V62/09647-01XA [TI]

增强型产品低功耗 C5507 定点 DSP | PGE | 144 | -55 to 85;
V62/09647-01XA
型号: V62/09647-01XA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品低功耗 C5507 定点 DSP | PGE | 144 | -55 to 85

控制器 微控制器 微控制器和处理器 外围集成电路 数字信号处理器 装置
文件: 总108页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SM320VC5507-EP  
Fixed-Point Digital Signal Processor  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SPRS613  
September 2009  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Contents  
1
2
Features ............................................................................................................................. 9  
1.1  
SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS ......................................... 9  
Introduction ...................................................................................................................... 10  
2.1  
2.2  
2.3  
Description ................................................................................................................. 10  
Pin Assignments ........................................................................................................... 11  
Signal Descriptions ........................................................................................................ 13  
3
Functional Overview .......................................................................................................... 23  
3.1  
Functional Block Diagram ................................................................................................ 23  
Memory ..................................................................................................................... 24  
3.2  
3.2.1  
On-Chip Dual-Access RAM (DARAM) ....................................................................... 24  
On-Chip Single-Access RAM (SARAM) ..................................................................... 24  
3.2.2  
3.2.3  
3.2.4  
On-Chip Read-Only Memory (ROM) ......................................................................... 24  
Memory Maps ................................................................................................... 25  
3.2.4.1 PGE Package Memory Map ...................................................................... 25  
Boot Configuration .............................................................................................. 26  
3.2.5  
3.3  
3.4  
Peripherals ................................................................................................................. 26  
Direct Memory Access (DMA) Controller ............................................................................... 27  
3.4.1  
DMA Channel Control Register (DMA_CCR) ............................................................... 27  
3.5  
3.6  
I2C Interface ................................................................................................................ 28  
Configurable External Buses ............................................................................................. 28  
3.6.1  
3.6.2  
3.6.3  
External Bus Selection Register (EBSR) .................................................................... 29  
Parallel Port ..................................................................................................... 30  
Parallel Port Signal Routing ................................................................................... 31  
3.7  
General-Purpose Input/Output (GPIO) Ports .......................................................................... 33  
3.7.1  
3.7.2  
3.7.3  
Dedicated General-Purpose I/O .............................................................................. 33  
Address Bus General-Purpose I/O ........................................................................... 34  
EHPI General-Purpose I/O .................................................................................... 36  
3.8  
3.9  
System Register ........................................................................................................... 37  
USB Clock Generation .................................................................................................... 38  
3.10 Memory-Mapped Registers .............................................................................................. 40  
3.11 Peripheral Register Description .......................................................................................... 42  
3.12 Interrupts .................................................................................................................... 52  
3.12.1 IFR and IER Registers ......................................................................................... 53  
3.12.2 Interrupt Timing ................................................................................................. 55  
3.12.3 Waking Up From IDLE Condition ............................................................................. 55  
3.12.3.1 Waking Up From IDLE With Oscillator Disabled ............................................... 55  
3.12.4 Idling Clock Domain When External Parallel Bus Operating in EHPI Mode ............................ 55  
4
Support ............................................................................................................................ 56  
4.1  
Notices Concerning JTAG (IEEE 1149.1) Boundary Scan Test Capability ........................................ 56  
4.1.1  
Initialization Requirements for Boundary Scan Test ....................................................... 56  
Boundary Scan Description Language (BSDL) Model ..................................................... 56  
4.1.2  
4.2  
4.3  
Documentation Support ................................................................................................... 56  
TMS320VC5507 Device Nomenclature ................................................................................ 57  
5
Electrical Specifications ..................................................................................................... 58  
5.1  
ABSOLUTE MAXIMUM RATINGS ...................................................................................... 58  
RECOMMENDED OPERATING CONDITIONS ....................................................................... 59  
5.2  
2
Contents  
Copyright © 2009, Texas Instruments Incorporated  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.2.1  
5.2.2  
5.2.3  
Recommended Operating Conditions for CVDD = 1.2 V (108 MHz) ..................................... 59  
Recommended Operating Conditions for CVDD = 1.35 V (144 MHz) .................................... 60  
Recommended Operating Conditions for CVDD = 1.6 V (200 MHz) ..................................... 61  
5.3  
ELECTRICAL CHARACTERISTICS .................................................................................... 62  
5.3.1  
5.3.2  
5.3.3  
Electrical Characteristics Over Recommended Operating Case Temperature Range for CVDD =  
1.2 V (108 MHz) (Unless Otherwise Noted) ................................................................ 62  
Electrical Characteristics Over Recommended Operating Case Temperature Range for CVDD  
=
1.35 V (144 MHz) (Unless Otherwise Noted) ............................................................... 63  
Electrical Characteristics Over Recommended Operating Case Temperature Range for CVDD  
=
1.6 V (200 MHz) (Unless Otherwise Noted) ................................................................ 64  
5.4  
ESD Performance ......................................................................................................... 65  
5.5  
5.6  
Timing Parameter Symbology ........................................................................................... 65  
Clock Options .............................................................................................................. 66  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
Internal System Oscillator With External Crystal ........................................................... 66  
Layout Considerations ......................................................................................... 66  
Clock Generation in Bypass Mode (DPLL Disabled) ...................................................... 67  
Clock Generation in Lock Mode (DPLL Synthesis Enabled) .............................................. 68  
Real-Time Clock Oscillator With External Crystal .......................................................... 69  
5.7  
5.8  
Memory Interface Timings ................................................................................................ 70  
5.7.1  
Asynchronous Memory Timings .............................................................................. 70  
Synchronous DRAM (SDRAM) Timings ..................................................................... 72  
5.7.2  
Reset Timings .............................................................................................................. 79  
5.8.1  
5.8.2  
5.8.3  
Power-Up Reset (On-Chip Oscillator Active) ............................................................... 79  
Power-Up Reset (On-Chip Oscillator Inactive) ............................................................. 80  
Warm Reset ..................................................................................................... 80  
5.9  
External Interrupt Timings ................................................................................................ 81  
5.10 Wake-Up From IDLE ...................................................................................................... 82  
5.11 XF Timings ................................................................................................................. 82  
5.12 General-Purpose Input/Output (GPIOx) Timings ...................................................................... 83  
5.13 TIN/TOUT Timings (Timer0 Only) ....................................................................................... 84  
5.14 Multichannel Buffered Serial Port (McBSP) Timings ................................................................. 85  
5.14.1 McBSP0 Timings ............................................................................................... 85  
5.14.2 McBSP1 and McBSP2 Timings ............................................................................... 86  
5.14.3 McBSP as SPI Master or Slave Timings .................................................................... 89  
5.14.4 McBSP General-Purpose I/O Timings ....................................................................... 94  
5.15 Enhanced Host-Port Interface (EHPI) Timings ........................................................................ 95  
5.16 I2C Timings ................................................................................................................ 101  
5.17 Universal Serial Bus (USB) Timings ................................................................................... 103  
5.18 ADC Timings .............................................................................................................. 104  
Mechanical Data .............................................................................................................. 105  
6
6.1  
Package Thermal Resistance Characteristics ....................................................................... 105  
Packaging Information ................................................................................................... 105  
6.2  
Copyright © 2009, Texas Instruments Incorporated  
Contents  
3
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
List of Figures  
2-1  
144-Pin PGE Low-Profile Quad Flatpack (Top View) ....................................................................... 11  
Block Diagram of the SM320VC5507 ......................................................................................... 24  
SM320VC5507 Memory Map................................................................................................... 25  
DMA_CCR Bit Locations ........................................................................................................ 27  
External Bus Selection Register................................................................................................ 29  
Parallel Port Signal Routing..................................................................................................... 33  
Parallel Port (EMIF) Signal Interface .......................................................................................... 33  
I/O Direction Register (IODIR) Bit Layout..................................................................................... 34  
I/O Data Register (IODATA) Bit Layout ....................................................................................... 34  
Address/GPIO Enable Register (AGPIOEN) Bit Layout..................................................................... 35  
Address/GPIO Direction Register (AGPIODIR) Bit Layout ................................................................. 35  
Address/GPIO Data Register (AGPIODATA) Bit Layout.................................................................... 35  
EHPI GPIO Enable Register (EHPIGPIOEN) Bit Layout.................................................................... 36  
EHPI GPIO Direction Register (EHPIGPIODIR) Bit Layout ................................................................ 36  
EHPI GPIO Data Register (EHPIGPIODATA) Bit Layout................................................................... 37  
System Register Bit Locations.................................................................................................. 37  
USB Clock Generation........................................................................................................... 38  
USB PLL Selection and Status Register Bit Layout ......................................................................... 38  
USB APLL Clock Mode Register Bit Layout .................................................................................. 39  
IFR0 and IER0 Bit Locations.................................................................................................... 53  
IFR1 and IER1 Bit Locations.................................................................................................... 54  
Device Nomenclature for the TMS320VC5507............................................................................... 57  
3.3-V Test Load Circuit .......................................................................................................... 65  
Internal System Oscillator With External Crystal............................................................................. 66  
Bypass Mode Clock Timings.................................................................................................... 68  
External Multiply-by-N Clock Timings.......................................................................................... 69  
Real-Time Clock Oscillator With External Crystal............................................................................ 70  
Asynchronous Memory Read Timings......................................................................................... 72  
Asynchronous Memory Write Timings......................................................................................... 72  
Three SDRAM Read Commands .............................................................................................. 74  
Three SDRAM WRT Commands............................................................................................... 75  
SDRAM ACTV Command....................................................................................................... 76  
SDRAM DCAB Command ...................................................................................................... 77  
SDRAM REFR Command....................................................................................................... 78  
SDRAM MRS Command ........................................................................................................ 79  
SDRAM Self-Refresh Command ............................................................................................... 79  
Power-Up Reset (On-Chip Oscillator Active) Timings....................................................................... 80  
Power-Up Reset (On-Chip Oscillator Inactive) Timings..................................................................... 80  
Reset Timings .................................................................................................................... 81  
External Interrupt Timings....................................................................................................... 82  
Wake-Up From IDLE Timings .................................................................................................. 82  
XF Timings ........................................................................................................................ 82  
General-Purpose Input/Output (IOx) Signal Timings ........................................................................ 83  
TIN/TOUT Timings When Configured as Inputs ............................................................................. 84  
TIN/TOUT Timings When Configured as Outputs ........................................................................... 84  
McBSP Receive Timings ........................................................................................................ 89  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
3-20  
4-1  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
5-10  
5-11  
5-12  
5-13  
5-14  
5-15  
5-16  
5-17  
5-18  
5-19  
5-20  
5-21  
5-22  
5-23  
5-24  
4
List of Figures  
Copyright © 2009, Texas Instruments Incorporated  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5-25  
5-26  
5-27  
5-28  
5-29  
5-30  
5-31  
5-32  
5-33  
5-34  
5-35  
5-36  
5-37  
5-38  
5-39  
5-40  
McBSP Transmit Timings ....................................................................................................... 89  
McBSP Timings as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 ................................................... 90  
McBSP Timings as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 ................................................... 92  
McBSP Timings as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 ................................................... 93  
McBSP Timings as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 ................................................... 94  
McBSP General-Purpose I/O Timings......................................................................................... 94  
HINT Timings ..................................................................................................................... 96  
EHPI Nonmultiplexed Read/Write Timings.................................................................................... 97  
EHPI Multiplexed Memory (HPID) Read/Write Timings Without Autoincrement......................................... 98  
EHPI Multiplexed Memory (HPID) Read Timings With Autoincrement.................................................... 99  
EHPI Multiplexed Memory (HPID) Write Timings With Autoincrement .................................................. 100  
EHPI Multiplexed Register Read/Write Timings ............................................................................ 100  
I2C Receive Timings............................................................................................................ 102  
I2C Transmit Timings ........................................................................................................... 103  
USB Timings .................................................................................................................... 104  
Full-Speed Loads ............................................................................................................... 104  
Copyright © 2009, Texas Instruments Incorporated  
List of Figures  
5
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
List of Tables  
2-1  
Pin Assignments for the PGE Package ....................................................................................... 12  
Signal Descriptions............................................................................................................... 13  
DARAM Blocks ................................................................................................................... 24  
SARAM Blocks ................................................................................................................... 24  
Boot Configuration Summary ................................................................................................... 26  
Synchronization Control Function .............................................................................................. 28  
External Bus Selection Register Bit Field Description....................................................................... 29  
SM320VC5507 Parallel Port Signal Routing.................................................................................. 31  
I/O Direction Register (IODIR) Bit Functions ................................................................................. 34  
I/O Data Register (IODATA) Bit Functions.................................................................................... 34  
Address/GPIO Enable Register (AGPIOEN) Bit Functions ................................................................. 35  
Address/GPIO Direction Register (AGPIODIR) Bit Functions.............................................................. 35  
Address/GPIO Data Register (AGPIODATA) Bit Functions ................................................................ 35  
EHPI GPIO Enable Register (EHPIGPIOEN) Bit Functions ................................................................ 36  
EHPI GPIO Direction Register (EHPIGPIODIR) Bit Functions............................................................. 36  
EHPI GPIO Data Register (EHPIGPIODATA) Bit Functions ............................................................... 37  
System Register Bit Fields ...................................................................................................... 37  
USB PLL Selection and Status Register Bit Functions...................................................................... 38  
USB APLL Clock Mode Register Bit Functions .............................................................................. 39  
M and D Values Based on MODE, DIV, and K............................................................................... 39  
CPU Memory-Mapped Registers............................................................................................... 40  
Idle Control, Status, and System Registers................................................................................... 42  
External Memory Interface Registers.......................................................................................... 42  
DMA Configuration Registers................................................................................................... 43  
Real-Time Clock Registers...................................................................................................... 45  
Clock Generator .................................................................................................................. 46  
Timers.............................................................................................................................. 46  
Multichannel Serial Port #0 ..................................................................................................... 46  
Multichannel Serial Port #1 ..................................................................................................... 47  
Multichannel Serial Port #2 ..................................................................................................... 48  
GPIO ............................................................................................................................... 49  
Device Revision ID............................................................................................................... 49  
I2C Module Registers ........................................................................................................... 49  
Watchdog Timer Registers...................................................................................................... 50  
USB Module Registers .......................................................................................................... 50  
Analog-to-Digital Controller (ADC) Registers................................................................................. 52  
External Bus Selection Register................................................................................................ 52  
Interrupt Table .................................................................................................................... 52  
IFR0 and IER0 Register Bit Fields ............................................................................................. 53  
IFR1 and IER1 Register Bit Fields ............................................................................................. 54  
Recommended Crystal Parameters............................................................................................ 66  
CLKIN Timing Requirements ................................................................................................... 67  
CLKOUT Switching Characteristics............................................................................................ 67  
CLKIN Timing Requirements ................................................................................................... 68  
Multiply-By-N Clock Option Switching Characteristics ...................................................................... 69  
Recommended RTC Crystal Parameters ..................................................................................... 70  
2-2  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
3-20  
3-21  
3-22  
3-23  
3-24  
3-25  
3-26  
3-27  
3-28  
3-29  
3-30  
3-31  
3-32  
3-33  
3-34  
3-35  
3-36  
3-37  
3-38  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
6
List of Tables  
Copyright © 2009, Texas Instruments Incorporated  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5-7  
Asynchronous Memory Cycle Timing Requirements ........................................................................ 70  
Asynchronous Memory Cycle Switching Characteristics.................................................................... 70  
Synchronous DRAM Cycle Timing Requirements ........................................................................... 72  
Synchronous DRAM Cycle Switching Characteristics....................................................................... 72  
Power-Up Reset (On-Chip Oscillator Active) Timing Requirements....................................................... 79  
Power-Up Reset (On-Chip Oscillator Inactive) Timing Requirements..................................................... 80  
Power-Up Reset (On-Chip Oscillator Inactive) Switching Characteristics ................................................ 80  
Reset Timing Requirements .................................................................................................... 80  
Reset Switching Characteristics ............................................................................................... 81  
External Interrupt Timing Requirements ...................................................................................... 81  
Wake-Up From IDLE Switching Characteristics ............................................................................. 82  
XF Switching Characteristics ................................................................................................... 82  
GPIO Pins Configured as Inputs Timing Requirements..................................................................... 83  
GPIO Pins Configured as Outputs Switching Characteristics .............................................................. 83  
TIN/TOUT Pins Configured as Inputs Timing Requirements .............................................................. 84  
TIN/TOUT Pins Configured as Outputs Switching Characteristics ........................................................ 84  
McBSP0 Timing Requirements ................................................................................................ 85  
McBSP0 Switching Characteristics ........................................................................................... 85  
McBSP1 and McBSP2 Timing Requirements ............................................................................... 86  
McBSP0 Switching Characteristics ........................................................................................... 87  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) ................................. 89  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) ............................ 90  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) ................................. 91  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) ............................ 91  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) ................................. 92  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) ............................ 92  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) ................................. 93  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) ............................ 93  
McBSP General-Purpose I/O Timing Requirements......................................................................... 94  
McBSP General-Purpose I/O Switching Characteristics .................................................................... 94  
EHPI Timing Requirements ..................................................................................................... 95  
EHPI Switching Characteristics ................................................................................................ 95  
I2C Signals (SDA and SCL) Timing Requirements......................................................................... 101  
I2C Signals (SDA and SCL) Timing Requirements......................................................................... 102  
Universal Serial Bus (USB) Characteristics ................................................................................. 103  
ADC Characteristics ............................................................................................................ 104  
Thermal Resistance Characteristics (Ambient) ............................................................................. 105  
Thermal Resistance Characteristics (Case)................................................................................. 105  
5-8  
5-9  
5-10  
5-11  
5-12  
5-13  
5-14  
5-15  
5-16  
5-17  
5-18  
5-19  
5-20  
5-21  
5-22  
5-23  
5-24  
5-25  
5-26  
5-27  
5-28  
5-29  
5-30  
5-31  
5-32  
5-33  
5-34  
5-35  
5-36  
5-37  
5-38  
5-39  
5-40  
5-41  
5-42  
6-1  
6-2  
Copyright © 2009, Texas Instruments Incorporated  
List of Tables  
7
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
8
List of Tables  
Copyright © 2009, Texas Instruments Incorporated  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Fixed-Point Digital Signal Processor  
Check for Samples: SM320VC5507-EP  
1
Features  
1
• High-Performance, Low-Power, Fixed-Point  
SMS320C5507 Digital Signal Processor  
• On-Chip Peripherals  
– Two 20-Bit Timers  
– Watchdog Timer  
– 9.26-, 6.95-, 5-ns Instruction Cycle Time  
– 108-, 144-, 200-MHz Clock Rate  
– One/Two Instruction(s) Executed per Cycle  
– Six-Channel Direct Memory Access (DMA)  
Controller  
– Dual Multipliers (Up to 400 Million  
– Three Multichannel Buffered Serial Ports  
(McBSPs)  
Multiply-Accumulates per Second (MMACS))  
– Two Arithmetic/Logic Units (ALUs)  
– Three Internal Data/Operand Read Buses  
and Two Internal Data/Operand Write Buses  
– Programmable Phase-Locked Loop Clock  
Generator  
– Seven (LQFP) or Eight (BGA) General-  
Purpose I/O (GPIO) Pins and a General-  
Purpose Output Pin (XF)  
– USB Full-Speed (12 Mbps) Slave Port  
Supporting Bulk, Interrupt and Isochronous  
Transfers  
– Inter-Integrated Circuit (I2C) Multi-Master and  
Slave Interface  
• 64K x 16-Bit On-Chip RAM, Composed of:  
– 64K Bytes of Dual-Access RAM (DARAM) 8  
Blocks of 4K x 16-Bit  
– 64K Bytes of Single-Access RAM (SARAM) 8  
Blocks of 4K x 16-Bit  
• 64K Bytes of One-Wait-State On-Chip ROM  
(32K x 16-Bit)  
• 8M x 16-Bit Maximum Addressable External  
Memory Space (Synchronous DRAM)  
• 16-Bit External Parallel Bus Memory  
Supporting Either:  
– Real-Time Clock (RTC) With Crystal Input,  
Separate Clock Domain, Separate Power  
Supply  
– 4-Channel (BGA) or 2-Channel (LQFP) 10-Bit  
Successive Approximation A/D  
– External Memory Interface (EMIF) With GPIO  
Capabilities and Glueless Interface to:  
• IEEE Std 1149.1(1) (JTAG) Boundary Scan Logic  
• Packages:  
Asynchronous Static RAM (SRAM)  
Asynchronous EPROM  
Synchronous DRAM (SDRAM)  
– 144-Terminal Low-Profile Quad Flatpack  
(LQFP) (PGE Suffix)  
• 1.2-V Core (108 MHz), 2.7-V – 3.6-V I/Os  
• 1.35-V Core (144 MHz), 2.7-V – 3.6-V I/Os  
• 1.6-V Core (200 MHz), 2.7-V – 3.6-V I/Os  
– 16-Bit Parallel Enhanced Host-Port Interface  
(EHPI) With GPIO Capabilities  
• Programmable Low-Power Control of Six  
Device Functional Domains  
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and  
Boundary Scan Architecture.  
• On-Chip Scan-Based Emulation Logic  
1.1 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS  
Controlled Baseline  
One Assembly/Test Site  
One Fabrication Site  
Available in Military (–55°C/125°C) Temperature Range(2)  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
(2) Additional temperature ranges are available - contact factory  
1
C55x, eXpressDSP, Code Composer Studio, DSP/BIOS, RTDX, XDS510, TMS320, TMS320C5000, TMS320C55x, TMS320C55x are  
trademarks of Texas Instruments.  
Copyright © 2009, Texas Instruments Incorporated  
Features  
9
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
2
Introduction  
This section describes the main features of the SM320VC5507, lists the pin assignments, and describes  
the function of each pin. This data manual also provides a detailed description section, electrical  
specifications, parameter measurement information, and mechanical data about the available packaging.  
NOTE  
This data manual is designed to be used in conjunction with theTMS320C55x DSP  
Functional Overview (literature number SPRU312), the TMS320C55x DSP CPU  
Reference Guide (literature number SPRU371), and the TMS320C55x DSP Peripherals  
Overview Reference Guide (literature number SPRU317).  
2
2.1 Description  
The SM320VC5507 fixed-point digital signal processor (DSP) is based on the SMS320C55x DSP  
generation CPU processor core. The C55x™ DSP architecture achieves high performance and low power  
through increased parallelism and total focus on reduction in power dissipation. The CPU supports an  
internal bus structure that is composed of one program bus, three data read buses, two data write buses,  
and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform  
up to three data reads and two data writes in a single cycle. In parallel, the DMA controller can perform up  
to two data transfers per cycle independent of the CPU activity.  
The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit  
multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional  
16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel  
activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit  
(DU) of the C55x CPU.  
The C55x DSP generation supports a variable byte width instruction set for improved code density. The  
Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues  
instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to AU and  
DU resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline  
flushes on execution of conditional instructions.  
The 128K bytes of on-chip memory on 5507 is sufficient for many hand-held appliances, portable GPS  
systems, wireless speaker phones, portable PDAs, and gaming devices. Many of these appliances  
typically require 64K bytes or more on-chip memory but less than 128K bytes of memory, and need to  
operate in standby mode for more than 60% to 70% of time. For the applications which require more than  
128K bytes of on-chip memory but less than 256K bytes of on-chip memory, Texas Instruments (TI) offers  
the TMS320VC5509A device, which is based on the TMS320C55x DSP core.  
The general-purpose input and output functions and the10-bit A/D provide sufficient pins for status,  
interrupts, and bit I/O for LCDs, keyboards, and media interfaces. The parallel interface operates in two  
modes, either as a slave to a microcontroller using the HPI port or as a parallel media interface using the  
asynchronous EMIF. Serial media is supported through three McBSPs.  
The 5507 peripheral set includes an external memory interface (EMIF) that provides glueless access to  
asynchronous memories like EPROM and SRAM, as well as to high-speed, high-density memories such  
as synchronous DRAM. Additional peripherals include Universal Serial Bus (USB), real-time clock,  
watchdog timer, and I2C multi-master and slave interface. Three full-duplex multichannel buffered serial  
ports (McBSPs) provide glueless interface to a variety of industry-standard serial devices, and  
multichannel communication with up to 128 separately enabled channels. The enhanced host-port  
interface (HPI) is a 16-bit parallel interface used to provide host processor access to 32K bytes of internal  
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2009, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
memory on the 5507. The HPI can be configured in either multiplexed or non-multiplexed mode to provide  
glueless interface to a wide variety of host processors. The DMA controller provides data movement for  
six independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit  
words per cycle. Two general-purpose timers, up to eight dedicated general-purpose I/O (GPIO) pins, and  
digital phase-locked loop (DPLL) clock generation are also included.  
The 5507 is supported by the industry’s award-winning eXpressDSP™, Code Composer Studio™  
Integrated Development Environment (IDE), DSP/BIOS™, Texas Instruments’ algorithm standard, and the  
industry’s largest third-party network. The Code Composer Studio IDE features code generation tools  
including a C Compiler and Visual Linker, simulator, RTDX™, XDS510™ emulation device drivers, and  
evaluation modules. The 5507 is also supported by the C55x DSP Library which features more than 50  
foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip and  
board support libraries.  
2.2 Pin Assignments  
The SM320VC5507PGE 144-pin low-profile quad flatpack (LQFP) pin assignments are shown in  
Figure 2-1 and is used in conjunction with Table 2-1 to locate signal names and pin numbers.  
DVDD is the power supply for the I/O pins while CVDD is the power supply for the core. VSS is the ground  
for both the I/O pins and the core. RCVDD and RDVDD are RTC module core and I/O supply, respectively.  
USBVDD is the USB module I/O (DP, DN, and PU) supply. ADVDD is the power supply for the digital  
portion of the ADC. AVDD is the power supply for the analog part of the ADC. ADVSS is the ground pin for  
the digital portion of the ADC. AVSS is the ground pin for the analog part of the ADC. USBPLLVDD and  
USBPLLVSS are the dedicated supply and ground pins for the USB PLL, respectively.  
