signals  
Do not place the digital ground or power planes under the analog area between the VESA connector to the  
ADC chip.  
Avoid crosstalk onto the RGB analog signals, by separating them from the VESA Hsync and Vsync signals.  
Analog power must not be shared with the digital power directly.  
Try to keep the trace lengths of the RGB as equal as possible.  
Use good quality (1%) termination resistors for the RGB inputs to the ADC  
If the green channel must be connected to more than the ADC green input and ADC sync-on-green input,  
provide a good quality high impendence buffer to avoid adding noise to the green channel.  
10.1.3 DMD Interface Considerations  
High speed interface waveform quality and timing on the DLPC4430 controller (that is, the LVDS DMD Interface)  
is dependent on the total length of the interconnect system, the spacing between traces, the characteristic  
impedance, etch losses, and how well matched the lengths are across the interface. Thus ensuring positive  
timing margin requires attention to many factors.  
As an example, DMD Interface system timing margin can be calculated as follows:  
Setup Margin = (DLPC4430 output setup) (DMD input setup) (PCB routing mismatch) (PCB SI  
degradation)  
Hold-time Margin = (DLPC4430 output hold) (DMD input hold) (PCB routing mismatch) (PCB SI  
degradation)  
Where PCB SI degradation is signal integrity degradation due to PCB effects, which include simultaneously  
switching output (SSO) noise, cross-talk and inter-symbol interference (ISI) noise. The controller I/O timing  
parameters as well as DMD I/O timing parameters can be easily found in their corresponding data sheets.  
Similarly, PCB routing mismatch can be budgeted and met through controlled PCB routing. However, PCB SI  
degradation is not so straight forward.  
In an attempt to minimize the signal integrity analysis, the following PCB design guidelines are provided as a  
reference of an interconnect system that satisfies both waveform quality and timing requirements (accounting for  
both PCB routing mismatch and PCB SI degradation). Variation from these recommendations may also work, but  
have to be confirmed with PCB signal integrity analysis or lab measurements  
PDB Design:  
Asymmetric Dual Stripline  
1.0 oz copper (1.2 mil)  
0.5 oz copper (0.6 mil)  
50 ohms (+/10%)  
Configuration  
Etch Thickness  
Flex Etch Thickness  
Single Ended Signal Impedance  
Differential Signal Impedance  
100 ohms differential (+/10%)  
PCB Stackup:  
Reference plane 1 is assumed to be a ground plane for proper return  
path  
Reference plane 2 is assumed to be the I/O power plane or ground  
Dielectric FR4, (Er):  
4.2 (nominal)  
5.0 mil (nominal)  
34.2 mil (nominal)  
Signal trace distance to reference plane 1 (H1)  
Signal trace distance to reference plane 2 (H2)  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
10-2. PCB Stackup Geometries  
10-1. General PCB Routing (Applies to All Corresponding PCB Signals)  
PARAMETER  
APPLICATION  
SINGLE-ENDED SIGNAL DIFFERENTIAL PAIRS  
UNIT  
Escape Routing in Ball  
Field  
4 (0.1)  
4 (0.1)  
mil (mm)  
Line width (W)(1)  
PCB Etch Data or Control  
PCB Etch Clocks  
7 (0.18)  
7 (0.18)  
4.25 (0.11)  
4.25 (0.11)  
mil (mm)  
mil (mm)  
Escape Routing in Ball  
Field  
4 (0.1)  
4 (0.1)  
mil (mm)  
Minimum Line spacing to  
other signals (S)  
PCB Etch Data or Control  
PCB Etch Clocks  
10 (0.25)  
20 (0.51)  
20 (0.51)  
20 (0.51)  
mil (mm)  
mil (mm)  
(1) Line width is expected to be adjusted to achieve impedance requirements.  
10-2. DMD I/F, PCB Interconnect Length Matching Requirements  
SIGNAL GROUP LENGTH MATCHING  
I/F  
SIGNAL GROUP  
REFERENCE SIGNAL  
MAX MISMATCH  
UNIT  
SCA_P,SCA_N,  
DDA_P(15:0),  
DDA_N(15:0)  
DMD (LVDS)  
DCKA_P, DCKA_N  
mil (mm)  
+/-150 (+/3.81)  
SCB_P,SCB_N,  
DDB_P(15:0),  
DDB_N(15:0)  
DMD (LVDS)  
DCKB_P, DCKB_N  
mil (mm)  
+/-150 (+/3.81)  
Number of layer changes:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLPC4430  
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
Single ended signals: Minimize  
Differential signals: Individual differential pairs can be routed on different layers but the signals of a given pair  
typically does not change layers.  
Termination requirements:  
DMD InterfaceNone, the DMD receiver is differentially terminated to 100 ohms internally  
Connector (DMD-LVDS I/F bus only)High Speed Connectors that meet the following requirements must be  
used:  
Differential Crosstalk  
<5 %  
Differential Impedance  
75 ohms125 ohms  
Routing requirements for right angle connectors:  
When using right angle connectors, P-N pairs have to be routed in same row to minimize delay mismatch and  
propagation delay difference for each row has to be accounted for on associated PCB etch lengths.  
10.1.4 Layout Example  
10-3. Layer 3  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
10-4. Layer 4  
10.1.5 Thermal Considerations  
The underlying thermal limitation for the DLPC4430 controller is that the maximum operating junction  
temperature (TJ) not be exceeded (this is defined in the 6.3). This temperature is dependent on operating  
ambient temperature, airflow, PCB design (including the component layout density and the amount of copper  
