TPS65581PWP [TI]

具有低侧栅极驱动器的 4.5V 至 20V 输入、3.3V 3A SWIFT™ 同步降压转换器 | PWP | 20 | -40 to 125;
TPS65581PWP
型号: TPS65581PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低侧栅极驱动器的 4.5V 至 20V 输入、3.3V 3A SWIFT™ 同步降压转换器 | PWP | 20 | -40 to 125

栅极驱动 开关 光电二极管 驱动器 转换器
文件: 总26页 (文件大小:1202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
4.5V 18V 输入电压 1.5A2.5A1.5A 三路同步降压转换器  
查询样品: TPS65581  
1
特性  
应用范围  
23  
高级 D-CAP2™ 控制模式  
针对广泛应用的低功耗系统中的负载点调节  
快速瞬态响应  
数字电视电源  
环路补偿无需外部部件  
与陶瓷输出电容器兼容  
网络互联家庭终端设备  
数字机顶盒 (STB)  
DVD 播放器,刻录机  
游戏控制台和其它设备  
宽输入电压范围:4.5V 18V  
输出电压范围:0.76V 7V  
针对低占空比应用对高效集成场效应晶体管 (FET)  
进行了优化  
说明  
TPS65581 是一款三路、高级 D-CAP2™ 模式同步降  
压转换器。 TPS65581 可帮助系统设计人员通过成本  
有效性、低组件数量和低待机电流解决方案来完成多种  
终端设备的电源总线调节器集。 TPS65581 的主控制  
环路采用高级 D-CAP2™ 模式控制,无需外部补偿组  
件即可提供快速的瞬态响应。 高级 D-CAP2™ 模式控  
制支持较高负载条件下脉宽调制 (PWM) 模式与 Eco-  
mode™ 之间的无缝转换,从而使得 TPS65581 能够  
在轻负载期间保持高效率。 此器件能够适应诸如高分  
子有机半导体固体电容器 (POSCAP) 或者高分子聚合  
物电容器 (SP-CAP) 等低等效串联电阻 (ESR) 输出电  
容器,以及超低 ESR,陶瓷电容器。 此器件在输入电  
压为 4.5V 18V 之间时提供便捷且有效的运行。  
对于 2.5A 电流为 160mΩ(高侧)和  
130mΩ(低侧)  
对于 1.5A 电流为 250mΩ(高侧)和  
230mΩ(低侧)  
高初始基准精度  
低侧 RDS(on) 低损耗电流感测  
固定 1.2ms 软启动  
非吸入预偏置软启动  
700kHz 开关频率  
逐周期过流限制控制  
过流限制 (OCL),过压 (OVP),欠压 (UVP),欠压  
闭锁 (UVLO),热关断 (TSD) 保护  
针对过载保护的断续定时器  
电源正常 (PowerGood)  
TPS65581 采用 4.4mm x 6.5mm 20 引脚 TSSOP  
(PWP) 封装,额定环境温度范围为 -40°C 85°C。  
带有集成式升压 P 通道金属氧化物半导体 (PMOS)  
开关的自适应栅极驱动器  
由于热补偿 RDS(on) 的值为 4000ppm/℃ ,过流保  
(OCP) 恒定  
20 引脚散热薄型小外形尺寸封装 (HTSSOP)  
自动跳跃 Eco-mode ™ 为了在轻负载下实现高效  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
D-CAP2, Eco-mode are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC38  
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
HTSSOP APPLICATION DIAGRAM  
Input Voltage  
20  
19  
18  
17  
VBST2  
SW2  
1
VIN  
C32  
L12  
VO2  
2
3
VIN  
C22  
C11  
VBST1  
PGND2  
L11  
C31  
VO1  
PGND  
4
SW1  
EN2  
C21  
5
6
PGND1  
VREG5  
PG  
PGND3 16  
TPS65581  
PGND  
L13  
C4  
PGND  
C23  
VO3  
HTSSOP20  
(PowerPAD)  
15  
14  
SW3  
C33  
PGND  
7
8
9
VBST3  
EN1  
13  
EN3  
R1  
R13  
R23  
VFB1  
VFB3 12  
R21  
R12  
R22  
11  
VFB2  
10 GND  
SGND  
SGND  
SGND  
SGND  
ORDERING INFORMATION  
ORDERING PART NUMBER  
TPS65581PWPR  
TA  
–40to 85℃  
PACKAGE(1)  
PINS  
20  
OUTPUT SUPPLY  
Tape-and-Reel  
Tube  
PWP  
TPS65581PWP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
20  
VIN, EN1, EN2, EN3  
VBST1, VBST2, VBST3  
26  
VBST1, VBST2, VBST3 (10ns transient)  
28  
Input voltage range  
VBST1–SW1, VBST2–SW2, VBST3–SW3  
VFB1, VFB2, VFB3  
6.5  
6.5  
20  
V
V
SW1, SW2, SW3  
SW1, SW2, SW3 (10ns transient)  
VREG5, PG  
–3  
22  
–0.3  
–0.3  
6.5  
0.3  
2
Output voltage range  
Electrostatic discharge  
PGND1, PGND2, PGND3  
Human Body Model (HBM)  
Charged Device Model (CDM)  
kV  
V
500  
85  
Operating ambient temperature range, TA  
Storage temperature range, TSTG  
Junction temperature range, TJ  
–40  
–55  
–40  
°C  
°C  
°C  
150  
150  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to IC GND terminal.  
THERMAL INFORMATION  