108  
73  
109  
72  
144  
37  
1
36  
Figure 2-1. 144-Pin PGE Low-Profile Quad Flatpack (Top View)  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
11  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-1. Pin Assignments for the PGE Package  
PIN NO.  
1
SIGNAL NAME  
VSS  
PIN NO.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
SIGNAL NAME  
VSS  
A13  
A12  
A11  
CVDD  
A10  
A9  
PIN NO.  
73  
SIGNAL NAME  
VSS  
PIN NO.  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
SIGNAL NAME  
RDVDD  
RCVDD  
RTCINX2  
RTCINX1  
VSS  
2
PU  
74  
D12  
3
DP  
75  
D13  
4
DN  
76  
D14  
5
USBVDD  
GPIO7  
VSS  
77  
D15  
6
78  
CVDD  
EMU0  
EMU1/OFF  
TDO  
VSS  
7
79  
VSS  
8
DVDD  
GPIO2  
GPIO1  
VSS  
A8  
80  
DX2  
9
VSS  
A7  
81  
FSX2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
82  
TDI  
CVDD  
A6  
83  
CVDD  
TRST  
TCK  
CLKX2  
DR2  
GPIO0  
X2/CLKIN  
X1  
A5  
84  
DVDD  
A4  
85  
FSR2  
VSS  
86  
TMS  
CLKOUT  
C0  
A3  
87  
CVDD  
DVDD  
SDA  
CLKR2  
DX1  
A2  
88  
C1  
CVDD  
A1  
89  
FSX1  
CVDD  
C2  
90  
SCL  
DVDD  
A0  
91  
RESET  
USBPLLVSS  
INT0  
CLKX1  
DR1  
C3  
DVDD  
D0  
92  
C4  
93  
FSR1  
CLKR1  
DX0  
C5  
D1  
94  
INT1  
C6  
D2  
95  
USBPLLVDD  
INT2  
DVDD  
C7  
VSS  
D3  
96  
CVDD  
97  
INT3  
FSX0  
C8  
D4  
98  
DVDD  
INT4  
CLKX0  
DR0  
C9  
D5  
99  
C11  
VSS  
D6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
VSS  
FSR0  
CLKR0  
VSS  
CVDD  
CVDD  
C14  
XF  
D7  
VSS  
D8  
ADVSS  
ADVDD  
AIN0  
DVDD  
C12  
CVDD  
D9  
TIN/TOUT0  
GPIO6  
GPIO4  
GPIO3  
VSS  
VSS  
C10  
D10  
D11  
DVDD  
AIN1  
C13  
AVDD  
AVSS  
VSS  
12  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
2.3 Signal Descriptions  
Table 2-2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for pin  
locations.  
Table 2-2. Signal Descriptions  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
PARALLEL BUS  
A subset of the parallel address bus A13A0 of  
the C55x DSP core bonded to external pins.  
These pins serve in one of three functions: HPI  
address bus (HPI.HA[13:0]), EMIF address bus  
(EMIF.A[13:0]), or general-purpose I/O  
(GPIO.A[13:0]). The initial state of these pins  
depends on the GPIO0 pin. See Section 3.6.1 for  
more information.  
A[13:0]  
I/O/Z  
The address bus has a bus holder feature that  
eliminates passive component requirement and  
the power dissipation associated with them. The  
bus holders keep the address bus at the previous  
logic level when the bus goes into a  
high-impedance state.  
GPIO0 = 1:  
HPI address bus. HPI.HA[13:0] is selected when  
the Parallel Port Mode bit field of the External Bus  
Selection Register is 10. This setting enables the  
HPI in non-multiplexed mode.  
HPI.HA[13:0] provides DSP internal memory  
access to host. In non-multiplexed mode, these  
signals are driven by an external host as address  
lines.  
x
Output,  
EMIF.A[13:0]  
HPI.HA[13:0]  
EMIF.A[13:0]  
GPIO.A[13:0]  
I
x
BK  
x
GPIO0 = 0:  
x
Input,  
EMIF address bus. EMIF.A[13:0] is selected when  
the Parallel Port Mode bit field of the External Bus  
Selection Register is 01. This setting enables the  
full EMIF mode and the EMIF drives the parallel  
port address bus. The internal A[14] address is  
exclusive-ORed with internal A[0] address and the  
result is routed to the A[0] pin.  
HPI.HA[13:0]  
O/Z  
General-purpose I/O address bus. GPIO.A[13:0] is  
selected when the Parallel Port Mode bit field of  
the External Bus Selection Register is 11. This  
setting enables the HPI in multiplexed mode with  
the Parallel Port GPIO register controlling the  
parallel port address bus. GPIO is also selected  
when the Parallel Port Mode bit field is 00,  
enabling the Data EMIF mode.  
I/O/Z  
(1) I = Input, O = Output, S = Supply, Hi-Z = High-impedance  
(2) BK = bus keeper (the bus keeper maintains the previous voltage level during reset or while the output pin is not driven), PU = pullup,  
PD = pulldown, H = hysteresis input buffer, FS = fail-safe buffer  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
13  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
A subset of the parallel bidirectional data bus  
D31D0 of the C55x DSP core. These pins serve  
in one of two functions: EMIF data bus  
(EMIF.D[15:0]) or HPI data bus (HPI.HD[15:0]).  
The initial state of these pins depends on the  
GPIO0 pin. See Section 3.6.1 for more  
information.  
The data bus includes bus keepers to reduce the  
static power dissipation caused by floating,  
unused pins. This eliminates the need for external  
bias resistors on unused pins. When the data bus  
is not being driven by the CPU, the bus keepers  
keep the pins at the logic level that was most  
recently driven. (The data bus keepers are  
enabled at reset, and can be enabled/disabled  
under software control.)  
GPIO0 = 1:  
x
D[15:0]  
I/O/Z  
Input,  
EMIF.D[15:0]  
x
BK  
x
GPIO0 = 0:  
x
Input,  
HPI.HD[15:0]  
EMIF data bus. EMIF.D[15:0] is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is 00 or 01.  
EMIF.D[15:0]  
HPI.HD[15:0]  
I/O/Z  
I/O/Z  
HPI data bus. HPI.HD[15:0] is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is 10 or 11.  
EMIF asynchronous memory read enable or  
general-purpose IO8. This pin serves in one of  
two functions: EMIF asynchronous memory read  
enable (EMIF.ARE) or general-purpose IO8  
(GPIO8). The initial state of this pin depends on  
the GPIO0 pin. See Section 3.6.1 for more  
information.  
GPIO0 = 1:  
C0  
I/O/Z  
x
Output,  
EMIF.ARE  
x
BK  
Active-low EMIF asynchronous memory read  
enable. EMIF.ARE is selected when the Parallel  
Port Mode bit field of the External Bus Selection  
Register is 00 or 01.  
x
GPIO0 = 0:  
x
Input,  
GPIO8  
EMIF.ARE  
GPIO8  
O/Z  
General-purpose IO8. GPIO8 is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is set to 10 or 11.  
I/O/Z  
EMIF asynchronous memory output enable or HPI  
interrupt output. This pin serves in one of two  
functions: EMIF asynchronous memory output  
enable (EMIF.AOE) or HPI interrupt output  
(HPI.HINT). The initial state of this pin depends on  
the GPIO0 pin. See Section 3.6.1 for more  
information.  
GPIO0 = 1:  
C1  
O/Z  
x
Output,  
EMIF.AOE  
x
BK  
Active-low asynchronous memory output enable.  
EMIF.AOE is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is 00 or 01.  
x
GPIO0 = 0:  
x
Input,  
HPI.HINT  
EMIF.AOE  
HPI.HINT  
O/Z  
O/Z  
Active-low HPI interrupt output. HPI.HINT is  
selected when the Parallel Port Mode bit field of  
the External Bus Selection Register is 10 or 11.  
14  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
EMIF asynchronous memory write enable or HPI  
read/write. This pin serves in one of two functions:  
EMIF asynchronous memory write enable  
(EMIF.AWE) or HPI read/write (HPI.HR/W). The  
initial state of this pin depends on the GPIO0 pin.  
See Section 3.6.1 for more information.  
GPIO0 = 1:  
C2  
I/O/Z  
x
Output,  
EMIF.AWE  
x
Active-low EMIF asynchronous memory write  
enable. EMIF.AWE is selected when the Parallel  
Port Mode bit field of the External Bus Selection  
Register is 00 or 01.  
BK  
x
EMIF.AWE  
HPI.HR/W  
O/Z  
I
GPIO0 = 0:  
x
Input,  
HPI.HR/W  
HPI read/write. HPI.HR/W is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is 10 or 11. HPI.HR/W controls  
the direction of the HPI transfer.  
EMIF data ready input or HPI ready output. This  
pin serves in one of two functions: EMIF data  
ready input (EMIF.ARDY) or HPI ready output  
(HPI.HRDY). The initial state of this pin depends  
on the GPIO0 pin. See Section 3.6.1 for more  
information.  
GPIO0 = 1:  
C3  
I/O/Z  
x
Input,  
EMIF.ARDY  
EMIF data ready input. Used to insert wait states  
for slow memories. EMIF.ARDY is selected when  
the Parallel Port Mode bit field of the External Bus  
Selection Register is 00 or 01. When this pin is  
used as ARDY, an external 2.2 kΩ  
x
x
H
EMIF.ARDY  
HPI.HRDY  
I
GPIO0 = 0:  
x
Output,  
HPI.HRDY  
HPI ready output. HPI.HRDY is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is 10 or 11.  
O
EMIF chip select for memory space CE0 or  
general-purpose IO9. This pin serves in one of  
two functions: EMIF chip select for memory space  
CE0 (EMIF.CE0) or general-purpose IO9 (GPIO9).  
The initial state of this pin depends on the GPIO0  
pin. See Section 3.6.1 for more information.  
GPIO0 = 1:  
C4  
I/O/Z  
x
Output,  
EMIF.CE0  
x
Active-low EMIF chip select for memory space  
CE0. EMIF.CE0 is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
BK  
x
EMIF.CE0  
GPIO9  
O/Z  
GPIO0 = 0:  
x
Input,  
GPIO9  
General-purpose IO9. GPIO9 is selected when the  
Parallel Port Mode bit field of the External Bus  
Selection Register is set to 10 or 11.  
I/O/Z  
EMIF chip select for memory space CE1 or  
general-purpose IO10. This pin serves in one of  
two functions: EMIF chip-select for memory space  
CE1 (EMIF.CE1) or general-purpose IO10  
(GPIO10). The initial state of this pin depends on  
the GPIO0 pin. See Section 3.6.1 for more  
information.  
GPIO0 = 1:  
C5  
I/O/Z  
x
Output,  
EMIF.CE1  
x
BK  
Active-low EMIF chip select for memory space  
CE1. EMIF.CE1 is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
x
GPIO0 = 0:  
x
Input,  
GPIO10  
EMIF.CE1  
GPIO10  
O/Z  
General-purpose IO10. GPIO10 is selected when  
the Parallel Port Mode bit field of the External Bus  
Selection Register is set to 10 or 11.  
I/O/Z  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
15  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
EMIF chip select for memory space CE2 or HPI  
control input 0. This pin serves in one of two  
functions: EMIF chip-select for memory space  
CE2 (EMIF.CE2) or HPI control input 0  
(HPI.HCNTL0). The initial state of this pin  
depends on the GPIO0 pin. See Section 3.6.1 for  
more information.  
C6  
I/O/Z  
GPIO0 = 1:  
x
Output,  
EMIF.CE2  
Active-low EMIF chip select for memory space  
CE2. EMIF.CE2 is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
x
BK  
x
GPIO0 = 0:  
x
EMIF.CE2  
O/Z  
Input,  
HPI.HCNTL0  
HPI control input 0. This pin, in conjunction with  
HPI.HCNTL1, selects a host access to one of the  
three HPI registers. HPI.HCNTL0 is selected when  
the Parallel Port Mode bit field of the External Bus  
Selection Register is set to 10 or 11.  
HPI.HCNTL0  
I
EMIF chip select for memory space CE3,  
general-purpose IO11, or HPI control input 1. This  
pin serves in one of three functions: EMIF  
chip-select for memory space CE3 (EMIF.CE3),  
general-purpose IO11 (GPIO11), or HPI control  
input 1 (HPI.HCNTL1). The initial state of this pin  
depends on the GPIO0 pin. See Section 3.6.1 for  
more information.  
C7  
I/O/Z  
GPIO0 = 1:  
x
Output,  
EMIF.CE3  
Active-low EMIF chip select for memory space  
CE3. EMIF.CE3 is selected when the Parallel Port  
Mode bit field is of the External Bus Selection  
Register set to 00 or 01.  
x
BK  
EMIF.CE3  
GPIO11  
O/Z  
x
GPIO0 = 0:  
x
Input,  
HPI.HCNTL1  
General-purpose IO11. GPIO11 is selected when  
the Parallel Port Mode bit field is set to 10.  
I/O/Z  
HPI control input 1. This pin, in conjunction with  
HPI.HCNTL0, selects a host access to one of the  
three HPI registers. The HPI.HCNTL1 mode is  
selected when the Parallel Port Mode bit field is  
set to 11.  
HPI.HCNTL1  
I
EMIF byte enable 0 control or HPI byte  
identification. This pin serves in one of two  
functions: EMIF byte enable 0 control (EMIF.BE0)  
or HPI byte identification (HPI.HBE0). The initial  
state of this pin depends on the GPIO0 pin. See  
Section 3.6.1 for more information.  
GPIO0 = 1:  
C8  
I/O/Z  
x
Output,  
EMIF.BE0  
x
Active-low EMIF byte enable 0 control. EMIF.BE0  
is selected when the Parallel Port Mode bit field of  
the External Bus Selection Register is set to 00 or  
01.  
BK  
x
EMIF.BE0  
HPI.HBE0  
O/Z  
I
GPIO0 = 0:  
x
Input,  
HPI.HBE0  
HPI byte identification. This pin, in conjunction  
with HPI.HBE1, identifies the first or second byte  
of the transfer. HPI.HBE0 is selected when the  
Parallel Port Mode bit field is set to 10 or 11.  
16  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
EMIF byte enable 1 control or HPI byte  
identification. This pin serves in one of two  
functions: EMIF byte enable 1 control (EMIF.BE1)  
or HPI byte identification (HPI.HBE1). The initial  
state of this pin depends on the GPIO0 pin. See  
Section 3.6.1 for more information.  
GPIO0 = 1:  
C9  
I/O/Z  
x
Output,  
EMIF.BE1  
x
Active-low EMIF byte enable 1 control. EMIF.BE1  
is selected when the Parallel Port Mode bit field of  
the External Bus Selection Register is set to 00 or  
01.  
BK  
x
EMIF.BE1  
HPI.HBE1  
O/Z  
I
GPIO0 = 0:  
x
Input,  
HPI.HBE1  
HPI byte identification. This pin, in conjunction  
with HPI.HBE0, identifies the first or second byte  
of the transfer. HPI.HBE1 is selected when the  
Parallel Port Mode bit field is set to 10 or 11.  
EMIF SDRAM row strobe, HPI address strobe, or  
general-purpose IO12. This pin serves in one of  
three functions: EMIF SDRAM row strobe  
(EMIF.SDRAS), HPI address strobe (HPI.HAS), or  
general-purpose IO12 (GPIO12). The initial state  
of this pin depends on the GPIO0 pin. See  
Section 3.6.1 for more information.  
C10  
I/O/Z  
O/Z  
GPIO0 = 1:  
x
Output,  
EMIF.SDRAS  
Active-low EMIF SDRAM row strobe.  
EMIF.SDRAS is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
x
BK  
EMIF.SDRAS  
x
GPIO0 = 0:  
x
Input,  
HPI.HAS  
Active-low HPI address strobe. This signal latches  
the address in the HPIA register in the HPI  
Multiplexed mode. HPI.HAS is selected when the  
Parallel Port Mode bit field is set to 11.  
HPI.HAS  
GPIO12  
I
General-purpose IO12. GPIO12 is selected when  
the Parallel Port Mode bit field is set to 10.  
I/O/Z  
EMIF SDRAM column strobe or HPI chip select  
input. This pin serves in one of two functions:  
EMIF SDRAM column strobe (EMIF.SDCAS) or  
HPI chip select input (HPI.HCS). The initial state  
of this pin depends on the GPIO0 pin. See  
Section 3.6.1 for more information.  
GPIO0 = 1:  
C11  
I/O/Z  
x
Output,  
EMIF.SDCAS  
Active-low EMIF SDRAM column strobe.  
EMIF.SDCAS is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
x
BK  
x
GPIO0 = 0:  
x
Input,  
HPI.HCS  
EMIF.SDCAS  
HPI.HCS  
O/Z  
I
HPI Chip Select Input. HPI.HCS is the select input  
for the HPI and must be driven low during  
accesses. HPI.HCS is selected when the Parallel  
Port Mode bit field is set to 10 or 11.  
EMIF SDRAM write enable or HPI Data Strobe 1  
input. This pin serves in one of two functions:  
EMIF SDRAM write enable (EMIF.SDWE) or HPI  
data strobe 1 (HPI.HDS1). The initial state of this  
pin depends on the GPIO0 pin. See Section 3.6.1  
for more information.  
GPIO0 = 1:  
C12  
I/O/Z  
x
Output,  
EMIF.SDWE  
EMIF SDRAM write enable. EMIF. SDWE is  
selected when the Parallel Port Mode bit field of  
the External Bus Selection Register is set to 00 or  
01.  
x
x
BK  
EMIF.SDWE  
HPI.HDS1  
O/Z  
I
GPIO0 = 0:  
x
Input,  
HPI.HDS1  
HPI Data Strobe 1 Input. HPI.HDS1 is driven by  
the host read or write strobes to control the  
transfer. HPI.HDS1 is selected when the Parallel  
Port Mode bit field is set to 10 or 11.  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
17  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
SDRAM A10 address line or general-purpose  
IO13. This pin serves in one of two functions:  
SDRAM A10 address line (EMIF.SDA10) or  
general-purpose IO13 (GPIO13). The initial state  
of this pin depends on the GPIO0 pin. See  
Section 3.6.1 for more information.  
C13  
I/O/Z  
GPIO0 = 1:  
x
Output,  
SDRAM A10 address line. Address  
EMIF.SDA10  
line/autoprecharge disable for SDRAM memory.  
Serves as a row address bit (logically equivalent  
to A12) during ACTV commands and also disables  
the autoprecharging function of SDRAM during  
read or write operations. EMIF.SDA10 is selected  
when the Parallel Port Mode bit field of the  
External Bus Selection Register is set to 00 or 01.  
x
BK  
x
GPIO0 = 0:  
x
Input,  
GPIO13  
EMIF.SDA10  
GPIO13  
O/Z  
General-purpose IO13. GPIO13 is selected when  
the Parallel Port Mode bit field is set to 10 or 11.  
I/O/Z  
I/O/Z  
Memory interface clock for SDRAM, HPI Data  
Strobe 2 input, or general-purpose IO14. This pin  
serves in one of two functions: memory interface  
clock for SDRAM (EMIF.CLKMEM) or HPI data  
strobe 2 (HPI.HDS2). The initial state of this pin  
depends on the GPIO0 pin. See Section 3.6.1 for  
more information.  
GPIO0 = 1:  
C14  
x
Output,  
EMIF.CLKMEM  
x
x
Memory interface clock for SDRAM.  
EMIF.CLKMEM is selected when the Parallel Port  
Mode bit field of the External Bus Selection  
Register is set to 00 or 01.  
BK  
EMIF.CLKMEM  
HPI.HDS2  
O/Z  
I
GPIO0 = 0:  
x
Input,  
HPI Data Strobe 2 Input. HPI.HDS2 is driven by  
the host read or write strobes to control the  
transfer. HPI.HDS2 is selected when the Parallel  
Port Mode bit field is set to 10 or 11.  
HPI.HDS2  
INTERRUPT AND RESET PINS  
Active-low external user interrupt inputs. INT[4:0]  
are maskable and are prioritized by the interrupt  
enable register (IER) and the interrupt mode bit.  
INT[4:0]  
I
I
H, FS  
H, FS  
Input  
Input  
Active-low reset. RESET causes the digital signal  
processor (DSP) to terminate execution and  
forces the program counter to FF8000h. When  
RESET is brought to a high level, execution  
begins at location FF8000h of program memory.  
RESET affects various registers and status bits.  
Use an external pullup resistor on this pin.  
RESET  
BIT I/O SIGNALS  
7-bit Input/Output lines that can be individually  
configured as inputs or outputs, and also  
individually set or reset when configured as  
outputs. At reset, these pins are configured as  
inputs. After reset, the on-chip bootloader samples  
GPIO[3:0] to determine the boot mode selected.  
GPIO[7:6, 4:0]  
I/O/Z  
O/Z  
Input  
BK  
(GPIO5  
only)  
H
SDRAM CKE signal. The GPIO4 pin can be  
configured to serve as SDRAM CKE pin by setting  
the following bits in the External Bus Selection  
Register: CKE SEL = 1 and CKE EN = 1. In  
default mode, this pin serves as GPIO4.  
(except  
GPIO5)  
EMIF.CKE  
(GPIO4)  
Input  
(GPIO4)  
18  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
External flag. XF is set high by the BSET XF  
instruction, set low by BCLR XF instruction or by  
loading ST1. XF is used for signaling other  
processors in multiprocessor configurations or  
used as a general-purpose output pin. XF goes  
into the high-impedance state when OFF is low,  
and is set high following reset.  
XF  
O/Z  
Output  
SDRAM CKE signal. The XF pin can be  
configured to serve as SDRAM CKE pin by setting  
the following bits in the External Bus Selection  
Register: CKE SEL = 0 and CKE EN = 1. In  
default mode, this pin serves as XF.  
Output  
(XF)  
EMIF.CKE  
O/Z  
O/Z  
OSCILLATOR/CLOCK SIGNALS  
DSP clock output signal. CLKOUT cycles at the  
machine-cycle rate of the CPU. CLKOUT goes  
into high-impedance state when OFF is low.  
CLKOUT  
Output  
System clock/oscillator input. If the internal  
oscillator is not being used, X2/CLKIN functions as  
the clock input.  
NOTE:  
The USB module requires a 48-MHz clock.  
Since this input clock is used by both the CPU  
PLL and the USB module PLL, it must be a  
factor of 48 MHz in order for the  
programmable PLL to produce the required  
Oscillator  
Input  
X2/CLKIN  
I/O  
48-MHz  
USB  
module  
clock.  
In CLKGEN domain idle (OSC IDLE) mode,  
this pin becomes output and is driven low to  
stop external crystals (if used) from oscillating  
or an external clock source from driving the  
DSP’s internal logic.  
Output pin from the internal system oscillator for  
the crystal. If the internal oscillator is not used, X1  
should be left unconnected. X1 does not go into  
the high-impedance state when OFF is low.  
Oscillator  
Output  
X1  
O
TIMER SIGNALS  
Timer0 Input/Output. When output, TIN/TOUT0  
signals a pulse or a change of state when the  
on-chip timer counts down past zero. When input,  
TIN/TOUT0 provides the clock source for the  
internal timer module. At reset, this pin is  
configured as an input.  
TIN/TOUT0  
I/O/Z  
H
Input  
NOTE:  
Only the Timer0 signal is brought out. The  
Timer1 signal is terminated internally and is  
not available for external use.  
REAL-TIME CLOCK  
RTCINX1  
RCINX2  
I
Real-Time Clock Oscillator input  
Real-Time Clock Oscillator output  
Input  
O
Output  
I2C  
I2C (bidirectional) data. At reset, this pin is in  
high-impedance mode.  
I2C (bidirectional) clock. At reset, this pin is in  
high-impedance mode.  
SDA  
SCL  
I/O/Z  
I/O/Z  
H
H
Hi-Z  
Hi-Z  
MULTICHANNEL BUFFERED SERIAL PORTS SIGNALS  
McBSP0 receive clock. CLKR0 serves as the  
CLKR0  
I/O/Z  
serial shift clock for the serial port receiver. At  
reset, this pin is in high-impedance mode.  
H
Hi-Z  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
19  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
DR0  
I
McBSP0 receive data  
FS  
Input  
McBSP0 receive frame synchronization. The  
FSR0 pulse initiates the data receive process over  
DR0. At reset, this pin is in high-impedance mode.  
FSR0  
CLKX0  
DX0  
I/O/Z  
Hi-Z  
Input  
Hi-Z  
McBSP0 transmit clock. CLKX0 serves as the  
serial shift clock for the serial port transmitter. The  
CLKX0 pin is configured as input after reset.  
I/O/Z  
O/Z  
H
McBSP0 transmit data. DX0 is placed in the  
high-impedance state when not transmitting, when  
RESET is asserted, or when OFF is low.  
McBSP0 transmit frame synchronization. The  
FSX0 pulse initiates the data transmit process  
over DX0. Configured as an input following reset.  
FSX0  
I/O/Z  
Input  
McBSP1 receive clock. CLKR1 serves as the  
serial shift clock for the serial port receiver.  
CLKR1  
DR1  
I/O/Z  
I/Z  
H
Input  
Input  
McBSP1 serial data receive  
McBSP1 receive frame synchronization. The  
FSR1 pulse initiates the data receive process over  
DR1.  
FSR1  
DX1  
I/Z  
O/Z  
Input  
Hi-Z  
McBSP1 serial data transmit. DX1 is placed in the  
high-impedance state when not transmitting, when  
RESET is asserted, or when OFF is low.  
BK  
McBSP1 transmit clock. CLKX1 serves as the  
serial shift clock for the serial port transmitter. The  
CLKX1 pin is configured as input after reset.  
CLKX1  
I/O/Z  
H
H
Input  
McBSP2 receive clock. CLKR2 serves as the  
serial shift clock for the serial port receiver.  
CLKR2  
DR2  
I/O/Z  
I
Input  
Input  
McBSP2 serial data receive  
McBSP2 receive frame synchronization. The  
FSR2 pulse initiates the data receive process over  
DR2.  