used), power dissipation of the DLPC6421 device and power dissipation of surrounding components. The  
DLPC4430 package is designed primarily to extract heat through the power and ground planes of the PCB, thus  
copper content and airflow over the PCB are important factors.  
The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is  
based on maximum DLPC4430 power dissipation and RθJA at 1 m/s of forced airflow, where RθJA is the thermal  
resistance of the package as measured using a JEDEC defined standard test PCB. This JEDEC test PCB is not  
necessarily representative of the DLPC4430 PCB, and thus the reported thermal resistance may not be accurate  
in the actual product application. Although the actual thermal resistance may be different, it is the best  
information available during the design phase to estimate thermal performance. However, after the PCB is  
designed and the product is built, it is highly recommended that thermal performance be measured and  
validated.  
To do this, the top center case temperature has to be measured under the worst case product scenario (max  
power dissipation, max voltage, max ambient temp) and validated not to exceed the maximum recommended  
case temperature (TC). This specification is based on the measured φJT for the DLPC4430 package and  
provides a relatively accurate correlation to junction temperature. Note that care must be taken when measuring  
this case temperature to prevent accidental cooling of the package surface. A small (approximately 40 gauge)  
thermocouple is recommended. The bead and the thermocouple wire must contact the top of the package and  
be covered with a minimal amount of thermally conductive epoxy. The wires must be routed closely along the  
package and the board surface to avoid cooling the bead through the wires.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DLPC4430  
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Video Timing Parameter Definitions  
Active Lines Per Frame (ALPF)Defines the number of lines in a Frame containing displayable data: ALPF  
is a subset of the TLPF.  
Active Pixels Per Line (APPL)Defines the number of pixel clocks in a line containing displayable data:  
APPL is a subset of the TPPL  
Horizontal Back Porch Blanking (HBP)Number of blank pixel clocks after Horizontal Sync but before the  
first active pixel. Note: HBP times are reference to the leading (active) edge of the respective sync signal  
Horizontal Front Porch Blanking (HFP)Number of blank pixel clocks after the last active pixel but before  
Horizontal Sync.  
Horizontal Sync (HS)Timing reference point that defines the start of each horizontal interval (line). The  
absolute reference point is defined by the activeedge of the HS signal. The activeedge (either  
rising or falling edge as defined by the source) is the reference from which all Horizontal Blanking parameters  
are measured.  
Total Lines Per Frame (TLPF)Defines the Vertical Period (or Frame Time) in lines: TLPF = Total number  
of lines per frame (active and inactive).  
Total Pixel Per Line (TPPL)Defines the Horizontal Line Period in pixel clocks: TPPL = Total number of  
pixel clocks per line (active and inactive).  
Vertical Back Porch Blanking (VBP)Number of blank lines after Vertical Sync but before the first active  
line.  
Vertical Front Porch Blanking (VFP)Number of blank lines after the last active line but before Vertical  
Sync.  
Vertical Sync (VS)Timing reference point that defines the start of the vertical interval (frame). The absolute  
reference point is defined by the activeedge of the VS signal. The activeedge (either rising or falling  
edge as defined by the source) is the reference from which all Vertical Blanking parameters are measured.  
TPPL  
Vertical Back Porch (VBP)  
APPL  
Horizontal  
Back  
Porch  
(HBP)  
Horizontal  
Front  
Porch  
TLPF  
ALPF  
(HFP)  
Vertical Front Porch (VFP)  
11-1. Timing Parameter Diagram  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
11.2.2 Device Nomenclature  
11-1. Part Number Description  
TI PART NUMBER  
DESCRIPTION  
DLPC4430  
DLPC4430 Digital Controller  
11.2.3 Device Markings  
11.2.3.1 Device Marking  
11-2. DLPC4430 Device Markings  
Marking Definitions:  
Line 1: DLP Device Name followed by TI Part Number  
XXX: ZPC Package designator  
Line 2: Vendor Information  
Line 3: SSSSSSYYWWMMM-QQ Package Assembly information  
SSSSSS: Vendor Country  
YYWW: Vendor Year and Week Code (YY = Year :: WW = Week)  
MMM: Vendor Manufacturing code (ex. HAL, HBL, HAF)  
QQ: Qualification level (optional)  
Line 4: LLLLLLLe1 Manufacturing Information  
LLLLLLL: Manufacturing Lot code  
G1: Green package designator  
11.3 Documentation Support  
11.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLPC4430:  
DLPA100 Controller Power Management and Motor Driver Data Sheet  
DLPA300 DMD Power Management and Motor Driver Data Sheet  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DLPC4430  
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
11.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
ARM946is a trademark of ARM.  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DLPC4430  
 