TPS65581  
THERMAL METRIC(1)  
UNITS  
PWP (20) PINS  
θJA  
Junction-to-ambient thermal resistance  
40.0  
24.8  
21.3  
0.8  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.1  
1.7  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
VALUES  
UNIT  
MIN  
4.5  
MAX  
18  
Supply input voltage range  
Input voltage range  
VIN  
V
VBST1, VBST2, VBST3  
VBST1, VBST2, VBST3 (10ns transient)  
VBST1–SW1, VBST2–SW2, VBST3–SW3  
VFB1, VFB2, VFB3  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.0  
–3  
24  
27  
5.7  
5.7  
18  
V
EN1, EN2, EN3  
SW1, SW2, SW3  
18  
SW1, SW2, SW3 (10ns transient)  
VREG5, PG  
21  
–0.1  
–0.1  
–40  
–40  
5.7  
0.1  
85  
Output voltage range  
V
PGND1, PGND2, PGND3  
TA  
TJ  
Operating free-air temperature  
Operating Junction Temperature  
°C  
°C  
150  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS  
over recommended free-air temperature range, VIN = 12 V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
TA = 25°C, EN1 = EN2 = EN3 = 5 V,  
IIN  
VIN supply current  
2.9  
1.8  
3.6  
3
mA  
µA  
VFB1 = VFB2 = VFB3 = 1 V, non-  
switching  
IVINSDN  
VIN shutdown current  
TA = 25°C, EN1 = EN2 = EN3 = 0 V  
VFB VOLTAGE  
TA = 25°C, CH1 = 3.3 V, CH2 = 1.2 V,  
CH3 = 1.5 V  
On the basis of 25°C(2)  
(1)  
VVFBTHL  
VFBx threshold voltage  
Temperature coefficient  
752  
764  
776  
180  
mV  
TCVFBx  
VREG5 OUTPUT  
–180  
ppm/℃  
VREG5 Rising  
4
0.3  
5.5  
VUVREG5  
VREG5 UVLO Threshold  
V
Hysteresis  
VVREG5  
VREG5 output voltage  
Output current  
TA = 25°C, VIN = 12 V, IVREG = 5 mA  
VIN = 6 V, TA = 25°C  
V
IVREG5  
20  
mA  
MOSFETs  
rDS(on)H2  
rDS(on)H2  
High side switch resistance for 2.5A  
Low side switch resistance for 2.5A  
TA = 25, VBST2-SW2 = 5.5 V (2) , CH2  
TA = 25(2), CH2  
160  
130  
mΩ  
mΩ  
TA = 25, VBSTx-SWx = 5.5 V (2) , CH1,  
CH3  
TA = 25(2), CH1, CH3  
rDS(on)Hx  
rDS(on)Lx  
High side switch resistance for 1.5A  
Low side switch resistance for 1.5A  
250  
230  
mΩ  
mΩ  
MIN ON/OFF TIME and SW frequency  
tONminx  
tOFFminx  
Fsw  
Min On Time  
Minoff time  
TA = 25, VOUTx = 0.8V(2)  
TA = 25, VFBx = 0.7 V  
TA = 25℃  
80  
ns  
ns  
220  
700  
SW-frequency  
kHz  
SOFT START  
TSS  
Soft-start time  
Internal soft-start time  
1.2  
ms  
(1) x means either 1 or 2 or 3, that is, VFBx means VFB1, VFB2 or VFB3.  
(2) Specified by design. Not production tested.  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VIN = 12 V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD  
VPGTH  
PG from lower VOx (going high)  
PG from higher VOx (going low)  
VPG = 0.5 V  
84%  
116%  
85  
PG threshold  
RPG  
PG pull-down resistance  
PG delay time  
50  
130  
Ω
Delay for PG going high  
Delay for PG going low  
1.5  
ms  
µs  
TPGDLY  
2
TPGCOMPSS  
PGOOD comparator start-up delay  
PG comparator wake-up delay  
2.8  
ms  
LOGIC THRESHOLD  
VENH  
ENx H-level threshold voltage  
2
V
V
VENL  
ENx L-level threshold voltage  
ENx input resistance  
0.4  
RENx_IN  
ENx = 12 V  
225  
400  
900  