FSR2  
DX2  
I
Input  
Hi-Z  
McBSP2 serial data transmit. DX2 is placed in the  
high-impedance state when not transmitting, when  
RESET is asserted, or when OFF is low.  
O/Z  
BK  
H
McBSP2 transmit clock. CLKX2 serves as the  
serial shift clock for the serial port transmitter. The  
CLKX2 pin is configured as input after reset.  
CLKX2  
FSX2  
I/O/Z  
I/O/Z  
Input  
Input  
McBSP2 frame synchronization. The FSX2 pulse  
initiates the data transmit process over DX2. FSX2  
is configured as an input following reset.  
USB  
Differential (positive) receive/transmit. At reset,  
this pin is configured as input.  
DP  
I/O/Z  
I/O/Z  
Input  
Input  
Differential (negative) receive/transmit. At reset,  
this pin is configured as input.  
DN  
Pullup output. This pin is used to pull up the  
detection resistor required by the USB  
specification. The pin is internally connected to  
USBVDD via a software controllable switch  
(CONN bit of the USBCTL register).  
PU  
O/Z  
Hi-Z  
A/D  
AIN0  
AIN1  
I
I
Analog Input Channel 0  
Analog Input Channel 1  
Input  
Input  
20  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
FUNCTION  
BK  
TEST/EMULATION PINS  
IEEE standard 1149.1 test clock. TCK is normally  
a free-running clock signal with a 50% duty cycle.  
The changes on test access port (TAP) of input  
signals TMS and TDI are clocked into the TAP  
controller, instruction register, or selected test data  
register on the rising edge of TCK. Changes at the  
TAP output signal (TDO) occur on the falling edge  
of TCK.  
PU  
H
TCK  
I
Input  
IEEE standard 1149.1 test data input. Pin with  
internal pullup device. TDI is clocked into the  
selected register (instruction or data) on a rising  
edge of TCK.  
TDI  
I
O/Z  
I
PU  
Input  
Hi-Z  
IEEE standard 1149.1 test data output. The  
contents of the selected register (instruction or  
data) are shifted out of TDO on the falling edge of  
TCK. TDO is in the high-impedance state except  
when the scanning of data is in progress.  
TDO  
TMS  
IEEE standard 1149.1 test mode select. Pin with  
internal pullup device. This serial control input is  
clocked into the TAP controller on the rising edge  
of TCK.  
PU  
Input  
IEEE standard 1149.1 test reset. TRST, when  
high, gives the IEEE standard 1149.1 scan system  
control of the operations of the device. If TRST is  
not connected or driven low, the device operates  
in its functional mode, and the IEEE standard  
1149.1 signals are ignored. This pin has an  
internal pulldown.  
PD  
FS  
TRST  
EMU0  
I
Input  
Input  
Emulator 0 pin. When TRST is driven low, EMU0  
must be high for activation of the OFF condition.  
When TRST is driven high, EMU0 is used as an  
interrupt to or from the emulator system and is  
defined as I/O by way of the IEEE standard  
1149.1 scan system.  
I/O/Z  
PU  
Emulator 1 pin/disable all outputs. When TRST is  
driven high, EMU1/OFF is used as an interrupt to  
or from the emulator system and is defined as I/O  
by way of IEEE standard 1149.1 scan system.  
When TRST is driven low, EMU1/OFF is  
configured as OFF. The EMU1/OFF signal, when  
active-low, puts all output drivers into the  
EMU1/OFF  
I/O/Z  
PU  
Input  
high-impedance state. Note that OFF is used  
exclusively for testing and emulation purposes  
(not for multiprocessing applications). Therefore,  
for the OFF condition, the following apply: TRST =  
low, EMU0 = high, EMU1/OFF = low.  
SUPPLY PINS  
Digital Power, + VDD. Dedicated power supply for  
the core CPU.  
CVDD  
S
S
S
S
S
S
Digital Power, + VDD. Dedicated power supply for  
the I/O pins.  
DVDD  
Digital Power, + VDD. Dedicated power supply for  
the I/O of the USB module (DP, DN , and PU).  
USBVDD  
RDVDD  
RCVDD  
AVDD  
Digital Power, + VDD. Dedicated power supply for  
the I/O pins of the RTC module.  
Digital Power, + VDD. Dedicated power supply for  
the RTC module.  
Analog Power, + VDD. Dedicated power supply  
for the 10-bit A/D.  
Copyright © 2009, Texas Instruments Incorporated  
Introduction  
21  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 2-2. Signal Descriptions (continued)  
TERMINAL  
NAME  
MULTIPLEXED  
SIGNAL NAME  
RESET  
CONDITION  
(1)  
(2)  
I/O/Z  
S
FUNCTION  
BK  
Analog Digital Power, + VDD. Dedicated power  
supply for the digital portion of the 10-bit A/D.  
ADVDD  
Digital Power, + VDD. Dedicated power supply pin  
for the USB PLL.  
USBPLLVDD  
VSS  
S
Digital Ground. Dedicated ground for the I/O and  
core pins.  
S
Analog Ground. Dedicated ground for the 10-bit  
A/D.  
AVSS  
S
Analog Digital Ground. Dedicated ground for the  
digital portion of the10-bit A/D.  
ADVSS  
S
Digital Ground. Dedicated ground for the USB  
PLL.  
USBPLLVSS  
S
MISCELLANEOUS  
NC  
No connection  
22  
Introduction  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
3
Functional Overview  
3.1 Functional Block Diagram  
The following functional overview is based on the block diagram in Figure 3-1.  
*
*
*
*
Figure 3-1. Block Diagram of the SM320VC5507  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Functional Overview  
23  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
3.2 Memory  
The 5507 supports a unified memory map (program and data accesses are made to the same physical  
space). The total on-chip memory is 192K bytes (64K 16-bit words of RAM and 32K 16-bit words of ROM).  
3.2.1 On-Chip Dual-Access RAM (DARAM)  
The DARAM is located in the byte address range 000000h00FFFFh and is composed of eight blocks of  
8K bytes each (see Table 3-1). Each DARAM block can perform two accesses per cycle (two reads, two  
writes, or a read and a write). DARAM can be accessed by the internal program, data, or DMA buses. The  
HPI can only access the first four (32K bytes) DARAM blocks.  
Table 3-1. DARAM Blocks  
BYTE ADDRESS RANGE  
000000h 001FFFh  
002000h 003FFFh  
004000h 005FFFh  
006000h 007FFFh  
008000h 009FFFh  
00A000h 00BFFFh  
00C000h 00DFFFh  
00E000h 00FFFFh  
MEMORY BLOCK  
DARAM 0 (HPI accessible)(1)  
DARAM 1 (HPI accessible)  
DARAM 2 (HPI accessible)  
DARAM 3 (HPI accessible)  
DARAM 4  
DARAM 5  
DARAM 6  
DARAM 7  
(1) First 192 bytes are reserved for Memory-Mapped Registers (MMRs).  
3.2.2 On-Chip Single-Access RAM (SARAM)  
The SARAM is located at the byte address range 010000h01FFFFh and is composed of 8 blocks of 8K  
bytes each (see Table 3-2). Each SARAM block can perform one access per cycle (one read or one  
write). SARAM can be accessed by the internal program, data, or DMA buses.  
Table 3-2. SARAM Blocks  
BYTE ADDRESS RANGE  
010000h 011FFFh  
012000h 013FFFh  
014000h 015FFFh  
016000h 017FFFh  
018000h 019FFFh  
01A000h 01BFFFh  
01C000h 01DFFFh  
01E000h 01FFFFh  
MEMORY BLOCK  
SARAM 0  
SARAM 1  
SARAM 2  
SARAM 3  
SARAM 4  
SARAM 5  
SARAM 6  
SARAM 7  
3.2.3 On-Chip Read-Only Memory (ROM)  
The one-wait-state ROM is located at the byte address range FF0000hFFFFFFh, for a total of 64K bytes  
of ROM. The ROM address space can be mapped by software to the external memory or to the internal  
ROM.  
The standard 5507 device includes a bootloader program resident in the ROM. When the MPNMC bit field  
of the ST3 status register is set through software, the on-chip ROM is disabled and not present in the  
memory map, and byte address range FF0000hFFFFFFh is directed to external memory space. A  
hardware reset always clears the MPNMC bit, so it is not possible to disable the ROM at reset. However,  
the software reset instruction does not affect the MPNMC bit. The on-chip ROM can be accessed by the  
program, data, or DMA buses. The first 16-bit word access to ROM requires three cycles. Subsequent  
accesses require two cycles per 16-bit word.  
24  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
3.2.4 Memory Maps  
3.2.4.1 PGE Package Memory Map  
The PGE package features 14 address bits representing 32K-/16K-byte linear address for asynchronous  
memories per CE space. Due to address row/column multiplexing, address reach for SDRAM devices is  
4M bytes for each CE space. The largest SDRAM device that can be used with the 5507 in a PGE  
package is 128M-bit SDRAM.  
-
-
--  
#
-
-
-
-
-
-
-
-
-
-
-
-
Figure 3-2. SM320VC5507 Memory Map  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
25  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
3.2.5 Boot Configuration  
The on-chip bootloader provides a method to transfer application code and tables from an external source  
to the on-chip RAM memory at power up. These options include:  
Enhanced host-port interface (HPI) in multiplexed or nonmultiplexed mode  
External asynchronous memory boot (via the EMIF) from 8-bit-wide or 16-bit-wide memory  
Serial port boot (from McBSP0) with 8-bit or 16-bit data length  
Serial EPROM boot (from McBSP0) supporting EPROMs with 16-bit or 24-bit address  
USB boot  
I2C EEPROM  
Direct execution from external 16-bit-wide asynchronous memory  
External pins select the boot configuration. The values of GPIO[3:0] are sampled, following reset, upon  
execution of the on-chip bootloader code. It is not possible to disable the bootloader at reset because the  
5507 always starts execution from the on-chip ROM following a hardware reset. A summary of boot  
configurations is shown in Table 3-3. For more information on using the bootloader, see the Using the  
TMS320VC5503/VC5507/VC5509/VC5509A Bootloader application report (literature number SPRA375).  
Table 3-3. Boot Configuration Summary  
GPIO0  
GPIO3  
GPIO2  
GPIO1  
BOOT MODE PROCESS  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
Serial (SPI) EPROM Boot (24-bit address) via McBSP0  
USB  
I2C EEPROM (7-bit address)  
Reserved  
HPI – multiplexed mode  
HPI – nonmultiplexed mode  
Reserved  
Execute from 16-bit-wide asynchronous memory (on CE1 space)  
Serial (SPI) EPROM Boot (16-bit address) via McBSP0  
8-bit asynchronous memory (on CE1 space)  
16-bit asynchronous memory (on CE1 space)  
Reserved  
Reserved  
Standard serial boot via McBSP0 (16-bit data)  
Standard serial boot via McBSP0 (8-bit data)  
3.3 Peripherals  
The 5507 supports the following peripherals:  
A configurable parallel external interface supporting either:  
16-bit external memory interface (EMIF) for asynchronous memory and/or SDRAM  
16-bit enhanced host-port interface (HPI)  
A six-channel direct memory access (DMA) controller  
A programmable phase-locked loop clock generator  
Two 20-bit timers  
Watchdog timer  
Three multichannel buffered serial ports (McBSPs)  
Eight configurable general-purpose I/O pins  
x
26  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
USB full-speed slave interface supporting:  
Bulk  
Interrupt  
Isochronous  
I2C multi-master and slave interface (I2C compatible except, no fail-safe I/O buffers)  
Real-time clock with crystal input, separate clock domain and supply pins  
4-channel 10-bit Successive Approximation A/D  
For detailed information on the C55x DSP peripherals, see the following documents:  
TMS320C55x DSP Functional Overview (literature number SPRU312)  
TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317)  
3.4 Direct Memory Access (DMA) Controller  
The 5507 DMA provides the following features:  
Four standard ports, one for each of the following data resources: DARAM, SARAM, peripherals and  
external memory  
Six channels, which allow the DMA controller to track the context of six independent DMA channels  
Programmable low/high priority for each DMA channel  
One interrupt for each DMA channel  
Event synchronization. DMA transfers in each channel can be dependent on the occurrence of  
selected events.  
Programmable address modification for source and destination addresses  
Dedicated idle domain allows the DMA controller to be placed in a low-power (idle) state under  
software control.  
Dedicated DMA channel used by the HPI to access internal memory (DARAM)  
The 5507 DMA controller allows transfers to be synchronized to selected events. The 5507 supports 15  
separate sync events and each channel can be tied to separate sync events independent of the other  
channels. Sync events are selected by programming the SYNC field in the channel-specific DMA channel  
control register (DMA_CCR).  
3.4.1 DMA Channel Control Register (DMA_CCR)  
The channel control register (DMA_CCR) bit layouts are shown in Figure 3-3.  
15  
14  
13  
12  
11  
10  
Reserved  
R, 0  
9
8
DST AMODE  
R/W, 00  
SRC AMODE  
R/W, 00  
END PROG  
R/W, 0  
REPEAT  
R/W, 0  
AUTO INIT  
R/W, 0  
7
6
5
4
0
EN  
PRIO  
FS  
SYNC  
R/W, 0  
R/W, 0  
R/W, 0  
R/W, 00000  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-3. DMA_CCR Bit Locations  
The SYNC[4:0] bits specify the event that can initiate the DMA transfer for the corresponding DMA  
channel. The five bits allow several configurations as listed in Table 3-4. The bits are set to zero upon  
reset. For those synchronization modes with more than one peripheral listed, the Serial Port Mode bit field  
of the External Bus Selection Register dictates which peripheral event is actually connected to the DMA  
input.  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
27  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-4. Synchronization Control Function  
SYNC FIELD IN  
DMA_CCR  
SYNCHRONIZATION MODE  
00000b  
00001b  
00010b  
00011b  
00100b  
00101b  
00110b  
00111b  
01000b  
01001b  
01010b  
01011b  
01100b  
01101b  
01110b  
01111b  
10000b  
10001b  
10010b  
10011b  
10100b  
Other values  
No event synchronized  
McBSP 0 receive event (REVT0)  
McBSP 0 transmit event (XEVT0)  
Reserved. These bits should always be written with 0.  
Reserved. These bits should always be written with 0.  
McBSP1 receive event (REVT1)  
McBSP1 transmit event (XEVT1)  
Reserved. These bits should always be written with 0.  
Reserved. These bits should always be written with 0.  
McBSP2 receive event (REVT2)  
McBSP2 transmit event (XEVT2)  
Reserved. These bits should always be written with 0.  
Reserved. These bits should always be written with 0.  
Timer 0 interrupt event  
Timer 1 interrupt event  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
External interrupt 4 / I2C receive event (REVTI2C)(1)  
I2C transmit event (XEVTI2C)  
Reserved (do not use these values)  
(1) The I2C receive event (REVTI2C) and external interrupt 4 (INT4) share a synchronization input to the DMA. When the SYNC field of the  
DMA_CCR is set to 10011b, the logical OR of these two sources is used for DMA synchronization.  
3.5 I2C Interface  
The SM320VC5507 includes an I2C serial port. The I2C port supports:  
Compatibility with Philips I2C Specification Revision 2.1 (January 2000)  
Operation at 100 Kbps or 400 Kbps  
7-bit addressing mode  
Master (transmit/receive) and slave (transmit/receive) modes of operation  
Events: DMA, interrupt, or polling  
The I2C module clock must be in the range from 7 MHz to 12 MHz. This is necessary for proper operation  
of the I2C module. With the I2C module clock in this range, the noise filters on the SDA and SCL pins  
suppress noise that has a duration of 50 ns or shorter. The I2C module clock is derived from the DSP  
clock divided by a programmable prescaler.  
NOTE  
I/O buffers are not fail-safe. The SDA and SCL pins could potentially draw current if the  
device is powered down and SDA and SCL are driven by other devices connected to the  
I2C bus.  
3.6 Configurable External Buses  
The 5507 offers combinations of configurations for its external parallel port. This allows the system  
designer to choose the appropriate media interface for its application without the need of a large-pin-count  
package. The External Bus Selection Register controls the routing of the parallel port signals.  
28  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
3.6.1 External Bus Selection Register (EBSR)  
The External Bus Selection Register determines the mapping of the 21 address signals, 16 data signals,  
and 15 control signals of the external parallel port. The External Bus Selection Register is  
memory-mapped at port address 0x6C00. Once the bit fields of this register are changed, the routing of  
the signals takes place on the next CPU clock cycle.  
The reset value of the parallel port mode bit field is determined by the state of the GPIO0 pin at reset. If  
GPIO0 is high at reset, the full EMIF mode is enabled and the parallel port mode bit field is set to 01. If  
GPIO0 is low at reset, the HPI multiplexed mode is enabled and the parallel port mode bit field is set to  
11. After reset, the parallel port should be selected to function in either EMIF mode or HPI mode. Dynamic  
switching of the parallel port, once configured, is not recommended.  
15  
14  
OSC Disable  
R/W, 0  
13  
HIDL  
R/W, 0  
5
12  
BKE  
11  
10  
HOLD  
R/W, 0  
2
9
HOLDA  
R/W, 1  
1
8
CKE SEL  
R/W, 0  
0
CLKOUT  
Disable  
SR STAT  
R/W, 0  
R/W, 0  
7
R/W, 0  
6
Reserved  
(see NOTE)  
Parallel Port  
Mode  
CKE EN  
SR CMD  
R/W, 01 if GPIO0 = 1  
11 if GPIO0 = 0  
R/W, 0  
R/W, 0  
R, 0000  
LEGEND: R = Read, W = Write, n = value after reset  
NOTE: These bits are Reserved and must be kept as 0000 during any writes to EBSR.  
Figure 3-4. External Bus Selection Register  
Table 3-5. External Bus Selection Register Bit Field Description  
BITS  
DESCRIPTION  
CLKOUT disable  
CLKOUT disable = 0:  
CLKOUT disable = 1:  
15  
CLKOUT enabled  
CLKOUT disabled  
Oscillator disable. Works with IDLE instruction to put the clock generation domain into IDLE mode.  
14  
13  
OSC disable = 0:  
OSC disable = 1:  
Oscillator enabled  
Oscillator disabled  
Host mode idle bit (applicable only if the parallel bus is configured as EHPI)  
x
When the parallel bus is set to EHPI mode, the clock domain is not allowed to go to idle, so a host processor can  
access the DSP internal memory. The HIDL bit works around this restriction and allows the DSP to idle the clock  
domain and the EHPI. When the clock domain is in idle, a host processor will not be able to access the DSP memory.  
HIDL = 0:  
HIDL = 1:  
Host access to DSP enabled. Idling EHPI and clock domain is not allowed.  
Idles the HPI and the clock domain upon execution of the IDLE instruction when the  
parallel port mode is set to 10 or 11 selecting HPI mode. In addition, bit 4 of the Idle  
Control Register must be set to 1 prior to the execution of the IDLE instruction.  
Bus keeper enable(1)  
BKE = 0:  
12  
11  
Bus keeper, pullups/pulldowns enabled  
Bus keeper, pullups/pulldowns disabled  
BKE = 1:  
SDRAM self-refresh status bit  
SR STAT = 0:  
SDRAM self-refresh signal is not asserted.  
SDRAM self-refresh signal is asserted.  
SR STAT = 1:  
(1) Function available when the port or pins configured as input.  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
29  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-5. External Bus Selection Register Bit Field Description (continued)  
BITS  
DESCRIPTION  
EMIF hold  
HOLD = 0:  
DSP drives the external memory bus  
10  
HOLD = 1:  
Request the external memory bus to be placed in high-impedance so that another  
device can drive the memory bus  
EMIF hold acknowledge  
HOLDA = 0:  
DSP indicates that a hold request on the external memory bus has occured, the EMIF  
completed any pending external bus activity, and placed the external memory bus  
signals in high-impedance state (address bus, data bus, CE[3:0], AOE, AWE, ARE,  
SDRAS, SDCAS, SDWE, SDA10, CLKMEM). Once this bit is cleared, an external  
device can drive the bus.  
9
HOLDA = 1:  
SDRAM CKE pin selection bit  
CKE SEL = 0:  
No hold acknowledge  
8
7
Use XF for SDRAM CKE signal  
CKE SEL = 1:  
Use GPIO.4 for SDRAM CKE signal  
SDRAM CKE enable bit  
CKE EN = 0:  
XF or GPIO.4 operates in normal mode  
CKE EN = 1:  
Based on the CKE SEL bit, either XF or GPIO.4 drives the SDRAM CKE pin  
SDRAM self-refresh command  
SR CMD = 0:  
6
EMIF will not issue a SDRAM self-refresh command  
EMIF will issue a SDRAM self-refresh command  
SR CMD = 1:  
5-2  
Reserved. Must be kept as 0000 during any writes to EBSR.  
Parallel port mode. EMIF/HPI/GPIO Mode. Determines the mode of the parallel port.  
Parallel Port Mode = 00:  
Data EMIF mode. The 16 EMIF data signals and 13 EMIF control signals are routed to  
the corresponding external parallel bus data and control signals. The 16 address bus  
signals can be used as general-purpose I/O only.  
Parallel Port Mode = 01:  
Full EMIF mode. The 21 address signals, 16 data signals, and 15 control signals are  
routed to the corresponding external parallel bus address, data, and control signals.  
Non-multiplexed HPI mode. The HPI is enabled an its 14 address signals, 16 data  
signals, and 7 control signals are routed to the corresponding address, data, control  
signals of the external parallel bus. Moreover, 8 control signals of the external parallel  
bus are used as general-purpose I/O.  
1-0  
Parallel Port Mode = 10:  
Parallel Port Mode = 11:  
Multiplexed HPI mode. The HPI is enabled and its 16 data signals and 10 control  
signals are routed to the external parallel bus. In addition, 3 control signals of the  
external parallel bus are used as general-purpose I/O. The 16 external parallel port  
address bus signals are used as general-purpose I/O.  
3.6.2 Parallel Port  
The parallel port of the 5507 consists of 21 address signals, 16 data signals, and 15 control signals. Its 14  
bits for address allow it to access 2M bytes of external memory when using the asynchronous SRAM  
interface. On the other hand, the SDRAM interface can access the whole external memory space of 16M  
bytes. The parallel bus supports four different modes:  
Full EMIF mode: the EMIF with its 21 address signals, 16 data signals, and 15 control signals routed  
to the corresponding external parallel bus address, data, and control signals.  
Data EMIF mode: the EMIF with its 16 data signals, and 15 control signals routed to the  
corresponding external parallel bus data and control signals. The 16 address bus signals can be used  
as general-purpose I/O signals only.  
Non-multiplexed HPI mode: the HPI is enabled with its 14 address signals, 16 data signals, and 8  
control signals routed to the corresponding address, data, and control signals of the external parallel  
bus. Moreover, 7 control signals of the external parallel bus are used as general-purpose I/O.  
Multiplexed HPI mode: the HPI is enabled with its 16 data signals and 10 control signals routed to the  
external parallel bus. In addition, 5 control signals of the external parallel bus are used as  
general-purpose I/O. The external parallel port’s 16 address signals are used as general-purpose I/O.  
30  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-6. SM320VC5507 Parallel Port Signal Routing  
(1)  
(1)  
(1)  
(1)  
PIN SIGNAL  
DATA EMIF (00)  
FULL EMIF (01)  
NON-MULTIPLEX HPI (10)  
MULTIPLEX HPI (11)  
ADDRESS BUS  
A’[0]  
N/A  
EMIF.A[0]  
N/A  
N/A  
HPI.HA[0]  
HPI.HA[13:1]  
N/A  
N/A  
A[0]  
GPIO.A[0]  
GPIO.A[13:1]  
GPIO.A[15:14]  
N/A  
GPIO.A[0]  
GPIO.A[13:1]  
GPIO.A[15:14]  
N/A  
A[13:1]  
EMIF.A[13:1]  
EMIF.A[15:14]  
EMIF.A[20:16]  
A[15:14]  
A[20:16](2)  
N/A  
DATA BUS  
D[15:0]  
EMIF.D[15:0]  
EMIF.D[15:0]  
HPI.HD[15:0]  
HPI.HD[15:0]  
CONTROL BUS  
C0  
C1  
EMIF.ARE  
EMIF.AOE  
EMIF.ARE  
EMIF.AOE  
EMIF.AWE  
EMIF.ARDY  
EMIF.CE0  
GPIO8  
HPI.HINT  
HPI.HR/W  
HPI.HRDY  
GPIO9  
GPIO8  
HPI.HINT  
HPI.HR/W  
HPI.HRDY  
GPIO9  
C2  
EMIF.AWE  
EMIF.ARDY  
EMIF.CE0  
C3  
C4  
C5  
EMIF.CE1  
EMIF.CE1  
GPIO10  
GPIO10  
C6  
EMIF.CE2  
EMIF.CE2  
HPI.HCNTL0  
GPIO11  
HPI.HCNTL0  
HPI.HCNTL1  
HPI.HBE0  
HPI.HBE1  
HPI.HAS  
C7  
EMIF.CE3  
EMIF.CE3  
C8  
EMIF.BE0  
EMIF.BE0  
HPI.HBE0  
HPI.HBE1  
GPIO12  
C9  
EMIF.BE1  
EMIF.BE1  
C10  
C11  
C12  
C13  
C14  
EMIF.SDRAS  
EMIF.SDCAS  
EMIF.SDWE  
EMIF.SDA10  
EMIF.CLKMEM  
EMIF.SDRAS  
EMIF.SDCAS  
EMIF.SDWE  
EMIF.SDA10  
HPI.HCS  
HPI.HDS1  
GPIO13  
HPI.HCS  
HPI.HDS1  
GPIO13  
EMIF.CLKMEM  
HPI.HDS2  
HPI.HDS2  
(1) Represents the Parallel Port Mode bits of the External Bus Selection Register.  
(2) A[20:16] of the BGA package always functions as EMIF address pins and they cannot be reconfigured for any other function.  
3.6.3 Parallel Port Signal Routing  
The 5507 allows access to 16-bit-wide (read and write) or 8-bit-wide (read only) asynchronous memory  
and 16-bit-wide SDRAM. For 16-bit-wide memories, EMIF.A[0] is kept low and is not used. To provide as  
many address pins as possible, the 5507 routes the parallel port signals as shown in Figure 3-5.  