 
 
 
 
DLPC4430  
www.ti.com.cn  
ZHCSO16A DECEMBER 2021 REVISED FEBRUARY 2023  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DLPC4430  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC4430ZPC  
ACTIVE  
BGA  
ZPC  
516  
40  
TBD  
Call TI  
Call TI  
0 to 55  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLPC4430ZPC

DLP® display controller for1080p and WUXGA DMD | ZPC | 516 | 0 to 55
TI

DLPC6401

DLP® display controller for high-brightness portable displays
TI

DLPC6401ZFF

DLP® display controller for high-brightness portable displays | ZFF | 419 | 0 to 55
TI

DLPC6540

适用于 DLP471TP(0.47 英寸 4K UHD)数字微镜器件 (DMD) 的 DLP® 显示控制器
TI

DLPC6540ZDC

DLP® display controller for DLP471TP (0.47 4K UHD) DMD | ZDC | 676 | 0 to 70
TI

DLPC7540

DLP® display controller for 4K UHD and 1080p DMD
TI

DLPC7540ZDC

DLP® display controller for 4K UHD and 1080p DMD | ZDC | 676 | 0 to 55
TI

DLPC900

适用于 DLP6500、DLP670S、DLP500YX 和 DLP9000 数字微镜器件的数字控制器
TI

DLPC900AZPC

Digital controller for DLP6500, DLP670S, DLP500YX & DLP9000 digital micromirror devices | ZPC | 516 | 0 to 55
TI

DLPC910

适用于 DLP6500FLQ、DLP6500FYE 和 DLP9000X/9000XUV 数字微镜器件的数字控制器
TI

DLPC910ZYR

Digital controller for DLP6500FLQ, DLP6500FYE & DLP9000X/9000XUV digital micromirror devices | ZYR | 676 | 0 to 85
TI

DLPD3V3LC

3.3V LOW CAPACITANCE BIDIRECTIONAL TVS
DIODES