kΩ  
CURRENT LIMIT  
IOCL1  
LOUT = 3.3 µH(3), VOUT1 = 3.3 V  
LOUT = 2.2 µH(3) VOUT2 = 1.2 V  
LOUT = 2.2 µH(3) VOUT3 = 1.5 V  
1.7  
2.9  
1.8  
2.0  
3.5  
2.2  
3.4  
4.9  
3.6  
A
A
A
IOCL2  
Current limit  
IOCL3  
UNDER VOLTAGE PROTECTION  
VUVP  
Output UVP trip threshold  
Output UVP delay time  
Output UVP enable delay  
measured on VFBx  
UVP Enable Delay  
63%  
68%  
0.5  
73%  
TUVPDEL  
TUVPEN  
ms  
ms  
2.8  
THERMAL SHUTDOWN  
Shutdown temperature(3)  
Hysteresis(3)  
155  
30  
TSD  
Thermal shutdown threshold  
°C  
(3) Specified by design. Not production tested.  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
DEVICE INFORMATION  
HTSSOP PACKAGE  
(TOP VIEW)  
20  
19  
18  
17  
16  
15  
VBST2  
VIN  
1
SW2  
2
3
VIN  
VBST1  
PGND2  
4
SW1  
EN2  
5
6
PGND1  
VREG5  
PG  
PGND3  
SW3  
TPS65581  
HTSSOP 20  
(PowerPAD)  
7
8
9
14  
13  
VBST3  
EN1  
EN3  
VFB1  
VFB3 12  
11  
VFB2  
10 GND  
PIN FUNCTIONS(1)  
PIN  
I/O  
DESCRIPTION  
NAME  
HTSSOP20  
VIN  
1,2  
I
I
Power input and connects to both high side NFET drains. Supply Input for 5.5V linear regulator.  
VBST1, VBST2,  
VBST3  
Supply input for high-side NFET gate drive circuit. Connect 0.1µF ceramic capacitor between  
VBSTx and SWx pins. An internal diode is connected between VREG5 and VBSTx  
3, 14, 20  
SW1, SW2,  
SW3  
Switch node connections for both the high-side NFETs and low–side NFETs. Input of current  
comparator.  
4,15,19  
5,16,18  
6
I/O  
I/O  
O
PGND1,  
PGND2,  
PGND3  
Ground returns for low-side MOSFETs. Input of current comparator.  
Output of 5.5V linear regulator. Bypass to GND with a high-quality ceramic capacitor of at least  
1.0µF. VREG5 is active when ENx is high level.  
VREG5  
PG  
7
O
I
Open drain power good output. Low means the output voltage is out of regulation.  
Enable. Pull High to according converter.  
EN1, EN2, EN3  
8,13,17  
VFB1, VFB2,  
VFB3  
9,11,12  
10  
I
Advanced D-CAP2 feedback inputs. Connect to output voltage with resistor divider.  
Signal GND. Connect sensitive VFBx returns to GND at a single point.  
GND  
I/O  
I/O  
Exposed  
Thermal Pad  
Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be  
connected to GND.  
Back side  
(1) x means either 1, 2 or 3, VFBx means VFB1, VFB2 or VFB3.  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
Circuitry for single channel, x = 1,2 or 3  
VIN  
-32  
UVx  
VBSTx  
.
OVx  
+20  
VOx  
SWx  
Err  
Refx  
Comp  
SSx  
PGND  
PGNDx  
VFBx  
+16%  
PGx  
/
Ref_OCL  
PGND  
-16%  
SWx  
SWx  
OCPx  
ZCx  
CHx Min-off timer  
Common Circuitry  
ENx  
EN  
Logic  
ENintx  
ENSSx  
Control  
VIN  
and  
Protection  
Logic  
OVx  
UVx  
VREG5  
GND  
PG  
VREG5  
SSx  
UVLO  
TSD  
Fixed  
SoftStart  
.
ENSSx  
VBG  
Refx  
Bandgap  
UVLO  
TSD  
UVLO  
TSD  
PG1  
PG2  
PG3  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
OVERVIEW  
The TPS65581 is a 1.5A, 2.5A, 1.5A triple synchronous step-down (buck) converter with two integrated N-  
channel MOSFETs for each channel. It operates using Advanced D-CAP2™ control mode. The fast transient  