Figure 3-5 shows the addition of the A[0] signal in the BGA package. This pin is used for asynchronous  
memory interface only, while the A[0] pin is used with HPI or GPIO. Figure 3-6 summarizes the use of the  
parallel port signals for memory interfacing.  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
31  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
EMIF.A[0]  
A’[0]  
A[0]  
GPIO.A[0]  
HPI.HA[0]  
EMIF.A[13:1]  
HPI.HA[13:1]  
GPIO.A[13:1]  
A[13:1]  
EMIF.A[14]  
GPIO.A[14]  
A[14]  
EMIF.A[15]  
GPIO.A[15]  
A[15]  
EMIF.A[20:16]  
A[20:16]  
Figure 3-5. Parallel Port Signal Routing  
32  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
16-Bit-Wide Asynchronous Memory  
16-Bit-Wide SDRAM  
CEx  
CLKMEM  
SDRAS  
SDCAS  
SDWE  
BE[1:0]  
A[14]  
CS  
CEx  
WE  
RE  
CS  
WE  
RE  
OE  
CLK  
RAS  
CAS  
16-Bit  
Asynchronous  
Memory  
OE  
5507  
BGA  
WE  
BE[1:0]  
A[20:14]  
A[13:1]  
D[15:0]  
BE[1:0]  
A[19:13]  
A[12:0]  
D[15:0]  
DQM[H:L]  
BA[1]  
BA[0]  
A[11]  
A[10]  
A[9:0]  
D[15:0]  
A[13]  
A[12]  
SDA10  
A[10:1]  
D[15:0]  
8-Bit-Wide Asynchronous Memory  
CEx  
WE  
RE  
CS  
WE  
RE  
OE  
OE  
8-Bit  
Asynchronous  
Memory  
5507  
BE[1:0]  
BGA  
BE[1:0]  
A[20:14]  
A[13:1]  
A[0]  
A[20:14]  
A[13:1]  
A’[0]  
D[7:0]  
D[7:0]  
Figure 3-6. Parallel Port (EMIF) Signal Interface  
3.7 General-Purpose Input/Output (GPIO) Ports  
3.7.1 Dedicated General-Purpose I/O  
The 5507 provides eight dedicated general-purpose input/output pins, GPIO0GPIO7. Each pin can be  
indepedently configured as an input or an output using the I/O Direction Register (IODIR). The I/O Data  
Register (IODATA) is used to monitor the logic state of pins configured as inputs and control the logic  
state of pins configured as outputs. See Table 3-29 for address information. The description of the IODIR  
is shown in Figure 3-7 and Table 3-7. The description of IODATA is shown in Figure 3-8 and Table 3-8.  
To configure a GPIO pin as an input, clear the direction bit that corresponds to the pin in IODIR to 0. To  
read the logic state of the input pin, read the corresponding bit in IODATA.  
To configure a GPIO pin as an output, set the direction bit that corresponds to the pin in IODIR to 1. To  
control the logic state of the output pin, write to the corresponding bit in IODATA.  
15  
8
7
6
5
4
3
2
1
0
Reserved  
IO7DIR  
R/W-0  
IO6DIR  
R/W-0  
IO5DIR  
R/W-0  
IO4DIR  
R/W-0  
IO3DIR  
R/W-0  
IO2DIR  
R/W-0  
IO1DIR  
R/W-0  
IO0DIR  
R/W-0  
R-00000000  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-7. I/O Direction Register (IODIR) Bit Layout  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
33  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-7. I/O Direction Register (IODIR) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
158  
70  
Reserved  
IOxDIR  
0
These bits are reserved and are unaffected by writes.  
IOx Direction Control Bit. Controls whether IOx operates as an input or an output.  
0
IOxDIR = 0;  
IOxDIR = 1;  
IOx is configured as an input.  
IOx is configured as an output.  
15  
8
7
6
5
4
3
2
1
0
Reserved  
R-00000000  
IO7D  
IO6D  
IO5D  
R/W-pin  
IO4D  
IO3D  
IO2D  
R/W-pin  
IO1D  
R/W-pin  
IO0D  
R/W-pin  
R/W-pin  
R/W-pin  
R/W-pin  
R/W-pin  
LEGEND: R = Read, W = Write, pin = value present on the pin (IO7-IO0 default to inputs after reset)  
Figure 3-8. I/O Data Register (IODATA) Bit Layout  
Table 3-8. I/O Data Register (IODATA) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
158  
Reserved  
0
These bits are reserved and are unaffected by writes.  
IOx Data Bit.  
IOxD = 0;  
IOxD = 1;  
The signal on the IOx pin is low.  
The signal on the IOx pin is high.  
70  
IOxD  
pin(1)  
If IOx is configured as an output (IOxDIR = 1 in IODIR):  
IOxD = 0;  
IOxD = 1;  
Drive the signal on the IOx pin low.  
Drive the signal on the IOx pin high.  
(1) pin = value present on the pin (IO7IO0 default to inputs after reset)  
3.7.2 Address Bus General-Purpose I/O  
The 16 address signals, EMIF.A[150], can also be individually enabled as GPIO when the Parallel Port  
Mode bit field of the External Bus Selection Register is set for Data EMIF (00) or Multiplexed EHPI mode  
(11). These pins are controlled by three registers: the enable register, AGPIOEN, determines if the pins  
serve as GPIO or address (see Figure 3-9); the direction register, AGPIODIR, determines if the GPIO  
enabled pin is an input or output (see Figure 3-10); and the data register, AGPIODATA, determines the  
logic states of the pins in general-purpose I/O mode (see Figure 3-11).  
15  
14  
13  
12  
11  
10  
9
8
AIOEN15  
AIOEN14  
AIOEN13  
R/W, 0  
AIOEN12  
R/W, 0  
AIOEN11  
R/W, 0  
AIOEN10  
R/W, 0  
AIOEN9  
R/W, 0  
AIOEN8  
R/W, 0  
R/W, 0  
R/W, 0  
7
6
5
4
3
2
1
0
AIOEN7  
R/W, 0  
AIOEN6  
R/W, 0  
AIOEN5  
R/W, 0  
AIOEN4  
R/W, 0  
AIOEN3  
R/W, 0  
AIOEN2  
R/W, 0  
AIOEN1  
R/W, 0  
AIOEN0  
R/W, 0  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-9. Address/GPIO Enable Register (AGPIOEN) Bit Layout  
34  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-9. Address/GPIO Enable Register (AGPIOEN) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
Enable or disable GPIO function of Address Bus of EMIF.  
150  
AIOENx  
0
AIOENx = 0;  
AIOENx = 1;  
GPIO function of Ax line is disabled; i.e., Ax has address function.  
GPIO function of Ax line is enabled; i.e., Ax has GPIO function.  
15  
14  
13  
12  
11  
10  
9
8
AIODIR13  
R/W, 0  
AIODIR12  
R/W, 0  
AIODIR11  
R/W, 0  
AIODIR10  
R/W, 0  
AIODIR9  
R/W, 0  
AIODIR8  
R/W, 0  
AIODIR15  
AIODIR14  
R/W, 0  
R/W, 0  
7
6
5
4
3
2
1
0
AIODIR7  
R/W, 0  
AIODIR6  
R/W, 0  
AIODIR5  
R/W, 0  
AIODIR4  
R/W, 0  
AIODIR3  
R/W, 0  
AIODIR2  
R/W, 0  
AIODIR1  
R/W, 0  
AIODIR0  
R/W, 0  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-10. Address/GPIO Direction Register (AGPIODIR) Bit Layout  
Table 3-10. Address/GPIO Direction Register (AGPIODIR) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
Data direction bits that configure the Address Bus configured as I/O pins as either input or output pins.  
150  
AIODIRx  
0
AIODIRx = 0;  
AIODIRx = 1;  
Configure corresponding pin as an input.  
Configure corresponding pin as an output.  
15  
14  
13  
12  
11  
10  
9
8
AIOD15  
AIOD14  
R/W, 0  
AIOD13  
R/W, 0  
AIOD12  
R/W, 0  
AIOD11  
R/W, 0  
AIOD10  
R/W, 0  
AIOD9  
R/W, 0  
AIOD8  
R/W, 0  
R/W, 0  
7
6
5
4
3
2
1
0
AIOD7  
R/W, 0  
AIOD6  
R/W, 0  
AIOD5  
R/W, 0  
AIOD4  
R/W, 0  
AIOD3  
R/W, 0  
AIOD2  
R/W, 0  
AIOD1  
R/W, 0  
AIOD0  
R/W, 0  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-11. Address/GPIO Data Register (AGPIODATA) Bit Layout  
Table 3-11. Address/GPIO Data Register (AGPIODATA) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
Data bits that are used to control the level of the Address Bus configured as I/O output pins, and to  
monitor the level of the Address Bus configured as I/O input pins.  
If AIODIRn = 0, then:  
AIODx = 0;  
AIODx = 1;  
Corresponding I/O pin is read as a low.  
Corresponding I/O pin is read as a high.  
150  
AIODx  
0
If AIODIRn = 1, then:  
AIODx = 0;  
Set corresponding I/O pin to low.  
Set corresponding I/O pin to high.  
AIODx = 1;  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
35  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
3.7.3 EHPI General-Purpose I/O  
Six control lines of the External Parallel Bus can also be set as general-purpose I/O when the Parallel Port  
Mode bit field of the External Bus Selection Register is set to Nonmultiplexed EHPI (10) or Multiplexed  
EHPI mode (11). These pins are controlled by three registers: the enable register, EHPIGPIOEN,  
determines if the pins serve as GPIO or address (see Figure 3-12); the direction register, EHPIGPIODIR,  
determines if the GPIO enabled pin is an input or output (see Figure 3-13); and the data register,  
EHPIGPIODATA, determines the logic states of the pins in GPIO mode (see Figure 3-14).  
15  
6
5
4
3
2
1
0
Reserved  
GPIOEN13  
R/W, 0  
GPIOEN12  
R/W, 0  
GPIOEN11  
R/W, 0  
GPIOEN10  
R/W, 0  
GPIOEN9  
R/W, 0  
GPIOEN8  
R/W, 0  
R, 0000 0000 00  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-12. EHPI GPIO Enable Register (EHPIGPIOEN) Bit Layout  
Table 3-12. EHPI GPIO Enable Register (EHPIGPIOEN) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
156  
50  
Reserved  
0
0
Reserved  
Enable or disable GPIO function of EHPI Control Bus.  
GPIOEN13−  
GPIOEN8  
GPIOENx = 0;  
GPIOENx = 1;  
GPIO function of GPIOx line is disabled.  
GPIO function of GPIOx line is enabled.  
15  
6
5
4
3
2
1
0
Reserved  
GPIODIR13  
R/W, 0  
GPIODIR12  
R/W, 0  
GPIODIR11  
R/W, 0  
GPIODIR10  
R/W, 0  
GPIODIR9  
R/W, 0  
GPIODIR8  
R/W, 0  
R, 0000 0000 00  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-13. EHPI GPIO Direction Register (EHPIGPIODIR) Bit Layout  
Table 3-13. EHPI GPIO Direction Register (EHPIGPIODIR) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
156  
Reserved  
0
Reserved  
Data direction bits that configure the EHPI Control Bus configured as I/O pins as either input or output  
pins.  
GPIODIR13  
GPIODIR8  
50  
0
GPIODIRx = 0;  
GPIODIRx = 1;  
Configure corresponding pin as an input.  
Configure corresponding pin as an output.  
15  
6
5
4
3
2
1
0
Reserved  
GPIOD13  
R/W, 0  
GPIOD12  
R/W, 0  
GPIOD11  
R/W, 0  
GPIOD10  
R/W, 0  
GPIOD9  
R/W, 0  
GPIOD8  
R/W, 0  
R, 0000 0000 00  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-14. EHPI GPIO Data Register (EHPIGPIODATA) Bit Layout  
36  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-14. EHPI GPIO Data Register (EHPIGPIODATA) Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
156  
Reserved  
0
Reserved  
Data bits that are used to control the level of the EHPI Control Bus configured as I/O output pins, and  
to monitor the level of the EHPI Control Bus configured as I/O input pins.  
If GPIODIRn = 0, then:  
GPIODx = 0;  
GPIODx = 1;  
Corresponding I/O pin is read as a low.  
Corresponding I/O pin is read as a high.  
GPIOD13−  
GPIOD8  
50  
0
If GPIODIRn = 1, then:  
GPIODx = 0;  
Set corresponding I/O pin to low.  
Set corresponding I/O pin to high.  
GPIODx = 1;  
3.8 System Register  
The system register (SYSR) provides control over certain device-specific functions. The register is located  
at port address 07FDh.  
15  
8
Reserved  
7
3
2
0
Reserved  
CLKDIV  
R/W  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-15. System Register Bit Locations  
Table 3-15. System Register Bit Fields  
BIT  
FUNCTION  
NUMBER  
NAME  
153  
Reserved  
These bits are reserved and are unaffected by writes.  
CLKOUT Divide Factor. Allows the clock present on the CLKOUT pin to be a  
divided-down version of the internal CPU clock. This field does not affect the programming  
of the PLL.  
CLKDIV 000 = CLKOUT represents the CPU clock divided by 1  
CLKDIV 001 = CLKOUT represents the CPU clock divided by 2  
CLKDIV 010 = CLKOUT represents the CPU clock divided by 4  
CLKDIV 011 = CLKOUT represents the CPU clock divided by 6  
CLKDIV 100 = CLKOUT represents the CPU clock divided by 8  
CLKDIV 101 = CLKOUT represents the CPU clock divided by 10  
CLKDIV 110 = CLKOUT represents the CPU clock divided by 12  
CLKDIV 111 = CLKOUT represents the CPU clock divided by 14  
2-0  
CLKDIV  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
37  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
3.9 USB Clock Generation  
The USB module can be clocked from either an Analog Phase-Locked Loop (APLL) or a Digital  
Phase-Locked Loop (DPLL). The APLL is the recommended USB clock source due to better noise  
tolerance and less long-term jitter than the DPLL. To maintain the backward compatibility, the DPLL is the  
power-up default clock source for the USB module.  
USB  
1
APLL  
USB Module Clock  
CLKIN  
(48.0 MHz)  
USB  
0
DPLL  
PLLSEL  
Figure 3-16. USB Clock Generation  
15  
3
2
1
APLLSTAT  
R, 0  
0
Reserved  
DPLLSTAT  
R, 1  
PLLSEL  
R/W, 0  
R, 0000 0000 0000 0  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-17. USB PLL Selection and Status Register Bit Layout  
Table 3-16. USB PLL Selection and Status Register Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
153  
Reserved  
0
1
Reserved bits. Always write 0.  
Status bit indicating if the DPLL is the source for the USB module clock.  
2
DPLLSTAT  
DPLLSTAT = 0;  
DPLLSTAT = 1;  
The DPLL is not the USB module clock source.  
The DPLL is the USB module clock source.  
Status bit indicating if the APLL is the source for the USB module clock.  
1
0
APLLSTAT  
PLLSEL  
0
0
APLLSTAT = 0;  
APLLSTAT = 1;  
The APLL is not the USB module clock source.  
The APLL is the USB module clock source.  
USB module clock source selection bit.  
PLLSEL = 0;  
PLLSEL = 1;  
DPLL is selected as USB module clock source.  
APLL is selected as USB module clock source.  
15  
12  
11  
10  
3
2
ON  
1
0
MULT  
DIV  
COUNT  
MODE  
R/W, 0  
STAT  
R, 0  
R/W, 0000  
R/W, 0  
R, 0000 0000  
R/W, 0  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-18. USB APLL Clock Mode Register Bit Layout  
38  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-17. USB APLL Clock Mode Register Bit Functions  
RESET  
VALUE  
BIT NO. BIT NAME  
FUNCTION  
PLL Multiply Factor K. Multiply Factor K, combined with DIV and MODE, determines the final PLL  
output clock frequency.  
1512  
MULT  
DIV  
0
K = MULT[3:0] + 1  
PLL Divide Factor (D) selection bit for PLL multiply mode operation. DIV, combined with K and MODE,  
determines the final PLL output clock frequency. When the PLL is operating in multiply mode:  
11  
0
0
DIV = 0;  
DIV = 1;  
PLL Divide Factor D = 1  
PLL Divide Factor D = 2 if K is odd  
PLL Divide Factor D = 4 if K is even  
Status bit indicating if the APLL is the source for the USB module clock.8-bit counter for PLL lock  
timer. When the MODE bit is set to 1, the COUNT field starts decrementing by 1 at the rate of  
CLKIN/16. When COUNT decrements to 0, the STAT bit is set to 1 and the PLL enabled clock is  
sourced to the USB module.  
10-3  
COUNT  
PLL Voltage Controlled Oscillator (VCO) enable bit. This bit works in conjunction with MODE to enable  
or disable the VCO.  
ON  
MODE  
VCO  
OFF  
ON  
0
0
X
1
2
ON  
0
1
X
ON  
X = Don’t care  
PLL mode selection bit  
MODE = 0;  
PLL operating in divide mode (VCO bypassed). When the PLL is  
operating in DIV mode, the PLL Divide Factor (D) is determined by the  
factor K.  
1
0
MODE  
STAT  
0
0
D = 2 if K = 1 to 15  
D = 4 if K = 16  
PLL operating in multiply mode (VCO on). The PLL multiply and divide  
factors are determined by DIV and K.  
MODE = 1;  
PLL lock status bit  
STAT = 0;  
PLL operating in DIV mode (VCO bypassed)  
PLL operating in multiply mode (VCO on)  
STAT = 1;  
DIV, combined with MODE and K, defines the final PLL multiplication ratio M/D as indicated below. The  
USB APLL clock frequency can be simply expressed by Equation 1.  
FUSB APLL CLK = FCLKIN x (M/D)  
The multiplication factor M and the dividing factor D are defined in Table 3-18.  
Table 3-18. M and D Values Based on MODE, DIV, and K  
MODE  
DIV  
X
K
1 to 15  
16  
M
1
D
2
4
1
1
2
4
0
0
1
1
1
1
X
1
0
1 to 15  
16  
K
0
1
1
Odd  
Even  
K
1
K-1  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
39  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
The USB clock generation and the PLL switching scheme are discussed in detail in the  
TMS320VC5507/5509 DSP Universal Serial Bus (USB) Module Reference Guide (literature number  
SPRU596) and in the Using the USB APLL on the TMS320VC5507/5509A Application Report (literature  
number SPRA997).  
3.10 Memory-Mapped Registers  
The 5507 has 78 memory-mapped CPU registers that are mapped in data memory space address 0h to  
4Fh. Table 3-19 provides a list of the CPU memory-mapped registers (MMRs) available.  
Table 3-19. CPU Memory-Mapped Registers  
WORD ADDRESS  
REGISTER  
DESCRIPTION  
Interrupt enable register 0  
BIT FIELD  
(HEX)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
IER0  
IFR0  
ST0_55  
ST1_55  
ST3_55  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[3116]  
[3932]  
[150]  
[3116]  
[3932]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[70]  
Interrupt flag register 0  
Status register 0 for C55x  
Status register 1 for C55x  
Status register 3 for C55x  
Reserved  
ST0  
Status register ST0  
Status register ST1  
Accumulator 0  
ST1  
AC0L  
AC0H  
AC0G  
AC1L  
AC1H  
AC1G  
T3  
Accumulator 1  
Temporary register  
TRN0  
AR0  
Transition register  
Auxiliary register 0  
AR1  
Auxiliary register 1  
AR2  
Auxiliary register 2  
AR3  
Auxiliary register 3  
AR4  
Auxiliary register 4  
AR5  
Auxiliary register 5  
AR6  
Auxiliary register 6  
AR7  
Auxiliary register 7  
SP  
Stack pointer register  
Circular buffer size register  
Block repeat counter  
Block repeat start address  
Block repeat end address  
Processor mode status register  
Program counter extension register  
Reserved  
BK03  
BRC0  
RSA0L  
REA0L  
PMST  
XPC  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
T0  
Temporary data register 0  
Temporary data register 1  
Temporary data register 2  
Temporary data register 3  
Accumulator 2  
T1  
T2  
T3  
AC2L  
40  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-19. CPU Memory-Mapped Registers (continued)  
WORD ADDRESS  
REGISTER  
DESCRIPTION  
BIT FIELD  
(HEX)  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
AC2H  
AC2G  
CDP  
[3116]  
[3932]  
[150]  
[150]  
[3116]  
[3932]  
[60]  
Coefficient data pointer  
Accumulator 3  
AC3L  
AC3H  
AC3G  
DPH  
Extended data page pointer  
MDP05  
MDP67  
DP  
Reserved  
[60]  
Reserved  
[60]  
Memory data page start address  
Peripheral data page start address  
Circular buffer size register for AR[47]  
Circular buffer size register for CDP  
Circular buffer start address register for AR[01]  
Circular buffer start address register for AR[23]  
Circular buffer start address register for AR[45]  
Circular buffer start address register for AR[67]  
Circular buffer coefficient start address register  
Data page pointer storage location for 128-word data table  
Transition register 1  
[150]  
[80]  
PDP  
BK47  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[2316]  
[150]  
[2316]  
[150]  
[2316]  
[150]  
[2316]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[150]  
[60]  
BKC  
BSA01  
BSA23  
BSA45  
BSA67  
BSAC  
BIOS  
TRN1  
BRC1  
BRS1  
CSR  
Block repeat counter 1  
Block repeat save 1  
Computed single repeat  
RSA0H  
RSA0L  
REA0H  
REA0L  
RSA1H  
RSA1L  
REA1H  
REA1L  
RPTC  
IER1  
Repeat start address 0  
Repeat end address 0  
Repeat start address 1  
Repeat end address 1  
Repeat counter  
Interrupt enable register 1  
Interrupt flag register 1  
Debug IER0  
IFR1  
DBIER0  
DBIER1  
IVPD  
Debug IER1  
Interrupt vector pointer DSP  
Interrupt vector pointer HOST  
Status register 2 for C55x  
System stack pointer  
IVPH  
ST2_55  
SSP  
SP  
User stack pointer  
SPH  
Extended data page pointer for the SP and the SSP  
Main data page pointer for the CDP  
CDPH  
[60]  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
41  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
3.11 Peripheral Register Description  
Each 5507 device has a set of memory-mapped registers associated with peripherals as listed in  
Table 3-20 through Table 3-35. Some registers use less than 16 bits. When reading these registers,  
unused bits are always read as 0.  
NOTE  
The CPU access latency to the peripheral memory-mapped registers is 6 CPU cycles.  
Following peripheral register update(s), the CPU must wait at least 6 CPU cycles before  
attempting to use that peripheral. When more than one peripheral register is updated in a  
sequence, the CPU only needs to wait following the final register write. For example, if the  
EMIF is being reconfigured, the CPU must wait until the very last EMIF register update  
takes effect before trying to access the external memory. The users should consult the  
respective peripheral user’s guide to determine if a peripheral requires additional time to  
initialize itself to the new configuration after the register updates take effect.  
Before reading or writing to the USB register, the USB module has to be brought out of reset by setting bit  
2 of the USB Idle Control and Status Register.  
Table 3-20. Idle Control, Status, and System Registers  
(1)  
WORD ADDRESS  
0x0001  
REGISTER NAME  
ICR[7:0]  
DESCRIPTION  
RESET VALUE  
Idle control register  
Idle status register  
System register  
xxxx xxxx 0000 0100  
xxxx xxxx 0000 0000  
0000 0000 0000 0000  
0x0002  
ISTR[7:0]  
0x07FD  
SYSR[15:0]  
(1) Hardware reset; x denotes a “don’t care'.  
Table 3-21. External Memory Interface Registers  
(1)  
WORD ADDRESS  
0x0800  
0x0801  
0x0802  
0x0803  
0x0804  
0x0805  
0x0806  
0x0807  
0x0808  
0x0809  
0x080A  
0x080B  
0x080C  
0x080D  
0x080E  
0x080F  
0x0810  
0x0811  
0x0812  
0x0813  
0x0814  
REGISTER NAME  
DESCRIPTION  
EMIF global control register  
RESET VALUE  
EGCR[15:0]  
EMI_RST  
xxxx xxxx 0010 xx00  
xxxx xxxx xxxx xxxx  
xx00 0000 0000 0000  
x010 1111 1111 1111  
0100 1111 1111 1111  
xxxx xxxx 0000 0000  
x010 1111 1111 1111  
0100 1111 1111 1111  
xxxx xxxx 0000 0000  
x010 1111 1111 1111  
0101 1111 1111 1111  
xxxx xxxx 0000 0000  
x010 1111 1111 1111  
0101 1111 1111 1111  
xxxx xxxx 0000 0000  
1111 1001 0100 1000  
xxxx 0000 1000 0000  
xxxx 0000 1000 0000  
xxxx xxxx xxxx xxxx  
xxxx xx11 1111 1111  
0000 0000 0000 0111  
EMIF global reset register  
EMI_BE[13:0]  
CE0_1[14:0]  
CE0_2[15:0]  
CE0_3[7:0]  
CE1_1[14:0]  
CE1_2[15:0]  
CE1_3[7:0]  
CE2_1[14:0]  
CE2_2[15:0]  
CE2_3[7:0]  
CE3_1[14:0]  
CE3_2[15:0]  
CE3_3[7:0]  
SDC1[15:0]  
SDPER[11:0]  
SDCNT[11:0]  
INIT  
EMIF bus error status register  
EMIF CE0 space control register 1  
EMIF CE0 space control register 2  
EMIF CE0 space control register 3  
EMIF CE1 space control register 1  
EMIF CE1 space control register 2  
EMIF CE1 space control register 3  
EMIF CE2 space control register 1  
EMIF CE2 space control register 2  
EMIF CE2 space control register 3  
EMIF CE3 space control register 1  
EMIF CE3 space control register 2  
EMIF CE3 space control register 3  
EMIF SDRAM control register 1  
EMIF SDRAM period register  
EMIF SDRAM counter register  
EMIF SDRAM init register  
SDC2[9:0]  
EMIF SDRAM control register 2  
EMIF SDRAM control register 3  
SDC3  
(1) Hardware reset; x denotes a “don’t care.”  