response of Advanced D-CAP2™ control reduces the required output capacitance to meet a specific level of  
performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and  
special polymer types.  
DETAILED DESCRIPTION  
PWM Operation  
The main control loop of the TPS65581 is a fixed switching frequency pulse width modulation (PWM) controller  
that supports a proprietary advanced D-CAP2™ mode control. Advanced D-CAP2™ mode control combines  
constant switching frequency with an internal compensation circuit and low external component count  
configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the  
output.  
Auto-Skip Eco-mode™ Control  
The TPS65581 is designed with Auto-Skip Eco-mode™ to increase light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load  
current further decreases the converter run into discontinuous conduction mode. The transition point to the light  
load operation IOUT(LL) current can be calculated in Equation 1.  
V
IN - VOUT ´ V  
)
(
1
OUT  
IOUT(LL)  
=
´
2´L ´ fSW  
V
IN  
(1)  
PWM Frequency and Adaptive On-Time Control  
TPS65581 uses a advanced D-CAP2 mode control scheme and have a dedicated on board oscillator. The  
device runs with fixed frequency of 700 kHz.  
Soft Start and Pre-Biased Soft Start  
The TPS65581 has an internal, 1.2 ms, soft-start for each channel. When the ENx pin becomes high, an internal  
DAC begins ramping up the reference voltage to the PWM comparator. Smooth control of the output voltage is  
maintained during start up.  
The device contains a unique circuit to prevent current from being pulled from the output during startup if the  
output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start  
becomes greater than internal feedback voltage VFB), the controller slowly activates synchronous rectification by  
starting the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a  
cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter.  
This scheme prevents the initial sinking of the pre-biased output, and ensures that the output voltage (VOx)  
starts and ramps up smoothly into regulation from pre-biased startup to normal mode operation.  
Current Protection  
The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit and  
using HICCUP mode overcurrent protection. The switch current is monitored by measuring the low-side FET  
switch voltage between the SWx pin and PGNDx. This voltage is proportional to the switch current and the on-  
resistance of the FET. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOX. If the sensed voltage on the  
low side FET is above the voltage proportional to the current limit, the converter keeps the low-side switch on  
until the measured voltage falls below the voltage corresponding to the current limit and a new switching cycle  
begins. In subsequent switching cycles, the on-time is set to the value determined for CCM and the current is  
monitored in the same manner.  
8
Copyright © 2013, Texas Instruments Incorporated  
 
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
Following are some important considerations for this type of overcurrent protection. The load current one half of  
the peak-to-peak inductor current higher than the overcurrent threshold. Also when the current is being limited,  
the output voltage tends to fall as the demanded load current may be higher than the current available from the  
converter. When the over current condition is removed, the output voltage returns to the regulated value. This  
protection is non-latching.  
Lower than 1.5 A load current for CH1 and CH3 is required at the VOUT setting in high on-duty because the  
overcurrent limit function causes the degradation of load transient response.  
Hiccup Mode  
Hiccup mode of operation protects the power supply from being damaged during an ove-current fault condition.  
The operation of hiccup is as follows. If the OCL comparator circuit detects an over-current event the output  
voltage falls. When the feedback voltage falls below 68% of the reference voltage, the UVP comparator output  
goes high and an internal UVP delay counter begins counting. After counting UVP delay time, the TPS65581  
shuts off the power supply for a given time (7x UVP Enable Delay Time) and then tries to re-start the power  
supply. If the over-load condition has been removed, the power supply starts and operates normally; otherwise,  
the TPS65581 detects another overcurrent event and shuts off the power supply again, repeating the previous  
cycle. Excess heat due to overload lasts for only a short duration in the hiccup cycle, therefore the junction  
temperature of the power devices is much lower.  
POWERGOOD  
The TPS65581 has power-good output that are measured on VFBx. The power-good function is activated after  
the soft-start has finished. If the all output voltages of 3 channels are within 16% of the target voltage, the  
internal comparator detects the power good state and the power good signal becomes high after 1.5ms delay.  
During start-up, this internal delay starts after 1.5ms of the UVP Enable delay time to avoid a glitch of power-  
good signal. Even if at least one of the feedback voltages of 3 channels goes outside of ±16% of target value,  
the power-good signal becomes low after 2 µs.  
<Start up>  
Figure 1. Start up  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
<Vout Transient>  
Figure 2. VOUT Transient  
<Power Down>  
Figure 3. Power Down  
UVLO Protection  
Under voltage lock out protection (UVLO) monitors the voltage of the VREG5 pin. When the VREG5 voltage is  
lower than UVLO threshold voltage, the TPS65581 is shut down. As soon as the voltage increases above the  
UVLO threshold, the converter starts again.  
Thermal Shutdown  
TPS65581 monitors its temperature of itself. If the temperature exceeds the threshold value (typically 155°C), the  
device is shut down. When the temperature falls below the threshold, the IC starts again.  
When VIN starts up and VREG5 output voltage is below its nominal value, the thermal shutdown threshold is  
lower than 155. As long as VIN and VREG5 rise, TJ must be kept below 110.  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
TYPICAL CHARACTERISTICS  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5.0  
VIN = 12 V  
VIN = 12 V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
C001  
C002  
TJ Junction Temperature (ƒC)  
TJ Junction Temperature (ƒC)  
Figure 4. VIN Current vs Junction Temperature  
(VIN Current at All CHs Switching with IO = 0 A)  
Figure 5. VIN Current vs Junction Temperature  
(VIN Current at All CHs Non-switching, EN = H)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
50  
40  
30  
20  
10  
0
EN1  
EN2  
EN3  
VIN = 12 V  
0
50  
100  
150  
0
5
10  
15  
20  
±50  
C003  
TJ Junction Temperature (ƒC)  
EN Input Voltage (V)  
C019  
Figure 6. VIN Shutdown Current vs Junction Temperature  
Figure 7. EN Current vs EN Voltage  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
3.40  
VIN = 6 V  
3.38  
VIN = 12 V  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
VIN = 18 V  
1.19  
1.18  
1.17  
1.16  
1.15  
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
C004  
C005  
IOUT - Output Current (A)  
IOUT - Output Current (A)  
Figure 8. VOUT1 = 3.3 V Output Voltage vs Output Current  
Figure 9. VOUT2 = 1.2 V Output Voltage vs Output Current  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
1.55  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
1.54  
1.53  
1.52  
1.51  
1.5  
1.49  
1.48  
1.47  
1.46  
1.45  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
IOUT = 10 mA  
IOUT = 1 A  
16 18  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
0
2
4
6
8
10  
12  
14  
20  
C006  
IOUT - Output Current (A)  
C007  
VIN - Input Voltage (V)  
Figure 10. VOUT3 = 1.5 V Output Voltage vs Output Voltage  
Figure 11. VOUT1 = 3.3 V Output Voltage vs Input Voltage  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
1.55  
1.54  
1.53  
1.52  
1.51  
1.5  
1.19  
1.18  
1.17  
1.49  
1.48  