42  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-22. DMA Configuration Registers  
PORT ADDRESS  
(1)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
(WORD)  
GLOBAL REGISTER  
0x0E00  
DMA_GCR[2:0]  
DMA_GSCR  
DMA_GTCR  
DMA global control register  
xxxx xxxx xxxx x000  
0x0E02  
DMA software compatibility register  
DMA timeout control register  
0x0E03  
CHANNEL #0 REGISTERS  
0x0C00  
DMA_CSDP0  
DMA_CCR0[15:0]  
DMA_CICR0[5:0]  
DMA_CSR0[6:0]  
DMA_CSSA_L0  
DMA_CSSA_U0  
DMA channel 0 source destination parameters register  
DMA channel 0 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
xxxx xxxx xx00 0000  
Undefined  
0x0C01  
0x0C02  
DMA channel 0 interrupt control register  
0x0C03  
DMA channel 0 status register  
0x0C04  
DMA channel 0 source start address register (lower bits)  
DMA channel 0 source start address register (upper bits)  
0x0C05  
Undefined  
DMA channel 0 source destination address register  
(lower bits)  
0x0C06  
0x0C07  
DMA_CDSA_L0  
DMA_CDSA_U0  
Undefined  
Undefined  
DMA channel 0 Source destination address register (upper  
bits)  
0x0C08  
0x0C09  
DMA_CEN0  
DMA_CFN0  
DMA_CSFI0  
DMA_CSEI0  
DMA_CSAC0  
DMA_CDAC0  
DMA_CDEI0  
DMA_CDFI0  
DMA channel 0 element number register  
DMA channel 0 frame number register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x0C0A  
DMA channel 0 source frame index register  
DMA channel 0 source element index register  
DMA channel 0 source address counter  
DMA channel 0 destination address counter  
DMA channel 0 destination element index register  
DMA channel 0 destination frame index register  
0x0C0B  
0x0C0C  
0x0C0D  
0x0C0E  
0x0C0F  
CHANNEL #1 REGISTERS  
0x0C20  
DMA_CSDP1  
DMA_CCR1[15:0]  
DMA_CICR1[5:0]  
DMA_CSR1[6:0]  
DMA_CSSA_L1  
DMA_CSSA_U1  
DMA channel 1 source destination parameters register  
DMA channel 1 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
xxxx xxxx xx00 0000  
Undefined  
0x0C21  
0x0C22  
DMA channel 1 interrupt control register  
0x0C23  
DMA channel 1 status register  
0x0C24  
DMA channel 1 source start address register (lower bits)  
DMA channel 1 source start address register (upper bits)  
0x0C25  
Undefined  
DMA channel 1 source destination address register  
(lower bits)  
0x0C26  
0x0C27  
DMA_CDSA_L1  
DMA_CDSA_U1  
Undefined  
Undefined  
DMA channel 1 source destination address register (upper  
bits)  
0x0C28  
0x0C29  
DMA_CEN1  
DMA_CFN1  
DMA_CSFI1  
DMA_CSEI1  
DMA_CSAC1  
DMA_CDAC1  
DMA_CDEI1  
DMA_CDFI1  
DMA channel 1 element number register  
DMA channel 1 frame number register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x0C2A  
DMA channel 1 source frame index register  
DMA channel 1 source element index register  
DMA channel 1 source address counter  
DMA channel 1 destination address counter  
DMA channel 1 destination element index register  
DMA channel 1 destination frame index register  
0x0C2B  
0x0C2C  
0x0C2D  
0x0C2E  
0x0C2F  
CHANNEL #2 REGISTERS  
0x0C40  
DMA_CSDP2  
DMA_CCR2[15:0]  
DMA_CICR2[5:0]  
DMA channel 2 source destination parameters register  
DMA channel 2 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
0x0C41  
0x0C42  
DMA channel 2 interrupt control register  
(1) Hardware reset: x denotes a “don’t care.”  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
43  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-22. DMA Configuration Registers (continued)  
PORT ADDRESS  
(WORD)  
(1)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
0x0C43  
0x0C44  
0x0C45  
DMA_CSR2[6:0]  
DMA_CSSA_L2  
DMA_CSSA_U2  
DMA channel 2 status register  
xxxx xxxx xx00 0000  
Undefined  
DMA channel 2 source start address register (lower bits)  
DMA channel 2 source start address register (upper bits)  
Undefined  
DMA channel 2 source destination address register  
(lower bits)  
0x0C46  
0x0C47  
DMA_CDSA_L2  
DMA_CDSA_U2  
Undefined  
Undefined  
DMA channel 2 source destination address register  
(upper bits)  
0x0C48  
0x0C49  
DMA_CEN2  
DMA_CFN2  
DMA_CSFI2  
DMA_CSEI2  
DMA_CSAC2  
DMA_CDAC2  
DMA_CDEI2  
DMA_CDFI2  
DMA channel 2 element number register  
DMA channel 2 frame number register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x0C4A  
DMA channel 2 source frame index register  
DMA channel 2 source element index register  
DMA channel 2 source address counter  
DMA channel 2 destination address counter  
DMA channel 2 destination element index register  
DMA channel 2 destination frame index register  
0x0C4B  
0x0C4C  
0x0C4D  
0x0C4E  
0x0C4F  
CHANNEL #3 REGISTERS  
0x0C60  
DMA_CSDP3  
DMA_CCR3[15:0]  
DMA_CICR3[5:0]  
DMA_CSR3[6:0]  
DMA_CSSA_L3  
DMA_CSSA_U3  
DMA channel 3 source destination parameters register  
DMA channel 3 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
xxxx xxxx xx00 0000  
Undefined  
0x0C61  
0x0C62  
DMA channel 3 interrupt control register  
0x0C63  
DMA channel 3 status register  
0x0C64  
DMA channel 3 source start address register (lower bits)  
DMA channel 3 source start address register (upper bits)  
0x0C65  
Undefined  
DMA channel 3 source destination address register  
(lower bits)  
0x0C66  
0x0C67  
DMA_CDSA_L3  
DMA_CDSA_U3  
Undefined  
Undefined  
DMA channel 3 source destination address register  
(upper bits)  
0x0C68  
0x0C69  
DMA_CEN3  
DMA_CFN3  
DMA_CSFI3  
DMA_CSEI3  
DMA_CSAC3  
DMA_CDAC3  
DMA_CDEI3  
DMA_CDFI3  
DMA channel 3 element number register  
DMA channel 3 frame number register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x0C6A  
DMA channel 3 source frame index register  
DMA channel 3 source element index register  
DMA channel 3 source address counter  
DMA channel 3 destination address counter  
DMA channel 3 destination element index register  
DMA channel 3 destination frame index register  
0x0C6B  
0x0C6C  
0x0C6D  
0x0C6E  
0x0C6F  
CHANNEL #4 REGISTERS  
0x0C80  
DMA_CSDP4  
DMA_CCR4[15:0]  
DMA_CICR4[5:0]  
DMA_CSR4[6:0]  
DMA_CSSA_L4  
DMA_CSSA_U4  
DMA channel 4 source destination parameters register  
DMA channel 4 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
xxxx xxxx xx00 0000  
Undefined  
0x0C81  
0x0C82  
DMA channel 4 interrupt control register  
0x0C83  
DMA channel 4 status register  
0x0C84  
DMA channel 4 source start address register (lower bits)  
DMA channel 4 source start address register (upper bits)  
0x0C85  
Undefined  
DMA channel 4 Source destination address register  
(lower bits)  
0x0C86  
0x0C87  
DMA_CDSA_L4  
DMA_CDSA_U4  
Undefined  
Undefined  
DMA channel 4 source destination address register  
(upper bits)  
0x0C88  
0x0C89  
0x0C8A  
DMA_CEN4  
DMA_CFN4  
DMA_CSFI4  
DMA channel 4 element number register  
DMA channel 4 frame number register  
DMA channel 4 source frame index register  
Undefined  
Undefined  
Undefined  
44  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-22. DMA Configuration Registers (continued)  
PORT ADDRESS  
(1)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
(WORD)  
0x0C8B  
DMA_CSEI4  
DMA_CSAC4  
DMA_CDAC4  
DMA_CDEI4  
DMA_CDFI4  
DMA channel 4 source element index register  
DMA channel 4 source address counter  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x0C8C  
0x0C8D  
DMA channel 4 destination address counter  
DMA channel 4 destination element index register  
DMA channel 4 destination frame index register  
0x0C8E  
0x0C8F  
CHANNEL #5 REGISTERS  
0x0CA0  
DMA_CSDP5  
DMA_CCR5[15:0]  
DMA_CICR5[5:0]  
DMA_CSR5[6:0]  
DMA_CSSA_L5  
DMA_CSSA_U5  
DMA channel 5 source destination parameters register  
DMA channel 5 control register  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xx00 0011  
xxxx xxxx xx00 0000  
Undefined  
0x0CA1  
0x0CA2  
DMA channel 5 interrupt control register  
0x0CA3  
DMA channel 5 status register  
0x0CA4  
DMA channel 5 source start address register (lower bits)  
DMA channel 5 source start address register (upper bits)  
0x0CA5  
Undefined  
DMA channel 5 source destination address register  
(lower bits)  
0x0CA6  
0x0CA7  
DMA_CDSA_L5  
DMA_CDSA_U5  
Undefined  
Undefined  
DMA channel 5 source destination address register  
(upper bits)  
0x0CA8  
0x0CA9  
0x0CAA  
0x0CAB  
0x0CAC  
0x0CAD  
0x0CAE  
0x0CAF  
DMA_CEN5  
DMA_CFN5  
DMA_CSFI5  
DMA_CSEI5  
DMA_CSAC5  
DMA_CDAC5  
DMA_CDEI5  
DMA_CDFI5  
DMA channel 5 element number register  
DMA channel 5 frame number register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
DMA channel 5 source frame index register  
DMA channel 5 source element index register  
DMA channel 5 source address counter  
DMA channel 5 destination address counter  
DMA channel 5 destination element index register  
DMA channel 5 destination frame index register  
Table 3-23. Real-Time Clock Registers  
(1)  
WORD ADDRESS  
0x1800  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
RTCSEC  
RTCSECA  
RTCMIN  
Seconds register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0x1801  
Seconds alarm register  
Minutes register  
0x1802  
0x1803  
RTCMINA  
RTCHOUR  
RTCHOURA  
RTCDAYW  
RTCDAYM  
RTCMONTH  
RTCYEAR  
RTCPINTR  
RTCINTEN  
RTCINTFL  
Minutes alarm register  
Hours register  
0x1804  
0x1805  
Hours alarm register  
Day of the week register  
Day of the month (date) register  
Month register  
0x1806  
0x1807  
0x1808  
0x1809  
Year register  
0x180A  
Periodic interrupt selection register  
Interrupt enable register  
Interrupt flag register  
Reserved  
0x180B  
0x180C  
0x180D0x1BFF  
(1) Hardware reset; x denotes a “don’t care.”  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
45  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-24. Clock Generator  
(1)  
WORD ADDRESS  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
0010 0000 0000 0010 DIV1  
mode  
0x1C00  
CLKMD[14:0]  
Clock mode register  
If non-USB boot mode:  
0010 0000 0000 0110 DIV2  
mode  
0x1E00  
USBDPLL[14:0](2)  
USB DPLL control register  
If USB boot mode:  
0010 0010 0001 0011 PLL  
MULT4 mode  
0x1E80  
0x1F00  
USBPLLSEL[2:0]  
USBAPLL[15:0]  
USB PLL selection register  
USB APLL control register  
0000 0000 0000 0100  
0000 0000 0000 0000  
(1) Hardware reset; x denotes a “don’t care.”  
(2) DPLL is the power-up default USB clock source.  
Table 3-25. Timers  
(1)  
WORD ADDRESS  
0x1000  
REGISTER NAME  
TIM0[15:0]  
DESCRIPTION  
Timer count register, timer #0  
Period register, timer #0  
RESET VALUE  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0001 0000  
xxxx 0000 xxxx 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0001 0000  
xxxx 0000 xxxx 0000  
0x1001  
PRD0[15:0]  
TCR0[15:0]  
PRSC0[15:0]  
TIM1[15:0]  
0x1002  
Timer control register, timer #0  
Timer prescaler register, timer #0  
Timer count register, timer #1  
Period register, timer #1  
0x1003  
0x2400  
0x2401  
PRD1[15:0]  
TCR1[15:0]  
PRSC1[15:0]  
0x2402  
Timer control register, timer #1  
Timer prescaler register, timer #1  
0x2403  
(1) Hardware reset; x denotes a “don’t care.”  
Table 3-26. Multichannel Serial Port #0  
PORT ADDRESS  
(1)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE  
(WORD)  
0x2800  
0x2801  
0x2802  
0x2803  
0x2804  
0x2805  
0x2806  
0x2807  
0x2808  
0x2809  
0x280A  
0x280B  
0x280C  
0x280D  
DRR2_0[15:0]  
DRR1_0[15:0]  
DXR2_0[15:0]  
DXR1_0[15:0]  
SPCR2_0[15:0]  
SPCR1_0[15:0]  
RCR2_0[15:0]  
RCR1_0[15:0]  
XCR2_0[15:0]  
XCR1_0[15:0]  
SRGR2_0[15:0]  
SRGR1_0[15:0]  
MCR2_0[15:0]  
MCR1_0[15:0]  
Data receive register 2, McBSP #0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0020 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
0000 0000 0000 0000  
Data receive register 1, McBSP #0  
Data transmit register 2, McBSP #0  
Data transmit register 1, McBSP #0  
Serial port control register 2, McBSP #0  
Serial port control register 1, McBSP #0  
Receive control register 2, McBSP #0  
Receive control register 1, McBSP #0  
Transmit control register 2, McBSP #0  
Transmit control register 1, McBSP #0  
Sample rate generator register 2, McBSP #0  
Sample rate generator register 1, McBSP #0  
Multichannel control register 2, McBSP #0  
Multichannel control register 1, McBSP #0  
Receive channel enable register partition A,  
McBSP #0  
0x280E  
0x280F  
0x2810  
RCERA_0[15:0]  
RCERB_0[15:0]  
XCERA_0[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Receive channel enable register partition B,  
McBSP #0  
Transmit channel enable register partition A,  
McBSP #0  
(1) Hardware reset; x denotes a “don’t care.”  
46 Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-26. Multichannel Serial Port #0 (continued)  
Transmit channel enable register partition B,  
0x2811  
XCERB_0[15:0]  
McBSP #0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0x2812  
0x2813  
PCR0[15:0]  
Pin control register, McBSP #0  
Receive channel enable register partition C,  
McBSP #0  
RCERC_0[15:0]  
Receive channel enable register partition D,  
McBSP #0  
0x2814  
0x2815  
0x2816  
0x2817  
0x2818  
0x2819  
0x281A  
0x281B  
0x281C  
0x281D  
0x281E  
RCERD_0[15:0]  
XCERC_0[15:0]  
XCERD_0[15:0]  
RCERE_0[15:0]  
RCERF_0[15:0]  
XCERE_0[15:0]  
XCERF_0[15:0]  
RCERG_0[15:0]  
RCERH_0[15:0]  
XCERG_0[15:0]  
XCERH_0[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Transmit channel enable register partition C,  
McBSP #0  
Transmit channel enable register partition D,  
McBSP #0  
Receive channel enable register partition E,  
McBSP #0  
Receive channel enable register partition F,  
McBSP #0  
Transmit channel enable register partition E,  
McBSP #0  
Transmit channel enable register partition F,  
McBSP #0  
Receive channel enable register partition G,  
McBSP #0  
Receive channel enable register partition H,  
McBSP #0  
Transmit channel enable register partition G,  
McBSP #0  
Transmit channel enable register partition H,  
McBSP #0  
Table 3-27. Multichannel Serial Port #1  
PORT ADDRESS  
(WORD)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE(1)  
0x2C00  
0x2C01  
0x2C02  
0x2C03  
0x2C04  
0x2C05  
0x2C06  
0x2C07  
0x2C08  
0x2C09  
0x2C0A  
0x2C0B  
0x2C0C  
0x2C0D  
DRR2_1[15:0]  
DRR1_1[15:0]  
DXR2_1[15:0]  
DXR1_1[15:0]  
SPCR2_1[15:0]  
SPCR1_1[15:0]  
RCR2_1[15:0]  
RCR1_1[15:0]  
XCR2_1[15:0]  
XCR1_1[15:0]  
SRGR2_1[15:0]  
SRGR1_1[15:0]  
MCR2_1[15:0]  
MCR1_1[15:0]  
Data receive register 2, McBSP #1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0020 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
0000 0000 0000 0000  
Data receive register 1, McBSP #1  
Data transmit register 2, McBSP #1  
Data transmit register 1, McBSP #1  
Serial port control register 2, McBSP #1  
Serial port control register 1, McBSP #1  
Receive control register 2, McBSP #1  
Receive control register 1, McBSP #1  
Transmit control register 2, McBSP #1  
Transmit control register 1, McBSP #1  
Sample rate generator register 2, McBSP #1  
Sample rate generator register 1, McBSP #1  
Multichannel control register 2, McBSP #1  
Multichannel control register 1, McBSP #1  
Receive channel enable register partition A,  
McBSP #1  
0x2C0E  
0x2C0F  
0x2C10  
RCERA_1[15:0]  
RCERB_1[15:0]  
XCERA_1[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Receive channel enable register partition B,  
McBSP #1  
Transmit channel enable register partition A,  
McBSP #1  
(1) Hardware reset; x denotes a “don’t care.”  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
47  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-27. Multichannel Serial Port #1 (continued)  
Transmit channel enable register partition B,  
0x2C11  
0x2C12  
0x2C13  
XCERB_1[15:0]  
McBSP #1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PCR1[15:0]  
Pin control register, McBSP #1  
Receive channel enable register partition C,  
McBSP #1  
RCERC_1[15:0]  
Receive channel enable register partition D,  
McBSP #1  
0x2C14  
0x2C15  
0x2C16  
0x2C17  
0x2C18  
0x2C19  
0x2C1A  
0x2C1B  
0x2C1C  
0x2C1D  
0x2C1E  
RCERD_1[15:0]  
XCERC_1[15:0]  
XCERD_1[15:0]  
RCERE_1[15:0]  
RCERF_1[15:0]  
XCERE_1[15:0]  
XCERF_1[15:0]  
RCERG_1[15:0]  
RCERH_1[15:0]  
XCERG_1[15:0]  
XCERH_1[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Transmit channel enable register partition C,  
McBSP #1  
Transmit channel enable register partition D,  
McBSP #1  
Receive channel enable register partition E,  
McBSP #1  
Receive channel enable register partition F,  
McBSP #1  
Transmit channel enable register partition E,  
McBSP #1  
Transmit channel enable register partition F,  
McBSP #1  
Receive channel enable register partition G,  
McBSP #1  
Receive channel enable register partition H,  
McBSP #1  
Transmit channel enable register partition G,  
McBSP #1  
Transmit channel enable register partition H,  
McBSP #1  
Table 3-28. Multichannel Serial Port #2  
PORT ADDRESS  
(WORD)  
REGISTER NAME  
DESCRIPTION  
RESET VALUE(1)  
0x3000  
0x3001  
0x3002  
0x3003  
0x3004  
0x3005  
0x3006  
0x3007  
0x3008  
0x3009  
0x300A  
0x300B  
0x300C  
0x300D  
DRR2_2[15:0]  
DRR1_2[15:0]  
DXR2_2[15:0]  
DXR1_2[15:0]  
SPCR2_2[15:0]  
SPCR1_2[15:0]  
RCR2_2[15:0]  
RCR1_2[15:0]  
XCR2_2[15:0]  
XCR1_2[15:0]  
SRGR2_2[15:0]  
SRGR1_2[15:0]  
MCR2_2[15:0]  
MCR1_2[15:0]  
Data receive register 2, McBSP #2  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0020 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
0000 0000 0000 0000  
Data receive register 1, McBSP #2  
Data transmit register 2, McBSP #2  
Data transmit register 1, McBSP #2  
Serial port control register 2, McBSP #2  
Serial port control register 1, McBSP #2  
Receive control register 2, McBSP #2  
Receive control register 1, McBSP #2  
Transmit control register 2, McBSP #2  
Transmit control register 1, McBSP #2  
Sample rate generator register 2, McBSP #2  
Sample rate generator register 1, McBSP #2  
Multichannel control register 2, McBSP #2  
Multichannel control register 1, McBSP #2  
Receive channel enable register partition A,  
McBSP #2  
0x300E  
0x300F  
0x3010  
RCERA_2[15:0]  
RCERB_2[15:0]  
XCERA_2[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Receive channel enable register partition B,  
McBSP #2  
Transmit channel enable register partition A,  
McBSP #2  
(1) Hardware reset; x denotes a “don’t care.”  
48 Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-28. Multichannel Serial Port #2 (continued)  
Transmit channel enable register partition B,  
0x3011  
XCERB_2[15:0]  
McBSP #2  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0x3012  
0x3013  
PCR2[15:0]  
Pin control register, McBSP #2  
Receive channel enable register partition C,  
McBSP #2  
RCERC_2[15:0]  
Receive channel enable register partition D,  
McBSP #2  
0x3014  
0x3015  
0x3016  
0x3017  
0x3018  
0x3019  
0x301A  
0x301B  
0x301C  
0x301D  
0x301E  
RCERD_2[15:0]  
XCERC_2[15:0]  
XCERD_2[15:0]  
RCERE_2[15:0]  
RCERF_2[15:0]  
XCERE_2[15:0]  
XCERF_2[15:0]  
RCERG_2[15:0]  
RCERH_2[15:0]  
XCERG_2[15:0]  
XCERH_2[15:0]  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Transmit channel enable register partition C,  
McBSP #2  
Transmit channel enable register partition D,  
McBSP #2  
Receive channel enable register partition E,  
McBSP #2  
Receive channel enable register partition F,  
McBSP #2  
Transmit channel enable register partition E,  
McBSP #2  
Transmit channel enable register partition F,  
McBSP #2  
Receive channel enable register partition G,  
McBSP #2  
Receive channel enable register partition H,  
McBSP #2  
Transmit channel enable register partition G,  
McBSP #2  
Transmit channel enable register partition H,  
McBSP #2  
Table 3-29. GPIO  
WORD ADDRESS  
0x3400  
REGISTER NAME  
PIN  
DESCRIPTION  
General–purpose I/O direction register  
General–purpose I/O data register  
Address/GPIO enable register  
Address/GPIO direction register  
Address/GPIO data register  
EHPI/GPIO enable register  
RESET VALUE(1)  
0000 0000 0000 0000  
0000 0000 xxxx xxxx  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 00xx xxxx  
IODIR[7:0]  
IODATA[7:0]  
GPIO[7:0]  
GPIO[7:0]  
A[15:0]  
0x3401  
0x4400  
AGPIOEN[15:0]  
AGPIODIR[15:0]  
AGPIODATA[15:0]  
EHPIGPIOEN[5:0]  
EHPIGPIODIR[5:0]  
EHPIGPIODATA[5:0]  
0x4401  
A[15:0]  
0x4402  
A[15:0]  
0x4403  
GPIO[13:8]  
GPIO[13:8]  
GPIO[13:8]  
0x4404  
EHPI/GPIO direction register  
EHPI/GPIO data register  
0x4405  
(1) Hardware reset; x denotes a “don’t care.”  
Table 3-30. Device Revision ID  
(1)  
WORD ADDRESS  
REGISTER NAME  
Rev ID[4:1]  
DESCRIPTION  
VALUE  
Rev. 1.0:  
xxxx xxxx xxx0 001x  
0x3803  
Silicon revision identification  
(1) x denotes a “don’t care.”  
Table 3-31. I2C Module Registers(1)  
WORD ADDRESS  
REGISTER NAME  
DESCRIPTION  
RESET VALUE(2)  
(1) I2C protocol compatible, no fail-safe buffer.  
(2) Hardware reset; x denotes a “don’t care.”  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
49  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
(1)  
Table 3-31. I2C Module Registers  
(continued)  
0x3C00  
0x3C01  
0x3C02  
0x3C03  
0x3C04  
0x3C05  
0x3C06  
0x3C07  
0x3C08  
0x3C09  
0x3C0A  
0x3C0B  
0x3C0C  
0x3C0D  
0x3C0E  
0x3C0F  
-
I2COAR[9:0](3)  
I2C own address register  
I2C interrupt enable register  
I2C status register  
I2C clock divider low register  
I2C clock divider high register  
I2C data count  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0001 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0011 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
I2CIER  
I2CSTR  
I2CCLKL[15:0]  
I2CCLKH[15:0]  
I2CCNT[15:0]  
I2CDRR[7:0]  
I2CSAR[9:0]  
I2CDXR[7:0]  
I2CMDR[14:0]  
I2CISRC  
-
I2C interrupt source register  
Reserved  
I2CPSC  
I2C prescaler register  
Reserved  
0000 0000 0000 0000  
0000 0000 0000 0000  
-
-
Reserved  
I2C mode register 2  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
I2CMDR2  
I2CRSR  
-
I2CXSR  
(3) This register must be set by the user. The user may program the I2C’s own address to any value, as long as the value does not conflict  
with the I2C addresses of other components connected to the I2C bus.  
Table 3-32. Watchdog Timer Registers  
(1)  
WORD ADDRESS  
0x4000  
REGISTER NAME  
WDTIM[15:0]  
DESCRIPTION  
WD timer counter register  
RESET VALUE  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0011 1100 1111  
0001 0000 0000 0000  
0x4001  
WDPRD[15:0]  
WDTCR[13:0]  
WDTCR2[15:0]  
WD timer period register  
WD timer control register  
WD timer control register 2  
0x4002  
0x4003  
(1) Hardware reset; x denotes a “don’t care.”  