1.47  
IOUT = 10 mA  
IOUT = 1 A  
16 18  
IOUT = 10 mA  
IOUT = 1 A  
16 18  
1.16  
1.15  
1.46  
1.45  
0
2
4
6
8
10  
12  
14  
20  
0
2
4
6
8
10  
12  
14  
20  
C008  
C009  
VIN - Input Voltage (V)  
VIN - Input Voltage (V)  
Figure 12. VOUT2 = 1.2 V Output Voltage vs Input Voltage  
Figure 13. VOUT3 = 1.5 V Output Voltage vs Input Voltage  
V
= 3.3V  
O
V
O
= 1.2V  
V
OUT  
(50mV/div)  
V
OUT  
(50mV/div)  
I 2 (1A/div)  
OUT  
I 1 (1A/div)  
OUT  
100 Ps/div  
Figure 14. VOUT1 = 3.3V, 0A to 1.5A Load Transient  
100 Ps/div  
Figure 15. VOUT2 = 1 .2V, 0A to 2.5A Load Transient  
Response  
Response  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
O
= 1.5V  
V
(50mV/div)  
OUT  
I
3 (1A/div)  
OUT  
VIN = 6 V  
VIN = 12 V  
VIN = 18 V  
0.001  
0.01  
0.1  
1
10  
C010  
IOUT - Output Current (A)  
100 Ps/div  
Figure 16. VOUT3 = 1.5V, 0A to 1.5A Load Transient  
Response  
Figure 17. VOUT1 = 3.3V Light Load Efficiency vs Output  
Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
20  
10  
0
VIN=12V
V
= 18 V  
IN  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
C011  
C012  
IOUT - Output Current (A)  
IOUT - Output Current (A)  
Figure 18. VOUT2 = 1.2V Light Load Efficiency vs Output  
Current  
Figure 19. VOUT3=1.5V, Light Load Efficiency vs Output  
Current  
900  
900  
IOUT = 1 A  
IOUT = 1 A  
850  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
800  
750  
700  
650  
600  
550  
500  
450  
400  
0
5
10  
15  
20  
0
5
10  
15  
20  
C013  
C014  
VIN - Input Voltage (V)  
VIN - Input Voltage (V)  
Figure 20. VOUT1 = 3.3V Switching Frequency vs Input  
Voltage  
Figure 21. VOUT2 = 1.2V Switching Frequency vs Input  
Voltage  
Copyright © 2013, Texas Instruments Incorporated  
13  
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOUT = 1 A  
VIN = 12 V  
0
5
10  
15  
20  
0.01  
0.1  
1
10  
C015  
C016  
VIN - Input Voltage (V)  
IO - Output Current (A)  
Figure 22. VOUT3 = 1.5V Switching Frequency vs Input  
Voltage  
Figure 23. VOUT1 = 3.3V Switching Frequency vs Output  
Current  
800  
800  
VIN = 12 V  
VIN = 12 V  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
C017  
C018  
IO - Output Current (A)  
IO - Output Current (A)  
Figure 24. VOUT2 = 1.2V, Switching Frequency vs Output  
Current  
Figure 25. VOUT3 = 1.5V, Switching Frequency vs Output  
Current  
V 2 (10mV/div)  
O
V 1 (10mV/div)  
O
V
O
= 1.2V  
V
O
= 3.3V  
SW1 (5V/div)  
SW2 (5V/div)  
400 ns/div  
400 ns/div  
Figure 27. VOUT2 = 1.2V, Ripple Voltage at IOUT1 = 2.5A  
Figure 26. VOUT1 = 3.3V, Ripple Voltage at IOUT1 = 1.5A  
14  
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
V 3 (10mV/div)  
O
V
IN  
(50mV/div)  
V
O
= 1.5V  
V = 3.3V  
O
SW3 (5V/div)  
SW1(5V/div)  
400 ns/div  
400ns/div  
Figure 29. VOUT1 = 3.3V, VIN Ripple Voltage at IOUT1 =  
1.5A  
Figure 28. VOUT3 = 1.2V, Ripple Voltage at IOUT1 = 1.5A  
V
IN  
(50mV/div)  
V
IN  
(50mV/div)  
V
O
= 1.2V  
V = 1.5V  
O
SW3 (5V/div)  
SW2(5V/div)  
400ns/div  
400ns/div  
Figure 30. VOUT2 = 1.2V VIN Ripple at IOUT2 = 2.5A  
Figure 31. VOUT3 = 1.5V VIN Ripple at IOUT3 = 1.5A  
EN2 (10V/div)  
EN1 (10V/div)  
VREG5 (5V/div)  
VREG5 (5V/div)  
V 2 (0.5V/div)  
OUT  
V 1 (1V/div)  
OUT  
PG (5V/div)  
PG (5V/div)  
1 ms/div  
Figure 32. VOUT1 = 3.3V Soft-Start IOUT1 = 1.5A  
1 ms/div  
Figure 33. VOUT2 = 1.2V Soft-Start IOUT2 = 2.5A  
Copyright © 2013, Texas Instruments Incorporated  
15  
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25°C (unless otherwise noted)  
EN3 (10V/div)  
VREG5 (5V/div)  
V 3 (0.5V/div)  
OUT  
PG (5V/div)  
1 ms/div  
Figure 34. VOUT3 = 1.5V Soft-Start IOUT3 = 1.5A  
16  
Copyright © 2013, Texas Instruments Incorporated  
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
DESIGN GUIDE  
Step By Step Design Procedure  
To begin the design process, you must know a few application parameters:  
Input voltage range  
Output voltage  
Output current  
Input Voltage  
VBST2  
SW2  
20  
19  
18  
1
2
3
4
5
6
VIN  
C32  
L12  
VO2  
VIN  
C22  
C11  
VBST1  
PGND2  
L11  
C31  
VO1  
PGND  
SW1  
EN2  
17  
16  
C21  
PGND1  
PGND3  
PGND  
TPS65581  
L13  
C4  
PGND  
C23  
VO3  
HTSSOP20  
(PowerPAD)  
VREG5  
PG  
SW3 15  
C33  
PGND  
7
14  
VBST3  
EN1  
8
9
EN3 13  
R11  
R13  
R23  
VFB1  
12  
11  
VFB3  
VFB2  
R21  
R12  
R22  
10  
GND  
SGND  
SGND  
SGND  
SGND  
Figure 35. Schematic Diagram for the Design Example at VIN = 12V  
Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFBx pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using Equation 2 to calculate VOx  
.
To improve the efficiency at very light loads consider using larger value resistors, but too high resistance values  
will be more susceptible to noise and voltage errors due to the VFBx input current will be more noticeable.  
R1x  
æ
ö
VOX = 0.764´ 1+  
ç
÷
R2x  
è
ø
(2)  
(3)  
Output Filter Selection  
The output filter used with the TPS65581 is an LC circuit. This LC filter has double pole at:  
1
F =  
P
2p L1X ´ C2X  
Copyright © 2013, Texas Instruments Incorporated  
17  
 
 
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS65581. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls  
off at a –40 dB per decade rate and the phase drops rapidly. Advanced D-CAP2™ introduces a high frequency  
zero that reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade  
above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the  
double pole of Equation 3 is located below the high frequency zero but close enough that the phase boost  
provided by the high frequency zero provides adequate phase margin for a stable circuit. To meet this  
requirement, use the values recommended in Table 1.  
Table 1. Recommended Component Values  
OUTPUT VOLTAGE (V)  
R1x (kΩ)  
0.68  
R2x (kΩ)  
2.2  
L1x (µH)  
1.5 to 3.3  
1.5 to 3.3  
1.5 to 3.3  
1.5 to 3.3  
1.5 to 3.3  
2.2 to 4.7  
2.2 to 4.7  
2.2 to 4.7  
2.2 to 4.7  
C2x (µF)  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
0.82  
2.2  
1.27  
2.2  
2.15  
2.2  
3.00  
2.2  
4.98  
2.2  
7.36  
2.2  
12.4  
2.2  
6.5  
16.5  
2.2  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4,  
Equation 5 and Equation 6. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
For the calculations, use 700 kHz as the switching frequency, fSW. Make sure the chosen inductor is rated for the  
peak current of Equation 5 and the RMS current of Equation 6.  
V
- VOX  
VOX  
IN(MAX)  
DIL1X  
=
´
V
L1x ´ ƒSW  
IN(MAX)  
(4)  
(5)  
DIL1X  
IL1XPEAK = IOX  
+
2
1
+
12  
2
2
IL1X(RMS)  
=
IOX  
DIL1X  
(6)  
For the above design example, the calculated peak current is 2.46 A and the calculated RMS current is 2.02 A.  
for Vo1. The inductor used is a TDK CLF7045-1R5N with a rated current of 7.3 A based on the inductance  
change and of 4.9A based on the temperature rise.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS65581 is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 22µF to 68µF. Use Equation 7 to  
determine the required RMS current rating for the output capacitor(s).  
VOX ´ VIN - VOX  
(
)
12 ´ V ´LIX ´ ƒSW  
IC2X(RMS)  
=
IN  
(7)  
For this design two TDK C3216X5R0J226M 22 µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.19A and each output capacitor is rated for 4 A.  
Input Capacitor Selection  
The TPS65581 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. A ceramic capacitor over 10µF x 2 is recommended for the decoupling capacitor. Accordingly, 0.1 µF  
ceramic capacitors from pin 1 to ground is recommended to improve the stability and reduce the SWx node  
overshoots. The capacitor voltage rating needs to be greater than the maximum input voltage.  
18  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
 