Table 3-33. USB Module Registers  
WORD ADDRESS  
DMA CONTEXTS  
REGISTER NAME  
DESCRIPTION  
RESET VALUE(1) (2)  
0x5800  
0x5808  
0x5810  
0x5818  
0x5820  
0x5828  
0x5830  
0x5838  
0x5840  
0x5848  
0x5850  
0x5858  
0x5860  
Reserved  
DMAC_O1  
DMAC_O2  
DMAC_O3  
DMAC_O4  
DMAC_O5  
DMAC_O6  
DMAC_O7  
Reserved  
DMAC_I1  
DMAC_I2  
DMAC_I3  
DMAC_I4  
Output endpoint 1 DMA context register  
Output endpoint 2 DMA context register  
Output endpoint 3 DMA context register  
Output endpoint 4 DMA context register  
Output endpoint 5 DMA context register  
Output endpoint 6 DMA context register  
Output endpoint 7 DMA context register  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Input endpoint 1 DMA context register  
Input endpoint 2 DMA context register  
Input endpoint 3 DMA context register  
Input endpoint 4 DMA context register  
Undefined  
Undefined  
Undefined  
Undefined  
(1) Hardware reset; x denotes a “don’t care.”  
(2) The USB module must be brought out of reset by setting bit 2 of the USB Idle Control and Status Register before any USB module  
register read or write attempt.  
50  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-33. USB Module Registers (continued)  
0x5868  
DMAC_I5  
Input endpoint 5 DMA context register  
Input endpoint 6 DMA context register  
Input endpoint 7 DMA context register  
Undefined  
Undefined  
Undefined  
0x5870  
0x5878  
DMAC_I6  
DMAC_I7  
DATA BUFFER  
0x5880  
Data Buffers  
OEB_0  
Contains X/Y data buffers for endpoints 1 – 7  
Output endpoint 0 buffer  
Undefined  
Undefined  
Undefined  
Undefined  
0x6680  
0x66C0  
IEB_0  
Input endpoint 0 buffer  
0x6700  
SUP_0  
Setup packet for endpoint 0  
ENDPOINT DESCRIPTOR BLOCKS  
0x6708  
0x6710  
0x6718  
0x6720  
0x6728  
0x6730  
0x6738  
OEDB_1  
OEDB_2  
OEDB_3  
OEDB_4  
OEDB_5  
OEDB_6  
OEDB_7  
Output endpoint 1 descriptor register block  
Output endpoint 2 descriptor register block  
Output endpoint 3 descriptor register block  
Output endpoint 4 descriptor register block  
Output endpoint 5 descriptor register block  
Output endpoint 6 descriptor register block  
Output endpoint 7 descriptor register block  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x6740  
0x6748  
0x6750  
0x6758  
0x6760  
0x6768  
0x6770  
0x6778  
Reserved  
IEDB_1  
IEDB_2  
IEDB_3  
IEDB_4  
IEDB_5  
IEDB_6  
IEDB_7  
Input endpoint 1 descriptor register block  
Input endpoint 2 descriptor register block  
Input endpoint 3 descriptor register block  
Input endpoint 4 descriptor register block  
Input endpoint 5 descriptor register block  
Input endpoint 6 descriptor register block  
Input endpoint 7 descriptor register block  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
CONTROL AND STATUS REGISTERS  
IEPCNF_0  
0x6780  
0x6781  
0x6782  
0x6783  
0x6784 - 0x6790  
0x6791  
0x6792  
0x6793  
0x6794  
0x6795  
0x6796  
0x6797  
0x6798  
0x6799  
0x679A  
0x679B  
0x679C  
0x67A0  
0x67A1  
0x67A2  
0x67F8  
0x67F9  
0x67FA  
Input endpoint 0 configuration  
Input endpoint 0 byte count  
Output endpoint 0 configuration  
Output endpoint 0 byte count  
xxxx xxxx 0000 0000  
xxxx xxxx 1000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
IEPBCNT_0  
OEPCNF_0  
OEPBCNT_0  
Reserved  
GLOBCTL  
VECINT  
Global control register  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx xxxx x000  
xxxx xxxx x000 0000  
xxxx xxxx xxxx x001  
xxxx xxxx 0000 0000  
xxxx xxxx xxxx x000  
xxxx xxxx 0000 0000  
Vector interrupt register  
IEPINT  
Input endpoint interrupt register  
Output endpoint interrupt register  
Input DMA reload interrupt register  
Output DMA reload interrupt register  
Input DMA go interrupt register  
Output DMA go interrupt register  
Input DMA interrupt mask register  
Output DMA interrupt mask register  
Input EDB interrupt mask register  
Output EDB interrupt mask register  
Host DMA control register  
OEPINT  
IDMARINT  
ODMARINT  
IDMAGINT  
ODMAGINT  
IDMAMSK  
ODMAMSK  
IEDBMSK  
OEDBMSK  
HOSTCTL  
HOSTEP  
Host DMA endpoint register  
Host DMA status  
HOST  
FNUML  
Frame number low register  
Frame number high  
FNUMH  
PSOFTMR  
PreSOF interrupt timer register  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
51  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-33. USB Module Registers (continued)  
0x67FC  
0x67FD  
0x67FE  
0x67FF  
0x7000  
USBCTL  
USB control register  
xxxx xxxx 0101 0000  
USBMSK  
USBSTA  
USB interrupt mask register  
USB status register  
xxxx xxxx 0000 0000  
xxxx xxxx 0000 0000  
xxxx xxxx x000 0000  
xxxx xxxx xxxx x000  
FUNADR  
Function address register  
USB idle control and status register  
USBIDLECTL  
Table 3-34. Analog-to-Digital Controller (ADC) Registers  
(1)  
WORD ADDRESS  
0x6800  
REGISTER NAME  
ADCCTL[15:11]  
ADCDATA[15:0]  
ADCCLKDIV[15:0]  
ADCCLKCTL[8:0]  
DESCRIPTION  
RESET VALUE  
ADC control register  
ADC data register  
0111 0000 0000 0000  
0111 0000 0000 0000  
0000 0000 0000 1111  
0000 0000 0000 0111  
0x6801  
0x6802  
ADC function clock divider register  
ADC clock control register  
0x6803  
(1) Hardware reset; x denotes a “don’t care.”  
Table 3-35. External Bus Selection Register  
WORD ADDRESS  
REGISTER NAME  
DESCRIPTION  
RESET VALUE(1)  
0x6C00  
EBSR[15:0]  
External bus selection register  
0000 0000 0000 0011(2)  
(1) Hardware reset; x denotes a “don’t care.”  
(2) The reset value is 0000 0000 0000 0001 if GPIO0 = 1; the value is 0000 0000 0000 0011 if GPIO0 = 0.  
3.12 Interrupts  
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 3-36.  
Table 3-36. Interrupt Table  
SOFTWARE  
(TRAP)  
RELATIVE  
LOCATION  
(1)  
NAME  
PRIORITY  
FUNCTION  
EQUIVALENT  
(HEX BYTES)  
RESET  
NMI(2)  
SINT0  
SINT1  
SINT24  
SINT2  
SINT16  
SINT3  
SINT4  
SINT5  
SINT17  
SINT6  
SINT7  
SINT8  
SINT18  
SINT9  
SINT10  
SINT11  
0
0
1
Reset (hardware and software)  
Nonmaskable interrupt  
Bus error interrupt  
8
BERR  
C0  
10  
80  
18  
20  
28  
88  
30  
38  
40  
90  
48  
50  
58  
2
INT0  
3
External interrupt #0  
INT1  
4
External interrupt #1  
INT2  
5
External interrupt #2  
TINT0  
6
Timer #0 interrupt  
RINT0  
XINT0  
7
McBSP #0 receive interrupt  
McBSP #0 transmit interrupt  
McBSP #1 receive interrupt  
McBSP #1 transmit interrupt  
USB interrupt  
8
RINT1  
XINT1  
9
10  
11  
12  
13  
14  
15  
USB  
DMAC0  
DMAC1  
DSPINT  
INT3/WDTINT  
DMA channel #0 interrupt  
DMA channel #1 interrupt  
Interrupt from host  
External interrupt #3 or watchdog timer interrupt  
(1) Absolute addresses of the interrupt vector locations are determined by the contents of the IVPD and IVPH registers. Interrupt vectors for  
interrupts 015 and 2431 are relative to IVPD. Interrupt vectors for interrupts 1623 are relative to IVPH.  
(2) The NMI pin is internally tied high. However, NMI interrupt vector can be used for SINT1 and Watchdog Timer Interrupt.  
52  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 3-36. Interrupt Table (continued)  
INT4/RTC(3)  
SINT19  
SINT12  
SINT13  
SINT20  
SINT21  
SINT14  
SINT15  
SINT22  
SINT23  
SINT25  
SINT26  
SINT27  
SINT28  
SINT29  
SINT30  
SINT31  
98  
60  
68  
A0  
A8  
70  
78  
B0  
B8  
C8  
D0  
D8  
E0  
E8  
F0  
F8  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
External interrupt #4 or RTC interrupt  
RINT2  
XINT2  
DMAC2  
DMAC3  
DMAC4  
DMAC5  
TINT1  
IIC  
McBSP #2 receive interrupt  
McBSP #2 transmit interrupt  
DMA Channel #2 interrupt  
DMA Channel #3 interrupt  
DMA Channel #4 interrupt  
DMA Channel #5 interrupt  
Timer #1 interrupt  
I2C interrupt  
DLOG  
RTOS  
-
Data log interrupt  
Real–time operating system interrupt  
Software interrupt #27  
Software interrupt #28  
Software interrupt #29  
Software interrupt #30  
Software interrupt #31  
-
-
-
-
(3) It is recommended that either the INT4 or RTC interrupt be used. If both INT4 and RTC interrupts are used, one interrupt event can  
potentially hold off the other interrupt. For example, if INT4 is asserted first and held low, the RTC interrupt will not be recognized until  
the INT4 pin is back to high-logic state again. The INT4 pin must be pulled high if only the RTC interrupt is used.  
3.12.1 IFR and IER Registers  
The IFR0 (Interrupt Flag Register 0) and IER0 (Interrupt Enable Register 0) bit layouts are shown in  
Figure 3-19.  
15  
14  
13  
12  
11  
10  
9
8
INT3/  
DMAC5  
R/W  
DMAC4  
R/W  
XINT2  
R/W  
RINT2  
R/W  
DSPINT  
R/W  
DMAC1  
R/W  
USB  
R/W  
WDTINT  
R/W  
7
6
5
4
3
2
1
0
XINT1  
R/W  
RINT1  
R/W  
RINT0  
R/W  
TINT0  
R/W  
INT2  
R/W  
INT0  
R/W  
Reserved  
LEGEND: R = Read, W = Write, n = value after reset  
Figure 3-19. IFR0 and IER0 Bit Locations  
Table 3-37. IFR0 and IER0 Register Bit Fields  
BIT  
FUNCTION  
NUMBER  
NAME  
DMAC5  
DMAC4  
XINT2  
15  
14  
13  
12  
DMA channel 5 interrupt flag/mask bit  
DMA channel 4 interrupt flag/mask bit  
This bit is used as the McBSP2 transmit interrupt flag/mask bit.  
McBSP2 receive interrupt flag/mask bit.  
RINT2  
This bit is used as either the external user interrupt 3 flag/mask bit, or the watchdog timer interrupt  
flag/mask bit.(1)  
11  
INT3/WDTINT  
10  
9
DSPINT  
DMAC1  
USB  
HPI host–to–DSP interrupt flag/mask.  
DMA channel 1 interrupt flag/mask bit  
USB interrupt flag/mask bit.  
8
(1) It is possible to have active interrupts simultaneously from both the external INT3 source and the watchdog timer. When an interrupt is  
detected in this bit, the watchdog timer status register should be polled to determine if the watchdog timer is the interrupt source.  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
53  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 3-37. IFR0 and IER0 Register Bit Fields (continued)  
7
6
XINT1  
RINT1  
This bit is used as the McBSP1 transmit interrupt flag/mask bit.  
McBSP1 receive interrupt flag/mask bit.  
McBSP0 receive interrupt flag bit  
5
RINT0  
TINT0  
INT2  
INT0  
-
4
Timer 0 interrupt flag bit  
3
External interrupt 2 flag bit  
2
External interrupt 0 flag bit  
1-0  
Reserved for future expansion. These bits should always be written with 0.  
The IFR1 (Interrupt Flag Register 1) and IER1 (Interrupt Enable Register 1) bit layouts are shown in  
Figure 3-20.  
NOTE  
It is possible to have active interrupts simultaneously from both the external interrupt 4  
(INT4) and the real-time clock (RTC). When an interrupt is detected in this bit, the  
real-time clock status register should be polled to determine if the real-time clock is the  
source of the interrupt.  
Reserved  
RTOS  
R/W-0  
DLOG  
R/W-0  
BERR  
R/W-0  
*
R/W-00000  
7
6
5
4
3
2
1
0
I2C  
TINT1  
R/W-0  
DMAC3  
R/W-0  
DMAC2  
R/W-0  
INT4/RTC  
R/W-0  
DMAC0  
R/W-0  
XINT0  
R/W-0  
INT1  
R/W-0  
R/W-0  
LEGEND: R = Read, W = Write, n = value after reset  
*
Always write zeros.  
Figure 3-20. IFR1 and IER1 Bit Locations  
Table 3-38. IFR1 and IER1 Register Bit Fields  
BIT  
FUNCTION  
NUMBER  
NAME  
-
15-11  
Reserved for future expansion. These bits should always be written with 0.  
Real–time operating system interrupt flag/mask bit  
Data log interrupt flag/mask bit  
10  
9
RTOS  
DLOG  
BERR  
I2C  
8
Bus error interrupt flag/mask bit  
I2C interrupt flag/mask bit  
7
6
TINT1  
DMAC3  
DMAC2  
Timer 1 interrupt flag/mask bit  
5
DMA channel 3 interrupt flag/mask bit  
DMA channel 2 interrupt flag/mask bit  
4
This bit can be used as either the external user interrupt 4 flag/mask bit, or the real–time clock  
interrupt flag/mask bit.  
3
INT4/RTC  
2
1
0
DMAC0  
XINT0  
INT1  
DMA channel 0 interrupt flag/mask bit  
McBSP transmit 0 interrupt flag/mask bit  
External user interrupt 1 flag/mask bit  
54  
Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
3.12.2 Interrupt Timing  
The external interrupts (INT[4:0]) are synchronized to the CPU by way of a two-flip-flop synchronizer. The  
interrupt inputs are sampled on falling edges of the CPU clock. A sequence of 1-1-0-0-0 on consecutive  
cycles on the interrupt pin is required for an interrupt to be detected. Therefore, the minimum low pulse  
duration on the external interrupts on the 5507 is three CPU clock periods.  
3.12.3 Waking Up From IDLE Condition  
One of the following four events can wake up the CPU from IDLE:  
Hardware Reset  
External Interrupt  
RTC Interrupt  
USB Event (Reset or Resume)  
3.12.3.1 Waking Up From IDLE With Oscillator Disabled  
With an external interrupt, a RTC interrupt, or an USB resume/reset, the clock generation circuit wakes up  
the oscillator and enables the USB PLL to determine the oscillator stable time. In the case of the interrupt  
being disabled by clearing the associated bit in the Interrupt Enable Register (IERx), the CPU is not  
“woken up”. If the interrupt due to the wake-up event is enabled, the interrupt is sent to the CPU only after  
the oscillator is stabilized and the USB PLL is locked. If the external interrupt serves as the wake-up  
event, the interrupt line must stay low for a minimum of 3 CPU cycles after the oscillator is stabilized to  
wake up the CPU. Otherwise, only the clock domain will wake up and another external interrupt will be  
needed to wake up the CPU.  
Once out of IDLE, any system not using the USB should put the USB module in idle mode to reduce  
power consumption.  
For more details on the SM320VC5507 oscillator-disable process, see the Disabling the Internal Oscillator  
on the TMS320VC5507/5509/5509A DSP application report (literature number SPRA078).  
3.12.4 Idling Clock Domain When External Parallel Bus Operating in EHPI Mode  
The clock domain cannot be idled when the External Parallel Bus is operating in EHPI mode to ensure  
host access to the DSP memory. To work around this restriction, use the HIDL bit of the External Bus  
Selection Register (EBSR) with the CLKGENI bit of the Idle Control Register (ICR) to idle the clock  
domain.  
Copyright © 2009, Texas Instruments Incorporated  
Functional Overview  
55  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
4
Support  
4.1 Notices Concerning JTAG (IEEE 1149.1) Boundary Scan Test Capability  
4.1.1 Initialization Requirements for Boundary Scan Test  
The SM320VC5507 uses the JTAG port for boundary scan tests, emulation capability and factory test  
purposes. To use boundary scan test, the EMU0 and EMU1/OFF pins must be held LOW through a rising  
edge of the TRST signal prior to the first scan. This operation selects the appropriate TAP control for  
boundary scan. If at any time during a boundary scan test a rising edge of TRST occurs when EMU0 or  
EMU1/OFF are not low, a factory test mode may be selected preventing boundary scan test from being  
completed. For this reason, it is recommended that EMU0 and EMU1/OFF be pulled or driven low at all  
times during boundary scan test.  
4.1.2 Boundary Scan Description Language (BSDL) Model  
BSDL models are available on the web in the TMS320VC5507 product folder under the “simulation  
models” section.  
4.2 Documentation Support  
Extensive documentation supports all TMS320™ DSP family of devices from product announcement  
through applications development. The following types of documentation are available to support the  
design and use of the TMS320C5000™ platform of DSPs:  
TMS320C55x ™ DSP Functional Overview (literature number SPRU312)  
Device-specific data sheets and data manuals  
Complete user’s guides  
Development support tools  
Hardware and software application reports  
TMS320C55x reference documentation includes, but is not limited to, the following:  
TMS320C55x DSP CPU Reference Guide (literature number SPRU371)  
TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature number SPRU374)  
TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature number SPRU375)  
TMS320C55x DSP Programmer’s Guide (literature number SPRU376)  
TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317)  
TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number SPRU281)  
TMS320C55x Assembly Language Tools User’s Guide (literature number SPRU280)  
TMS320C55x DSP Library Programmer’s Reference (literature number SPRU422)  
TMS320VC5507/5509 DSP Universal Serial Bus (USB) Module Reference Guide (literature number  
SPRU596)  
Using the USB APLL on the TMS320VC5507/5509A Application Report (literature number SPRA997)  
Using the TMS320VC5503/VC5507/VC5509/VC5509A Bootloader Application Report (literature  
number SPRA375)  
Disabling the Internal Oscillator on the TMS320VC5507/5509/5509A DSP application report (literature  
number SPRA078)  
Using the TMS320C5509/C5509A USB Bootloader Application Report (literature number SPRA840)  
The reference guides describe in detail the TMS320C55x™ DSP products currently available and the  
hardware and software applications, including algorithms, for fixed-point TMS320™ DSP family of devices.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320™ DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320™ DSP customers on product information.  
56  
Support  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com  
uniform resource locator (URL).  
4.3 TMS320VC5507 Device Nomenclature  
TMS 320 VC 5507 GHH  
PREFIX  
TMX = Experimental device  
TMP = Prototype device  
TMS = Qualified device  
SMJ = MIL-STD-883C  
SM High Rel (non-883C)  
†‡§  
PACKAGE TYPE  
=
GHH  
ZHH  
=
=
179-terminal plastic BGA  
179-terminal plastic BGA with Pb-free  
soldered balls  
DEVICE FAMILY  
320 = TMS320 family  
PGE  
=
144-pin plastic LQFP  
DEVICE  
55x DSP: 5507  
TECHNOLOGY  
VC  
= Dual-Supply CMOS  
§
BGA  
LQFP = Low-Profile Quad Flatpack  
The ZHH mechanical package designator representsthe version of the GHH with PbFree soldered balls. The ZHH package  
).  
=
Ball Grid Array  
devices are supported in the same speed grades as the GHH package devices (available upon request  
For actual device part numbers (P/Ns) and ordering information, see the Mechanical Data section of this document or the  
TI website (www.ti.com).  
Figure 4-1. Device Nomenclature for the TMS320VC5507  
Copyright © 2009, Texas Instruments Incorporated  
Support  
57  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions for the  
SM320VC5507 DSP.  
All electrical and switching characteristics in this data manual are valid over the recommended operating  
conditions unless otherwise specified.  
The list of absolute maximum ratings are specified over operating case temperature. Stresses beyond those  
listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under  
Section 5.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability. All voltage values are with respect to VSS. Figure 5-1 provides the test load circuit values for a  
3.3-V I/O.  
5.1 ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
V
DVDD  
CVDD  
VI  
Supply voltage I/O range  
Supply voltage core range  
Input voltage range  
–0.3 to 4.0  
–0.3 to 2.0  
–0.3 to 4.5  
–0.3 to 4.5  
–55 to 85  
–55 to 150  
V
V
VO  
Output voltage range  
V
TC  
Operating case temperature range  
Storage temperature range  
°C  
°C  
Tstg  
58  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.2 RECOMMENDED OPERATING CONDITIONS  
5.2.1 Recommended Operating Conditions for CVDD = 1.2 V (108 MHz)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
CORE  
CVDD  
Device supply voltage  
1.14  
1.2  
1.26  
V
PERIPHERALS  
RCVDD  
RTC module supply voltage, core  
1.14  
1.14  
1.14  
3
1.2  
1.2  
1.2  
3.3  
1.26  
1.26  
1.26  
3.6  
V
V
V
V
RDVDD  
RTC module supply voltage, I/O (RTCINX1 and RTCINX2)  
USBPLL supply voltage(1)  
USBPLLVDD  
USBVDD  
USB module supply voltage, I/O (DP, DN, and PU)  
Device supply voltage, I/O (except DP, DN, PU, SDA,  
SCL)(2)  
DVDD  
2.7  
3.3  
3.6  
V
ADVDD  
AVDD  
A/D module digital supply voltage  
A/D module analog supply voltage  
2.7  
2.7  
3.3  
3.3  
3.6  
3.6  
V
V
GROUNDS  
VSS  
Supply voltage, GND, I/O, and core  
Supply voltage, GND, A/D module, digital  
Supply voltage, GND, A/D module, analog  
Supply voltage, GND, USBPLL  
DN and DP(3)  
0
0
0
0
V
V
V
V
ADVSS  
AVSS  
USBPLLVSS  
2
SDA & SCL: VDD related  
0.7 x  
DVDD  
DVDD(max)  
+0.5  
input levels(2)  
VIH  
High–level input voltage, I/O  
V
V
All other inputs  
(including hysteresis  
inputs)  
DN and DP(3)  
2
DVDD + 0.3  
0.8  
SDA & SCL: VDD related  
-0.5  
-0.3  
0.3 x DVDD  
input levels(2)  
VIL  
Low–level input voltage, I/O  
All other inputs  
(including hysteresis  
inputs)  
0.8  
0.1 x  
DVDD  
Vhys  
Hysteresis level  
Inputs with hysteresis only  
V
DN and DP(3)  
(VOH = 2.45 V)  
-17  
-4  
IOH  
High–level output current  
mA  
All other outputs  
DN and DP(3)  
(VOL = 0.36 V)  
SDA and SCL(2)  
17  
IOL  
Low–level output current  
mA  
°C  
3
4
All other outputs  
TC  
Operating case temperature  
-55  
85  
(1) USB PLL is susceptible to power supply ripple. The maximum allowable supply ripple is 1% for 1 Hz to 5 kHz; 1.5% for 5 kHz to 10  
MHz; 3% for 10 MHz to 100 MHz, and less than 5% for 100 MHz or greater.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down. Due to the fact that different voltage devices can be connected to the I2C bus, the level of logic 0 (low) and logic 1 (high) are not  
fixed and depends on the associated VDD  
.
(3) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
59  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
MAX UNIT  
5.2.2 Recommended Operating Conditions for CVDD = 1.35 V (144 MHz)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
CORE  
CVDD  
Device supply voltage  
1.28  
1.35  
1.42  
V
PERIPHERALS  
RCVDD  
RTC module supply voltage, core  
1.28  
1.28  
1.28  
3
1.35  
1.35  
1.35  
3.3  
1.42  
1.42  
1.42  
3.6  
V
V
V
V
RDVDD  
RTC module supply voltage, I/O (RTCINX1 and RTCINX2)  
USBPLL supply voltage(1)  
USBPLLVDD  
USBVDD  
USB module supply voltage, I/O (DP, DN, and PU)  
Device supply voltage, I/O (except DP, DN, PU, SDA,  
SCL)(2)  
DVDD  
2.7  
3.3  
3.6  
V
ADVDD  
AVDD  
A/D module digital supply voltage  
A/D module analog supply voltage  
2.7  
2.7  
3.3  
3.3  
3.6  
3.6  
V
V
GROUNDS  
VSS  
Supply voltage, GND, I/O, and core  
Supply voltage, GND, A/D module, digital  
Supply voltage, GND, A/D module, analog  
Supply voltage, GND, USBPLL  
DN and DP(3)  
0
0
0
0
V
V
V
V
ADVSS  
AVSS  
USBPLLVSS  
2
SDA & SCL: VDD related  
0.7 x  
DVDD  
DVDD(max)  
+0.5  
input levels(2)  
VIH  
High–level input voltage, I/O  
V
V
All other inputs  
(including hysteresis  
inputs)  
DN and DP(3)  
2
DVDD + 0.3  
0.8  
SDA & SCL: VDD related  
-0.5  
-0.3  
0.3 x DVDD  
input levels(2)  
VIL  
Low–level input voltage, I/O  
All other inputs  
(including hysteresis  
inputs)  
0.8  
0.1 x  
DVDD  
Vhys  
Hysteresis level  
Inputs with hysteresis only  
V
DN and DP(3)  
(VOH = 2.45 V)  
-17  
-4  
IOH  
High–level output current  
mA  
All other outputs  
DN and DP(3)  
(VOL = 0.36 V)  
SDA and SCL(2)  
17  
IOL  
Low–level output current  
mA  
°C  
3
4
All other outputs  
TC  
Operating case temperature  
-55  
85  
(1) USB PLL is susceptible to power supply ripple. The maximum allowable supply ripple is 1% for 1 Hz to 5 kHz; 1.5% for 5 kHz to 10  
MHz; 3% for 10 MHz to 100 MHz, and less than 5% for 100 MHz or greater.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down. Due to the fact that different voltage devices can be connected to the I2C bus, the level of logic 0 (low) and logic 1 (high) are not  
fixed and depends on the associated VDD  
.