TPS65581  
www.ti.com.cn  
ZHCSBO1 OCTOBER 2013  
Bootstrap Capacitor Selection  
A 0.1 µF ceramic capacitors must be connected between the VBSTx and SWx pins for proper operation. It is  
recommended to use ceramic capacitors with a dielectric of X5R or better.  
VREG5 Capacitor Selection  
A 1 µF ceramic capacitor must be connected between the VREG5 and GND pins for proper operation. It is  
recommended to use a ceramic capacitor with a dielectric of X5R or better.  
Thermal Information  
This 20-pin PWP package incorporates an exposed thermal pad that is designed to be directly to an external  
heartsick. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be  
used as a heartsick. In addition, through the use of thermal vias, the thermal pad can be attached directly to the  
appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a  
special heartsick structure designed into the PCB. This design optimizes the heat transfer from the integrated  
circuit (IC).  
For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating  
abilities, refer to the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature  
No. SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004.  
The exposed thermal pad dimensions for this package are shown in the following illustration.  
Figure 36. Thermal Pad Dimensions  
Copyright © 2013, Texas Instruments Incorporated  
19  
TPS65581  
ZHCSBO1 OCTOBER 2013  
www.ti.com.cn  
Layout Considerations  
1. Keep the input current loop as small as possible. And avoid the input switching current through the thermal  
pad.  
2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and  
inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the  
feedback pin of the device.  
3. Keep analog and non-switching components away from switching components.  
4. Make a single point connection from the signal ground to power ground.  
5. Do not allow switching currents to flow under the device.  
6. Keep the pattern lines for VIN and PGND broad.  
7. Exposed pad of device must be connected to PGND with solder.  
8. VREG5 capacitor should be placed near the device, and connected to PGND.  
9. Output capacitors should be connected with a broad pattern to the PGND.  
10. Voltage feedback loops should be as short as possible, and preferably with ground shield.  
11. Kelvin connections should be brought from the output to the feedback pin of the device.  
12. Providing sufficient vias is preferable for VIN, SW and PGND connection.  
13. PCB pattern for VIN, SW, and PGND should be as broad as possible.  
14. VIN Capacitor should be placed as near as possible to the device.  
Recommend to keep  
VIN INPUT  
BYPASS  
distance more than 3-4mm.  
VIN  
(to avoid noise scattering,  
CAPACITOR  
10mF x 2  
especially GND plane.)  
VIN HIGH  
FREQUENCY  
BYPASS  
CAPACITOR  
0.1mF  
Break Line * Flow of  
switching noise.  
Switching noise  
flows through IC  
and Cin.  
OUTPUT  
FILTER  
CAPACITOR  
1
2
3
20  
19  
VBST2  
SW2  
VIN  
VO2  
OUTPUT  
INDUCTOR  
VIN  
OUTPUT  
FILTER  
CAPACITOR  
BOOST  
CAPACITOR  
VBST1  
SW1  
18  
VO1  
PGND2  
GND PLANE  
OUTPUT  
INDUCTOR  
TO ENABLE  
CONTROL  
4
5
17  
16  
15  
EN2  
PGND1  
VREG5  
PG  
PGND3  
SW3  
GND PLANE  
6
7
OUTPUT  
INDUCTOR  
VO3  
14  
VBST3  
OUTPUT  
FILTER  
CAPACITOR  
TO ENABLE  
CONTROL  
8
9
EN1  
13 EN3  
Feedback  
resisters  
12  
VFB1  
VFB3  
Feedback  
resisters  
10  
VFB2  
11  
GND  
Feedback  
resisters  
VO3  
GND  
Keep  
distance more  
than 1 inch  
PLANE  
2,3 or bottom  
layer  
VO2  
VO1  
Figure 37. TPS65581 Layout  
20  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65581PWP  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
20  
20  
70  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS65581  
TPS65581  
TPS65581PWPR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS65581PWPR

具有低侧栅极驱动器的 4.5V 至 20V 输入、3.3V 3A SWIFT™ 同步降压转换器 | PWP | 20 | -40 to 125
TI

TPS65630ARTGR

AMOLED driver 32-WQFN -40 to 85
TI

TPS65631

双路输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源
TI

TPS65631DPDR

双路输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源 | DPD | 12 | -40 to 85
TI

TPS65631W

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源
TI

TPS65631WDSKR

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源 | DSK | 10 | -40 to 85
TI

TPS65632

三路输出 AMOLED 显示电源
TI

TPS65632A

三输出 AMOLED 显示屏电源
TI

TPS65632ARTER

三输出 AMOLED 显示屏电源 | RTE | 16 | -40 to 85
TI

TPS65632RTER

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65632RTET

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65640

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置
TI