(3) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
60  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.2.3 Recommended Operating Conditions for CVDD = 1.6 V (200 MHz)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
CORE  
CVDD  
Device supply voltage  
1.55  
1.6  
1.65  
V
PERIPHERALS  
RCVDD  
RTC module supply voltage, core  
1.55  
1.55  
1.55  
3
1.6  
1.6  
1.6  
3.3  
1.65  
1.65  
1.65  
3.6  
V
V
V
V
RDVDD  
RTC module supply voltage, I/O (RTCINX1 and RTCINX2)  
USBPLL supply voltage(1)  
USBPLLVDD  
USBVDD  
USB module supply voltage, I/O (DP, DN, and PU)  
Device supply voltage, I/O (except DP, DN, PU, SDA,  
SCL)(2)  
DVDD  
2.7  
3.3  
3.6  
V
ADVDD  
AVDD  
A/D module digital supply voltage  
A/D module analog supply voltage  
2.7  
2.7  
3.3  
3.3  
3.6  
3.6  
V
V
GROUNDS  
VSS  
Supply voltage, GND, I/O, and core  
Supply voltage, GND, A/D module, digital  
Supply voltage, GND, A/D module, analog  
Supply voltage, GND, USBPLL  
DN and DP(3)  
0
0
0
0
V
V
V
V
ADVSS  
AVSS  
USBPLLVSS  
2
SDA & SCL: VDD related  
0.7 x  
DVDD  
DVDD(max)  
+0.5  
input levels(2)  
VIH  
High–level input voltage, I/O  
V
V
All other inputs  
(including hysteresis  
inputs)  
DN and DP(3)  
2
DVDD + 0.3  
0.8  
SDA & SCL: VDD related  
-0.5  
-0.3  
0.3 x DVDD  
input levels(2)  
VIL  
Low–level input voltage, I/O  
All other inputs  
(including hysteresis  
inputs)  
0.8  
0.1 x  
DVDD  
Vhys  
Hysteresis level  
Inputs with hysteresis only  
V
DN and DP(3)  
(VOH = 2.45 V)  
-17  
-4  
IOH  
High–level output current  
mA  
All other outputs  
DN and DP(3)  
(VOL = 0.36 V)  
SDA and SCL(2)  
17  
IOL  
Low–level output current  
mA  
°C  
3
4
All other outputs  
TC  
Operating case temperature  
-55  
85  
(1) USB PLL is susceptible to power supply ripple. The maximum allowable supply ripple is 1% for 1 Hz to 5 kHz; 1.5% for 5 kHz to 10  
MHz; 3% for 10 MHz to 100 MHz, and less than 5% for 100 MHz or greater.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down. Due to the fact that different voltage devices can be connected to the I2C bus, the level of logic 0 (low) and logic 1 (high) are not  
fixed and depends on the associated VDD  
.
(3) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
61  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.3 ELECTRICAL CHARACTERISTICS  
5.3.1 Electrical Characteristics Over Recommended Operating Case Temperature Range  
for CVDD = 1.2 V (108 MHz) (Unless Otherwise Noted)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
DN and DP(1)  
PU  
2.8  
USBVDD  
High–level output  
voltage  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
0.9 x  
USBVDD  
VOH  
USBVDD  
V
DVDD = 2.7 V-3.6 V,  
IOH = MAX  
0.75 x  
DVDD  
All other outputs  
SDA & SCL(2)  
Low–level output voltage DN and DP(1)  
At 3 mA sink current  
IOL = 3.0 mA  
0
0.4  
0.3  
0.4  
VOL  
V
All other outputs  
IOL = MAX  
Output–only or  
I/O pins with bus  
keepers (enabled)  
DVDD = MAX,  
VO = VSS to DVDD  
–300  
–5  
300  
5
Input current for outputs  
in high–impedance  
IIZ  
μA  
All other  
output–only or I/O  
pins  
DVDD = MAX,  
VO = VSS to DVDD  
Input pins with  
internal pulldown  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
30  
300  
–30  
Input pins with  
internal pullup  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
–300  
II  
Input current  
μA  
DVDD = MAX,  
VI = VSS to DVDD  
X2/CLKIN  
–50  
–5  
50  
5
All other input–only DVDD = MAX,  
pins  
VI = VSS to DVDD  
CVDD = 1.2 V,  
CPU clock = 108 MHz,  
TC = 25°C  
CVDD Supply current, CPU + internal memory  
access(3)  
IDDC  
IDDP  
IDDC  
IDDP  
0.45  
5.5  
100  
10  
mA/MHz  
mA  
DVDD = 3.3 V,  
CPU clock = 108 MHz,  
TC = 25°C  
DVDD supply current, pins active(4)  
Oscillator disabled. CVDD = 1.2 V,  
CVDD supply current,  
standby(5)  
All domains in  
low–power state  
TC = 25°C  
(Nominal process)  
μA  
Oscillator disabled. DVDD = 3.3 V,  
DVDD supply current,  
standby  
All domains in  
low–power state.  
No I/O activity,  
TC = 25°C  
μA  
Ci  
Input capacitance  
Output capacitance  
3
3
pF  
pF  
Co  
(1) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(3) CPU executing 75% Dual MAC + 25% ADD with moderate data bus activity (table of sine values). CPU and CLKGEN (DPLL) domain  
are active. All other domains are idled.  
(4) One word of a table of a 16-bit sine value is written to the EMIF every 250 ns (64 Mbps). Each EMIF output pin is connected to a 10-pF  
load.  
(5) In CLKGEN domain idle mode, X2/CLKIN becomes output and is driven low to stop external crystals (if used) from oscillating. Standby  
current will be higher if an external clock source tries to drive the X2/CLKIN pin during this time.  
62  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.3.2 Electrical Characteristics Over Recommended Operating Case Temperature Range  
for CVDD = 1.35 V (144 MHz) (Unless Otherwise Noted)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
DN and DP(1)  
High–level output voltage PU  
All other outputs  
2.8  
USBVDD  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
0.9 x  
USBVDD  
VOH  
USBVDD  
V
DVDD = 2.7 V-3.6 V,  
IOH = MAX  
0.75 x DVDD  
0
SDA & SCL(2)  
Low–level output voltage DN and DP(1)  
All other outputs  
At 3 mA sink current  
IOL = 3.0 mA  
0.4  
0.3  
0.4  
VOL  
V
IOL = MAX  
Output–only or  
I/O pins with bus  
keepers (enabled)  
DVDD = MAX,  
VO = VSS to DVDD  
–300  
–5  
300  
5
Input current for outputs  
in high–impedance  
IIZ  
μA  
All other  
output–only or I/O  
pins  
DVDD = MAX,  
VO = VSS to DVDD  
Input pins with  
internal pulldown  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
30  
300  
–30  
Input pins with  
internal pullup  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
–300  
II  
Input current  
μA  
DVDD = MAX,  
VI = VSS to DVDD  
X2/CLKIN  
–50  
–5  
50  
5
All other  
input–only pins  
DVDD = MAX,  
VI = VSS to DVDD  
CVDD = 1.35 V,  
CPU clock = 144 MHz,  
TC = 25°C  
CVDD Supply current, CPU + internal  
memory access(3)  
IDDC  
0.51  
5.5  
mA/MHz  
mA  
DVDD = 3.3 V,  
CPU clock = 144 MHz,  
TC = 25°C  
IDDP  
DVDD supply current, pins active(4)  
Oscillator  
CVDD = 1.35 V,  
TC = 25°C  
(Nominal process)  
CVDD supply current,  
disabled. All  
domains in  
IDDC  
125  
10  
μA  
μA  
standby(5)  
low–power state  
Oscillator  
DVDD = 3.3 V,  
No I/O activity,  
TC = 25°C  
DVDD supply current,  
standby  
disabled. All  
domains in  
IDDP  
low–power state.  
Ci  
Input capacitance  
Output capacitance  
3
3
pF  
pF  
Co  
(1) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(3) CPU executing 75% Dual MAC + 25% ADD with moderate data bus activity (table of sine values). CPU and CLKGEN (DPLL) domain  
are active. All other domains are idled.  
(4) One word of a table of a 16-bit sine value is written to the EMIF every 250 ns (64 Mbps). Each EMIF output pin is connected to a 10-pF  
load.  
(5) In CLKGEN domain idle mode, X2/CLKIN becomes output and is driven low to stop external crystals (if used) from oscillating. Standby  
current will be higher if an external clock source tries to drive the X2/CLKIN pin during this time.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
63  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.3.3 Electrical Characteristics Over Recommended Operating Case Temperature Range  
for CVDD = 1.6 V (200 MHz) (Unless Otherwise Noted)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
DN and DP(1)  
High–level output voltage PU  
All other outputs  
2.8  
USBVDD  
USBVDD = 3.0 V-3.6 V,  
IOH = -300 μA  
0.9 x  
USBVDD  
VOH  
USBVDD  
V
DVDD = 2.7 V-3.6 V,  
IOH = MAX  
0.75 x DVDD  
0
SDA & SCL(2)  
Low–level output voltage DN and DP(1)  
All other outputs  
At 3 mA sink current  
IOL = 3.0 mA  
0.4  
0.3  
0.4  
VOL  
V
IOL = MAX  
Output–only or  
I/O pins with bus  
keepers (enabled)  
DVDD = MAX,  
VO = VSS to DVDD  
–300  
–5  
300  
5
Input current for outputs  
in high–impedance  
IIZ  
μA  
All other  
output–only or I/O  
pins  
DVDD = MAX,  
VO = VSS to DVDD  
Input pins with  
internal pulldown  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
30  
300  
–30  
Input pins with  
internal pullup  
(enabled)  
DVDD = MAX,  
VI = VSS to DVDD  
–300  
II  
Input current  
μA  
DVDD = MAX,  
VI = VSS to DVDD  
X2/CLKIN  
–50  
–5  
50  
5
All other  
input–only pins  
DVDD = MAX,  
VI = VSS to DVDD  
CVDD = 1.6 V,  
CPU clock = 200 MHz,  
TC = 25°C  
CVDD Supply current, CPU + internal memory  
access(3)  
IDDC  
0.6  
5.5  
mA/MHz  
mA  
DVDD = 3.3 V,  
CPU clock = 200 MHz,  
TC = 25°C  
IDDP  
DVDD supply current, pins active(4)  
Oscillator  
CVDD = 1.6 V,  
TC = 25°C  
(Nominal process)  
CVDD supply current,  
disabled. All  
domains in  
IDDC  
150  
10  
μA  
μA  
standby(5)  
low–power state  
Oscillator  
DVDD = 3.3 V,  
No I/O activity,  
TC = 25°C  
DVDD supply current,  
standby  
disabled. All  
domains in  
IDDP  
low–power state.  
Ci  
Input capacitance  
Output capacitance  
3
3
pF  
pF  
Co  
(1) USB I/O pins DP and DN can tolerate a short circuit at D+ and Dto 0 V or 5 V, as long as the recommended series resistors (see  
Figure 5-40 ) are connected between the D+ and DP (package), and the Dand DN (package). Do not apply a short circuit to the USB  
I/O pins DP and DN in absence of the series resistors.  
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(3) CPU executing 75% Dual MAC + 25% ADD with moderate data bus activity (table of sine values). CPU and CLKGEN (DPLL) domain  
are active. All other domains are idled.  
(4) One word of a table of a 16-bit sine value is written to the EMIF every 250 ns (64 Mbps). Each EMIF output pin is connected to a 10-pF  
load.  
(5) In CLKGEN domain idle mode, X2/CLKIN becomes output and is driven low to stop external crystals (if used) from oscillating. Standby  
current will be higher if an external clock source tries to drive the X2/CLKIN pin during this time.  
64  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Tester Pin Electronics  
Data Manual Timing Reference Point  
3.5 nH  
W
42  
Output  
Under  
Test  
Transmission Line  
W
Z0 = 50  
(see NOTE)  
Device Pin  
(see NOTE)  
4.0 pF  
1.85 pF  
Figure 5-1. 3.3-V Test Load Circuit  
5.4 ESD Performance  
ESD stress levels were performed in compliance with the following JEDEC standards with the results indicated  
below:  
Charged Device Model (CDM), based on JEDEC Specification JESD22-C101, passed at ±500 V  
Human Body Model (HBM), based on JEDEC Specification JESD22-A114, passed at ±1500 V  
NOTE  
According to industry research publications, ESD-CDM testing results show better correlation to  
manufacturing line and field failure rates than ESD-HBM testing. 500-V CDM is commonly  
considered as a safe passing level.  
5.5 Timing Parameter Symbology  
Timing parameter symbols used in the timing requirements and switching characteristics tables are created in  
accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related  
terminology have been abbreviated as follows:  
Lowercase Subscripts and Their Meanings  
Letters and Symbols and Their Meanings  
a
c
access time  
H
L
High  
cycle time (period)  
delay time  
Low  
d
V
Z
Valid  
dis  
en  
f
disable time  
High-impedance  
enable time  
fall time  
h
hold time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
x
pulse duration (width)  
unknown, changing or don't care level  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
65  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.6 Clock Options  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two or four or  
multiplied by one of several values to generate the internal machine cycle.  
5.6.1 Internal System Oscillator With External Crystal  
The internal oscillator is always enabled following a device reset. The oscillator requires an external crystal  
connected across the X1 and X2/CLKIN pins. If the internal oscillator is not used, an external clock source must  
be applied to the X2/CLKIN pin and the X1 pin should be left unconnected. Since the internal oscillator can be  
used as a clock source to the PLLs, the crystal oscillation frequency can be multiplied to generate the CPU clock  
and USB clock, if desired.  
The crystal should be in fundamental-mode operation, and parallel resonant, with a maximum effective series  
resistance (ESR) specified in Table 5-1. The connection of the required circuit is shown in Figure 5-2. Under  
some conditions, all the components shown are not required. The capacitors, C1 and C2, should be chosen such  
that Equation 2 below is satisfied. CL in Equation 2 is the load specified for the crystal that is also specified in  
Table 5-1.  
C1C2  
CL =  
(C1 + C2)  
(2)  
X2/CLKIN  
X1  
R
S
Crystal  
C1  
C2  
Figure 5-2. Internal System Oscillator With External Crystal  
Table 5-1. Recommended Crystal Parameters  
FREQUENCY RANGE  
(MHz)  
MAX ESR (Ω)  
TYP CLOAD (pF)  
MAX CSHUNT (pF)  
RS (Ω)  
20-15  
15-12  
12-10  
10-8  
8-6  
20  
30  
40  
60  
80  
80  
10  
16  
16  
18  
18  
18  
7
7
7
7
7
7
0
0
100  
470  
1.5k  
2.2k  
6-5  
Although the recommended ESR presented in Table 5-1 is maximum, theoretically a crystal with a lower  
maximum ESR might seem to meet the requirement. It is recommended that crystals which meet the maximum  
ESR specification in Table 5-1 are used.  
5.6.2 Layout Considerations  
Since parasitic capacitance, inductance and resistance can be significant in any circuit, good PC board layout  
66  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
practices should always be observed when planning trace routing to the discrete components used in the  
oscillator circuit. Specifically, the crystal and the associated discrete components should be located as close to  
the DSP as physically possible. Also, X1 and X2/CLKIN traces should be separated as soon as possible after  
routing away from the DSP to minimize parasitic capacitance between them, and a ground trace should be run  
between these two signal lines. This also helps to minimize stray capacitance between these two signals.  
5.6.3 Clock Generation in Bypass Mode (DPLL Disabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of one, two, or four  
to generate the internal CPU clock cycle. The divide factor (D) is set in the BYPASS_DIV field of the clock mode  
register. The contents of this field only affect clock generation while the device is in bypass mode. In this mode,  
the digital phase-locked loop (DPLL) clock synthesis is disabled.  
Table 5-2 and Table 5-3 assume testing over recommended operating conditions and H = 0.5tc(CO) (see  
Figure 5-3).  
Table 5-2. CLKIN Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
400(1)  
4
MIN  
MAX  
C1  
C2  
tc(CI)  
Cycle time, X2/CLKIN  
Fall time, X2/CLKIN  
20  
20 400(1)  
ns  
ns  
ns  
ns  
ns  
tf(CI)  
4
C3  
tr(CI)  
Rise time, X2/CLKIN  
4
4
C10  
C11  
tw(CIL)  
tw(CIH)  
Pulse duration, CLKIN low  
Pulse duration, CLKIN high  
6
6
6
6
(1) This device utilizes a fully static design and therefore can operate with tc(CI) approaching . If an external crystal is used, the X2/CLKIN  
cycle time is limited by the crystal frequency range listed in Table 5-1 .  
Table 5-3. CLKOUT Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
TYP  
NO.  
UNIT  
MIN  
MAX  
MIN  
20(1)  
TYP  
MAX  
D x tc(CI)  
(2)  
C4  
C5  
tc(CO)  
Cycle time, CLKOUT  
20(1) D x tc(CI)  
1600(3)  
1600(3)  
ns  
ns  
(2)  
Delay time, X2/CLKIN high to  
CLKOUT high/low  
td(CI–CO)  
5
15  
25  
5
15  
25  
C6  
C7  
C8  
C9  
tf(CO)  
Fall time, CLKOUT  
1
1
1
1
ns  
ns  
ns  
ns  
tr(CO)  
Rise time, CLKOUT  
tw(COL)  
tw(COH)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H - 1  
H - 1  
H + 1  
H + 1  
H - 1  
H - 1  
H + 1  
H + 1  
(1) It is recommended that the DPLL synthesized clocking option be used to obtain maximum operating frequency.  
(2) D = 1/(PLL Bypass Divider)  
(3) This device utilizes a fully static design and therefore can operate with tc(CO) approaching . If an external crystal is used, the X2/CLKIN  
cycle time is limited by the crystal frequency range listed in Table 5-1 .  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
67  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
C2  
C1  
C11  
C3  
C10  
X2/CLKIN  
C4  
C9  
C7  
CLKOUT  
C5  
C6  
C8  
NOTE A: The relationship of X2/CLKIN to CLKOUT depends on the PLL bypass divide factor chosen for the CLKMD register. The wavefo rm  
relationship shown in Figure 53 is intended to illustrate the timing parameters based on CLKOUT = 1/2(CLKIN) configuration.  
Figure 5-3. Bypass Mode Clock Timings  
5.6.4 Clock Generation in Lock Mode (DPLL Synthesis Enabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a synthesis factor of N to  
generate the internal CPU clock cycle. The synthesis factor is determined by:  
M
N =  
DL  
(3)  
Where:  
1. M = the multiply factor set in the PLL_MULT field of the clock mode register  
2. DL = the divide factor set in the PLL_DIV field of the clock mode register  
Valid values for M are (multiply by) 2 to 31. Valid values for DL are (divide by) 1, 2, 3, and 4.  
For detailed information on clock generation configuration, see the TMS320C55x DSP Peripherals Overview  
Reference Guide (literature number SPRU317).  
Table 5-4 and Table 5-5 assume testing over recommended operating conditions and H = 0.5tc(CO) (see  
Figure 5-4).  
Table 5-4. CLKIN Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
20(1)  
MAX  
400  
MIN  
20(1)  
MAX  
400  
4
C1  
C2  
tc(CI)  
Cycle time, X2/CLKIN  
Fall time, X2/CLKIN  
DPLL synthesis enabled  
ns  
ns  
ns  
ns  
ns  
tf(CI)  
4
4
C3  
tr(CI)  
Rise time, X2/CLKIN  
4
C10  
C11  
tw(CIL)  
tw(CIH)  
Pulse duration, CLKIN low  
Pulse duration, CLKIN high  
6
6
6
6
(1) This device utilizes a fully static design and therefore can operate with tc(CI) approaching . If an external crystal is used, the X2/CLKIN  
cycle time is limited by the crystal frequency range listed in Table 5-1 .  
68  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 5-5. Multiply-By-N Clock Option Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
MAX MIN TYP MAX  
CVDD = 1.6 V  
UNIT  
NO.  
MIN  
TYP  
MIN  
TYP MAX  
tc(CI)  
tc(CI)  
x
tc(CI) x  
C4  
tc(CO)  
Cycle time, CLKOUT  
9.26  
1600 6.95  
1600  
5
x
1600  
ns  
N(1)  
N(1)  
N(1)  
C6  
C7  
C8  
C9  
tf(CO)  
Fall time, CLKOUT  
1
1
1
1
1
1
ns  
ns  
ns  
ns  
tr(CO)  
Rise time, CLKOUT  
tw(COL)  
tw(COH)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H - 1  
H - 1  
H + 1 H - 1  
H + 1 H - 1  
H + 1  
H + 1  
H - 1  
H - 1  
H + 1  
H + 1  
Delay time, X2/CLKIN high/low to  
CLKOUT high/low  
C12  
td(CI–CO)  
5
15  
25  
5
15  
25  
5
15  
25  
ns  
(1) N = Clock frequency synthesis factor  
C2  
C3  
C11  
C10  
C1  
X2/CLKIN  
C9  
C8  
C6  
C12  
C4  
C7  
CLKOUT  
Bypass Mode  
NOTE A: The relationship of X2/CLKIN to CLKOUT depends on the PLL multiply and divide factor chosen for the CLKMD register. The waveform  
relationship shown in Figure 53 is intended to illustrate the timing parameters based on CLKOUT = 1xCLKIN configuration.  
Figure 5-4. External Multiply-by-N Clock Timings  
5.6.5 Real-Time Clock Oscillator With External Crystal  
The real-time clock module includes an oscillator circuit. The oscillator requires an external 32.768-kHz crystal  
connected across the RTCINX1 and RTCINX2 pins. The connection of the required circuit, consisting of the  
crystal and two load capacitors, is shown in Figure 5-5. The load capacitors, C1 and C2, should be chosen such  
that Equation 4 below is satisfied. CL in Equation 4 is the load specified for the crystal.  
C1C2  
CL =  
(C1 + C2)  
(4)  
RTCINX1  
RTCINX1  
Crystal  
32.768 kHz  
C1  
C2  
Figure 5-5. Real-Time Clock Oscillator With External Crystal  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
69  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
NOTE  
The RTC can be idled by not supplying its 32-kHz oscillator signal. In order to keep RTC power  
dissipation to a minimum when the RTC module is not used, it is recommended that the RTC  
module be powered up, the RTC input pin (RTCINX1) be pulled low, and the RTC output pin  
(RTCINX2) be left floating.  
Table 5-6. Recommended RTC Crystal Parameters  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
kHz  
kΩ  
fo  
Frequency of oscillation(1)  
Series resistance(1)  
Load capacitance  
32.768  
ESR  
CL  
30  
60  
12.5  
pF  
DL  
Crystal drive level  
1
μW  
(1) ESR must be 200 kor greater at frequencies other than 32.768 kHz. Otherwise, oscillations at overtone frequencies may occur.  
5.7 Memory Interface Timings  
5.7.1 Asynchronous Memory Timings  
Table 5-7 and Table 5-8 assume testing over recommended operating conditions (see Figure 5-6 and  
Figure 5-7).  
Table 5-7. Asynchronous Memory Cycle Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
M1  
M2  
M3  
M4  
tsu (DV–COH)  
th (COH–DV)  
tsu (ARDY–COH)  
th (COH–ARDY)  
Setup time, read data valid before CLKOUT high(1)  
Hold time, read data valid after CLKOUT high  
Setup time, ARDY valid before CLKOUT high(1)  
Hold time, ARDY valid after CLKOUT high  
6
0
5
0
7
0
ns  
ns  
ns  
ns  
10  
0
(1) To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or  
hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.  
Table 5-8. Asynchronous Memory Cycle Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
M5  
M6  
td (COH–CEV)  
td (COH–CEIV)  
td (COH–BEV)  
td (COH–BEIV)  
td (COH–AV)  
Delay time, CLKOUT high to CEx valid  
Delay time, CLKOUT high to CEx invalid  
Delay time, CLKOUT high to BEx valid  
Delay time, CLKOUT high to BEx invalid  
Delay time, CLKOUT high to address valid  
Delay time, CLKOUT high to address invalid  
Delay time, CLKOUT high to AOE valid  
Delay time, CLKOUT high to AOE invalid  
Delay time, CLKOUT high to ARE valid  
Delay time, CLKOUT high to ARE invalid  
Delay time, CLKOUT high to data valid  
Delay time, CLKOUT high to data invalid  
Delay time, CLKOUT high to AWE valid  
Delay time, CLKOUT high to AWE invalid  
-2  
-2  
4
4
4
-2  
-2  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
M7  
M8  
-2  
-2  
M9  
4
4
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
td (COH–AIV)  
-2  
-2  
-2  
-2  
-2  
-2  
-2  
-2  
-2  
-2  
td (COH–AOEV)  
td (COH–AOEIV)  
td (COH–AREV)  
td (COH–AREIV)  
td (COH–DV)  
4
4
4
4
4
4
4
4
4
4
td (COH–DIV)  
-2  
-2  
-2  
-2  
-2  
-2  
td (COH–AWEV)  
td (COH–AWEIV)  
4
4
4
4
70  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Extended  
Hold = 2  
Hold  
= 1  
Setup = 2  
M5  
Strobe = 5  
Not Ready = 2  
CLKOUT  
M6  
M8  
CEx  
M7  
BEx  
§
M9  
M10  
A[20:0]  
M2  
M1  
D[15:0]  
AOE  
M11  
M12  
M13  
M14  
ARE  
AWE  
M4  
M4  
M3  
M3  
ARDY  
§
CLKOUT is equal to CPU clock  
CEx becomes active depending on the memory address space being accessed  
A[13:0] for LQFP  
Figure 5-6. Asynchronous Memory Read Timings  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
71  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Extended  
Hold = 2  
Setup = 2  
Strobe = 5  
Not Ready = 2  
Hold = 1  
CLKOUT  
M5  
M7  
M6  
M8  
CEx  
BEx  
M9  
M10  
M16  
§
A[20:0]  
M15  
D[15:0]  
AOE  
ARE  
M17  
M18  
AWE  
M4  
M3  
M4  
M3  
ARDY  
CLKOUT is equal to CPU clock  
§
CEx becomes active depending on the memory address space being accessed  
A[13:0] for LQFP  
Figure 5-7. Asynchronous Memory Write Timings  
5.7.2 Synchronous DRAM (SDRAM) Timings  
Table 5-9 and Table 5-10 assume testing over recommended operating conditions (see Figure 5-8 through  
Figure 5-14).  
Table 5-9. Synchronous DRAM Cycle Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
M19  
M20  
M21  
tsu (DV–CLKMEMH)  
th (CLKMEMH–DV)  
tc (CLKMEM)  
Setup time, read data valid before CLKMEM high  
Hold time, read data valid after CLKMEM high  
Cycle time, CLKMEM  
3
2
3
2
ns  
ns  
ns  
9.26(1)  
7.52(2)  
(1) Maximum SDRAM operating frequency = 108 MHz. Actual attainable maximum operating frequency will depend on the quality of the PC  
board design and the memory chip timing requirement.  
(2) Maximum SDRAM operating frequency = 133 MHz. Actual attainable maximum operating frequency will depend on the quality of the PC  
board design and the memory chip timing requirement.  
Table 5-10. Synchronous DRAM Cycle Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
1.2  
MAX  
MIN  
1.2  
MAX  
M22  
M23  
M24  
td (CLKMEMH–CEL)  
td (CLKMEMH–CEH)  
td (CLKMEMH–BEV)  
Delay time, CLKMEM high to CEx low  
Delay time, CLKMEM high to CEx high  
Delay time, CLKMEM high to BEx valid  
7
7
7
5
ns  
ns  
ns  
1.2  
1.2  
1.2  
1.2  
5
5
72  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 5-10. Synchronous DRAM Cycle Switching Characteristics (continued)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
UNIT  
MIN  
1.2  
MAX  
MIN  
1.2  
MAX  
M25  
M26  
M27  
M28  
M29  
M30  
M31  
M32  
M33  
M34  
M35  
M36  
M37  
M38  
M39  
td (CLKMEMH–BEIV)  
td (CLKMEMH–AV)  
td (CLKMEMH–AIV)  
Delay time, CLKMEM high to BEx invalid  
Delay time, CLKMEM high to address valid  
Delay time, CLKMEM high to address invalid  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
td (CLKMEMH–SDCASL) Delay time, CLKMEM high to SDCAS low  
td (CLKMEMH–SDCASH) Delay time, CLKMEM high to SDCAS high  
td (CLKMEMH–DV)  
Delay time, CLKMEM high to data valid  
Delay time, CLKMEM high to data invalid  
Delay time, CLKMEM high to SDWE low  
Delay time, CLKMEM high to SDWE high  
Delay time, CLKMEM high to SDA10 valid  
td (CLKMEMH–DIV)  
td (CLKMEMH–SDWEL)  
td (CLKMEMH–SDWEH)  
td (CLKMEMH–SDA10V)  
td (CLKMEMH–SDA10IV) Delay time, CLKMEM high to SDA10 invalid  
td (CLKMEMH–SDRASL) Delay time, CLKMEM high to SDRAS low  
td (CLKMEMH–SDRASH) Delay time, CLKMEM high to SDRAS high  
td (CLKMEMH–CKEL)  
td (CLKMEMH–CKEH)  
Delay time, CLKMEM high to CKE low  
Delay time, CLKMEM high to CKE high  
READ  
READ  
READ  
M21  
CLKMEM  
M22  
M23  
M27  
CEx  
BEx  
M24  
M26  
CA1  
CA2  
CA3  
EMIF.A[13:0]  
M19  
M20  
D[15:0]  
SDA10  
SDRAS  
SDCAS  
D1  
D2  
D3  
M34  
M35  
M28  
M29  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals r emain  
active until the next access that is not an SDRAM read occurs.  
Figure 5-8. Three SDRAM Read Commands  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
73  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
WRITE  
WRITE  
WRITE  
CLKMEM  
M22  
M24  
M26  
M23  
CEx  
M25  
M27  
M31  
BEx  
BE1  
CA1  
D1  
BE2  
CA2  
D2  
BE3  
CA3  
EMIF.A[13:0]  
M30  
M34  
D[15:0]  
SDA10  
SDRAS  
SDCAS  
D3  
M35  
M28  
M32  
M29  
M33  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals r emain  
active until the next access that is not an SDRAM read occurs.  
Figure 5-9. Three SDRAM WRT Commands  
74  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
ACTV  
CLKMEM  
M22  
M23  
CEx  
BEx  
M26  
EMIF.A[13:0]  
D[15:0]  
Bank Activate/Row Address  
M34  
M36  
SDA10  
M37  
SDRAS  
SDCAS  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals r emain  
active until the next access that is not an SDRAM read occurs.  
Figure 5-10. SDRAM ACTV Command  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
75  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
DCAB  
CLKMEM  
M22  
M23  
CEx  
BEx  
EMIF.A[13:0]  
D[15:0]  
M35  
M37  
M34  
M36  
SDA10  
SDRAS  
SDCAS  
M33  
M32  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals r emain  
active until the next access that is not an SDRAM read occurs.  
Figure 5-11. SDRAM DCAB Command  
76  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
REFR  
CLKMEM  
M22  
M23  
CEx  
BEx  
EMIF.A[13:0]  
D[15:0]  
SDA10  
M37  
M36  
M28  
SDRAS  
SDCAS  
M29  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals  
remain active until the next access that is not an SDRAM read occurs.  
Figure 5-12. SDRAM REFR Command  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
77  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
MRS  
CLKMEM  
M22  
M23  
CEx  
BEx  
M26  
M27  
§
MRS Value 0x30  
EMIF.A[13:0]  
D[15:0]  
SDA10  
M37  
M29  
M33  
M36  
M28  
M32  
SDRAS  
SDCAS  
SDWE  
The chip enable that becomes active depends on the address being accessed.  
All BE[1:0] signals are driven low (active) during reads. Byte manipulation of the read data is performed inside the EMIF. These signals remain  
active until the next access that is not an SDRAM read occurs.  
Write burst length = 1  
Read latency = 3  
§
Burst type = 0 (serial)  
Burst length = 1  
Figure 5-13. SDRAM MRS Command  
78  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Exit Self-Refresh  
Enter Self-Refresh  
CLKMEM  
M38  
M22  
M39  
M23  
CKE  
(XF or GPIO4)  
CEx  
M36  
M28  
SDRAS  
SDCAS  
SDWE  
SDA10  
Figure 5-14. SDRAM Self-Refresh Command  
5.8 Reset Timings  
5.8.1 Power-Up Reset (On-Chip Oscillator Active)  
Table 5-11 assumes testing over recommended operating conditions (see Figure 5-15).  
Table 5-11. Power-Up Reset (On-Chip Oscillator Active) Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
MIN MAX  
3P(2)  
NO.  
UNIT  
MIN  
3P(2)  
MAX  
R1  
th (SUPSTBL-RSTL)  
Hold time, RESET low after oscillator stable(1)  
ns  
(1) Oscillator stable time depends on the crystal characteristic (i.e., frequency, ESR, etc.) which varies from one crystal manufacturer to  
another. Based on the crystal characteristics, the oscillator stable time can be in the range of a few to 10s of ms. A reset circuit with  
100-ms or more delay time will ensure the oscillator stabilized before the RESET goes high.  
(2) P = 1/(input clock frequency) in ns. For example, when input clock is 12 MHz, P = 83.33 ns.  
CLKOUT  
CV  
DD  
DV  
DD  
R1  
RESET  
Figure 5-15. Power-Up Reset (On-Chip Oscillator Active) Timings  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
79  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.8.2 Power-Up Reset (On-Chip Oscillator Inactive)  
Table 5-12 and Table 5-13 assume testing over recommended operating conditions (see Figure 5-16).  
Table 5-12. Power-Up Reset (On-Chip Oscillator Inactive) Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
MIN MAX  
3P(1)  
NO.  
UNIT  
MIN  
3P(1)  
MAX  
R2  
th (CLKOUTV-RSTL)  
Hold time, CLKOUT valid to RESET low  
ns  
(1) P = 1/(input clock frequency) in ns. For example, when input clock is 12 MHz, P = 83.33 ns.  
Table 5-13. Power-Up Reset (On-Chip Oscillator Inactive) Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
UNIT  
MIN  
MAX  
30  
MIN  
MAX  
30  
R3  
td (CLKINV-CLKOUTV) Delay time, CLKIN valid to CLKOUT valid  
ns  
X2/CLKIN  
R3  
CLKOUT  
CV  
DV  
DD  
DD  
R2  
RESET  
Figure 5-16. Power-Up Reset (On-Chip Oscillator Inactive) Timings  
5.8.3 Warm Reset  
Table 5-14 and Table 5-15 assume testing over recommended operating conditions (see Figure 5-17).  
Table 5-14. Reset Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
MIN MAX  
3P(1)  
NO.  
UNIT  
MIN  
3P(1)  
MAX  
R4  
tw (RSL)  
Pulse width, reset low  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
80  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 5-15. Reset Switching Characteristics(1)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
UNIT  
NO.  
MIN  
MAX  
MIN  
MAX  
R5  
R6  
R7  
R8  
td (RSTH–BKV)  
td (RSTH–HIGHV)  
td (RSTL–ZIV)  
td (RSTH–ZV)  
Delay time, reset high to BK group valid(2)  
Delay time, reset high to High group valid(3)  
Delay time, reset low to Z group invalid(4)  
Delay time, reset high to Z group valid(4)  
38P + 15  
38P + 15  
1P + 15  
38P + 15  
38P + 15  
38P + 15  
1P + 15  
38P + 15  
ns  
ns  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when CPU is running at 200 MHz, P = 5 ns.  
(2) BK group: Pins with bus keepers, holds previous state during reset. Following low-to-high transition of RESET, these pins go to their  
post-reset logic state.  
BK group pins: A’[0], A[15:0], D[15:0], C[14:2], C0, GPIO5, DX1, and DX2  
(3) High group: Following low-to-high transition of RESET, these pins go to logic-high state.  
High group pins: C1[HPI.HINT], XF  
(4) Z group: Bidirectional pins which become input or output pins. Following low-to-high transition of RESET, these pins go to  
high-impedance state.  
Z group pins: C1[EMIF.AOE], GPIO[7:6, 4:0], TIN/TOUT0, SDA, SCL, CLKR0, FSR0, CLKX0, DX0, FSX0, FSX2, CLKX2, FSR2, DR2,  
CLKR2, FSX1, CLKX1, FSR1, DR1, CLKR1, A[20:16]  
RESET  
R5  
BK Group  
R6  
High Group  
R7  
R8  
§
Z Group  
§
BK group pins: A’[0], A[15:0], D[15:0], C[14:2], C0, GPIO5, DX1, and DX2  
High group pins: C1[HPI.HINT], XF  
Z group pins: C1[EMIF.AOE], GPIO[7:6, 4:0], TIN/TOUT0, SDA, SCL, CLKR0, FSR0, CLKX0, DX0, FSX0, FSX2, CLKX2, FSR2, DR2, CLKR2,  
FSX1, CLKX1, FSR1, DR1, CLKR1, A[20:16]  
Figure 5-17. Reset Timings  
5.9 External Interrupt Timings  
Table 5-16 assumes testing over recommended operating conditions (see Figure 5-18).  
Table 5-16. External Interrupt Timing Requirements(1)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
UNIT  
MIN MAX  
MIN  
2P  
3P  
MAX  
I1  
I2  
tw (INTH)A  
tw (INTL)A  
Pulse width, interrupt high, CPU active  
Pulse width, interrupt low, CPU active  
2P  
3P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
I1  
INTn  
I2  
Figure 5-18. External Interrupt Timings  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Electrical Specifications  
81  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.10 Wake-Up From IDLE  
(2)assumes testing over recommended operating conditions (see Figure 5-19).  
Table 5-17. Wake-Up From IDLE Switching Characteristics(1)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN TYP MAX  
1.25(2)  
NO.  
UNIT  
MIN  
TYP  
MAX  
Delay time, wake–up event low to clock  
generation enable  
ID1 td (WKPEVTL–CLKGEN)  
1.25(2)  
ms  
(CPU and clock domain idle)  
Hold time, clock generation enable to wake–up  
event low  
(CPU and clock domain in idle)  
ID2 th (CLKGEN–WKPEVTL)  
3P(3)  
3P  
3P(3)  
3P  
ns  
ns  
Pulse width, wake–up event low  
(for CPU idle only)  
ID3 tw (WKPEVTL)  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
(2) Estimated data based on 12-MHz crystal used with on-chip oscillator at 25°C. This number will vary based on the actual crystal  
characteristics operating condition and the PC board layout and the parasitics.  
(3) Following the clock generation domain idle, the INTx becomes level-sensitive and stays that way until the low-to-high transition of INTx  
following the CPU wake-up. Holding the INTx low longer than minimum requirement will send more than one interrupt to the CPU. The  
number of interrupts sent to the CPU depends on the INTx-low time following the CPU wake-up from IDLE.  
Figure 5-19. Wake-Up From IDLE Timings  
5.11 XF Timings  
Table 5-18 assumes testing over recommended operating conditions (see Figure 5-20).  
Table 5-18. XF Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
–1  
–1  
MAX  
Delay time, CLKOUT high to XF high  
Delay time, CLKOUT high to XF low  
–1  
–1  
3
3
3
X1  
td (XF)  
ns  
3
CLKOUT  
X1  
XF  
CLKOUT reflects the CPU clock.  
Figure 5-20. XF Timings  
82  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.12 General-Purpose Input/Output (GPIOx) Timings  
Table 5-19 and Table 5-20 assume testing over recommended operating conditions (see Figure 5-21).  
Table 5-19. GPIO Pins Configured as Inputs Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
GPIO  
4
8
8
0
0
0
4
8
8
0
0
0
Setup time, IOx input valid  
before CLKOUT high  
G1  
tsu (GPIO–COH)  
AGPIO(1)  
EHPIGPIO(2)  
GPIO  
AGPIO(1)  
EHPIGPIO(2)  
ns  
Hold time, IOx input valid  
after CLKOUT high  
G2  
th (COH–GPIO)  
ns  
(1) AGPIO pins: A[15:0]  
(2) EHPIGPIO pins: C13, C10, C7, C5, C4, and C0  
Table 5-20. GPIO Pins Configured as Outputs Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN MAX  
GPIO  
0
0
0
6
11  
13  
0
0
0
6
11  
13  
Delay time, CLKOUT high  
to IOx output change  
G3  
td (COH–GPIO)  
AGPIO(1)  
EHPIGPIO(2)  
ns  
(1) AGPIO pins: A[15:0]  
(2) EHPIGPIO pins: C13, C10, C7, C5, C4, and C0  
CLKOUT  
G1  
G2  
IOx  
Input Mode  
G3  
IOx  
Output Mode  
CLKOUT reflects the CPU clock.  
Figure 5-21. General-Purpose Input/Output (IOx) Signal Timings  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
83  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.13 TIN/TOUT Timings (Timer0 Only)  
Table 5-21 and Table 5-22 assume testing over recommended operating conditions (see Figure 5-22 and  
Figure 5-23).  
Table 5-21. TIN/TOUT Pins Configured as Inputs Timing Requirements(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
T4  
T5  
tw (TIN/TOUTL)  
tw (TIN/TOUTH)  
Pulse width, TIN/TOUT low  
Pulse width, TIN/TOUT high  
2P + 1  
2P + 1  
2P + 1  
2P + 1  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
(2) Only the Timer0 signal is externally available. The Timer1 signal is internally terminated and is not available for external use.  
Table 5-22. TIN/TOUT Pins Configured as Outputs Switching Characteristics(1) (2) (3)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
T1  
T2  
T3  
td (COH–TIN/TOUTH) Delay time, CLKOUT high to TIN/TOUT high  
td (COH–TIN/TOUTL) Delay time, CLKOUT high to TIN/TOUT low  
-1  
-1  
3
3
-1  
-1  
3
ns  
ns  
ns  
3
tw (TIN/TOUT)  
Pulse duration, TIN/TOUT (output)  
P - 1  
P - 1  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
(2) Only the Timer0 signal is externally available. The Timer1 signal is internally terminated and is not available for external use.  
(3) For proper operation of the TIN/TOUT pin configured as an output, the timer period must be configured for at least 4 cycles.  
T5  
T4  
TIN/TOUT  
as Input  
Figure 5-22. TIN/TOUT Timings When Configured as Inputs  
CLKOUT  
T2  
T3  
T1  
TIN/TOUT  
as Output  
Figure 5-23. TIN/TOUT Timings When Configured as Outputs  
84  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.14 Multichannel Buffered Serial Port (McBSP) Timings  
5.14.1 McBSP0 Timings  
Table 5-23 and Table 5-24 assume testing over recommended operating conditions (see Figure 5-24 and  
Figure 5-25).  
Table 5-23. McBSP0 Timing Requirements(1)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
2P(2)  
MAX  
MIN  
2P(2)  
MAX  
MC1  
MC2  
tc (CKRX)  
tw (CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
ns  
ns  
Pulse duration, CLKR/X  
high or CLKR/X low  
P–1(2)  
P–1(2)  
MC3  
MC4  
tr (CKRX)  
tf (CKRX)  
Rise time, CLKR/X  
Fall time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
6
6
6
6
ns  
ns  
10  
2
7
2
Setup time, external FSR  
high before CLKR low  
MC5  
MC6  
MC7  
MC8  
MC9  
MC10  
tsu (FRH–CKRL)  
th (CKRL–FRH)  
tsu (DRV–CKRL)  
th (CKRL–DRV)  
tsu (FXH–CKXL)  
th (CKXL–FXH)  
ns  
ns  
ns  
ns  
ns  
ns  
-3  
1
-3  
1
Hold time, external FSR  
high after CLKR low  
10  
2
7
Setup time, DR valid before  
CLKR low  
2
-2  
3
-2  
3
Hold time, DR valid after  
CLKR low  
13  
3
8
Setup time, external FSX  
high before CLKX low  
2
-3  
1
-3  
1
Hold time, external FSX  
high after CLKX low  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
Table 5-24. McBSP0 Switching Characteristics(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
2P  
MAX  
MC1  
MC3  
MC4  
tc (CKRX)  
tr (CKRX)  
tf (CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
2P  
ns  
ns  
ns  
Rise time, CLKR/X  
1
1
1
1
Fall time, CLKR/X  
MC11 tw (CKRXH)  
MC12 tw (CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D-2(3)  
C-2(3)  
D+2(3)  
C+2(3)  
D-1(3)  
C-1(3)  
D+1(3) ns  
C+1(3) ns  
-2  
4
1
13  
2
-2  
4
1
Delay time, CLKR high to internal FSR  
valid  
MC13 td (CKRH–FRV)  
MC14 td (CKXH–FXV)  
MC15 tdis (CKXH–DXHZ)  
ns  
8
CLKR ext  
CLKX int  
-2  
4
-2  
4
2
Delay time, CLKX high to internal FSX  
valid  
ns  
9
CLKX ext  
CLKX int  
15  
5
0
-5  
3
1
ns  
11  
Disable time, DX high–impedance from  
CLKX high following last data bit  
CLKX ext  
10  
18  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T=CLKRX period = (1 + CLKGDV) * P  
C=CLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even  
D=CLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
85  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
(1) (2)  
Table 5-24. McBSP0 Switching Characteristics  
(continued)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN MAX  
Delay time, CLKX high to DX valid. This  
applies to all bits except the first bit  
transmitted.  
CLKX int  
CLKX ext  
5
4
9
15  
CLKX int  
CLKX ext  
CLKX int  
4
13  
2
7
Delay time, CLKX  
DXENA = 0  
high to DX valid(4)  
MC16 td (CKXH–DXV)  
ns  
Only applies to first bit  
transmitted when in  
2P + 1  
2P + 1  
Data Delay 1 or 2  
(XDATDLY = 01b or  
10b) modes  
DXENA = 1  
DXENA = 0  
CLKX ext  
2P + 4  
2P + 3  
Enable time, DX  
driven from CLKX  
high(4)  
CLKX int  
CLKX ext  
CLKX int  
-1  
6
-3  
3
Only applies to first bit  
transmitted when in  
Data Delay 1 or 2  
(XDATDLY= 01b or  
10b) modes  
P - 1  
P - 3  
MC17 ten (CKXH–DX)  
MC18 td (FXH–DXV)  
MC19 ten (FXH–DX)  
ns  
ns  
ns  
DXENA = 1  
DXENA = 0  
DXENA = 1  
CLKX ext  
P + 6  
P + 3  
FSX int  
FSX ext  
FSX int  
2
13  
2
8
Delay time, FSX high  
to DX valid(4)  
Only applies to first bit  
transmitted when in  
Data Delay 0  
(XDATDLY= 00b)  
mode.  
2P + 1  
2P + 1  
FSX ext  
2P + 10  
2P + 10  
Enable time, DX  
driven from FSX  
high(4)  
FSX int  
FSX ext  
FSX int  
0
8
0
3
DXENA = 0  
DXENA = 1  
Only applies to first bit  
transmitted when in  
Data Delay 0  
(XDATDLY= 00b)  
mode  
P - 3  
P - 3  
FSX ext  
P + 8  
P + 4  
(4) See the TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317) for a description of the DX enable  
(DXENA) and data delay features of the McBSP.  
5.14.2 McBSP1 and McBSP2 Timings  
Table 5-25 and Table 5-26 assume testing over recommended operating conditions (see Figure 5-24 and  
Figure 5-25).  
Table 5-25. McBSP1 and McBSP2 Timing Requirements(1)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
2P(2)  
MAX  
MIN  
2P(2)  
MAX  
MC1  
MC2  
tc (CKRX)  
tw (CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
ns  
ns  
Pulse duration, CLKR/X  
high or CLKR/X low  
P–1(2)  
P–1(2)  
MC3  
MC4  
tr (CKRX)  
tf (CKRX)  
Rise time, CLKR/X  
Fall time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
6
6
6
6
ns  
ns  
11  
3
7
3
Setup time, external FSR  
high before CLKR low  
MC5  
tsu (FRH–CKRL)  
ns  
CLKR ext  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
86  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
(1)  
Table 5-25. McBSP1 and McBSP2 Timing Requirements  
(continued)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
UNIT  
NO.  
MIN  
MAX  
MIN  
MAX  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
-3  
1
-3  
1
Hold time, external FSR  
high after CLKR low  
MC6  
MC7  
MC8  
MC9  
MC10  
th (CKRL–FRH)  
tsu (DRV–CKRL)  
th (CKRL–DRV)  
tsu (FXH–CKXL)  
th (CKXL–FXH)  
ns  
ns  
ns  
ns  
ns  
11  
3
7
Setup time, DR valid before  
CLKR low  
3
-2  
3
-2  
3
Hold time, DR valid after  
CLKR low  
14  
4
9
Setup time, external FSX  
high before CLKX low  
3
-3  
1
-3  
1
Hold time, external FSX  
high after CLKX low  
Table 5-26. McBSP0 Switching Characteristics(1) (2)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
UNIT  
MIN MAX  
MIN  
2P  
MAX  
MC1  
MC3  
MC4  
tc (CKRX)  
tr (CKRX)  
tf (CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
2P  
ns  
ns  
ns  
Rise time, CLKR/X  
2
2
2
Fall time, CLKR/X  
2
MC11 tw (CKRXH)  
MC12 tw (CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D - 2(3)  
C - 2(3)  
D + 2(3) D - 2(3) D + 2(3) ns  
C + 2(3) C - 2(3) C + 2(3) ns  
-3  
3
2
14  
2
-3  
3
2
9
Delay time, CLKR high to internal FSR  
valid  
MC13 td (CKRH–FRV)  
MC14 td (CKXH–FXV)  
MC15 tdis (CKXH–DXHZ)  
ns  
ns  
ns  
CLKR ext  
CLKX int  
-3  
4
-3  
4
2
Delay time, CLKX high to internal FSX  
valid  
CLKX ext  
CLKX int  
15  
3
9
-3  
10  
-5  
3
1
Disable time, DX high–impedance from  
CLKX high following last data bit  
CLKX ext  
CLKX int  
19  
5
12  
3
Delay time, CLKX high to DX valid. This  
applies to all bits except the first bit  
transmitted.  
CLKX ext  
15  
9
CLKX int  
CLKX ext  
CLKX int  
4
15  
2
9
Delay time, CLKX  
DXENA = 0  
high to DX valid(4)  
MC16 td (CKXH–DXV)  
ns  
Only applies to first bit  
transmitted when in  
2P + 1  
2P + 1  
Data Delay 1 or 2  
(XDATDLY=01b or  
10b) modes  
DXENA = 1  
CLKX ext  
2P + 5  
2P + 3  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T=CLKRX period = (1 + CLKGDV) * P  
C=CLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even  
D=CLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even  
(4) See the TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317) for a description of the DX enable  
(DXENA) and data delay features of the McBSP.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
87  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
(1) (2)  
Table 5-26. McBSP0 Switching Characteristics  
(continued)  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN MAX  
Enable time, DX  
driven from CLKX  
high(4)  
CLKX int  
CLKX ext  
CLKX int  
-2  
9
-4  
4
DXENA = 0  
Only applies to first bit  
transmitted when in  
Data Delay 1 or 2  
(XDATDLY=01b or  
10b) modes  
P - 2  
P - 4  
MC17 ten (CKXH–DX)  
ns  
DXENA = 1  
DXENA = 0  
DXENA = 1  
CLKX ext  
P + 9  
P + 4  
FSX int  
FSX ext  
FSX int  
3
2
8
Delay time, FSX high  
to DX valid(4)  
13  
Only applies to first bit  
transmitted when in  
Data Delay 0  
(XDATDLY=00b)  
mode.  
2P + 1  
2P + 1  
MC18 td (FXH–DXV)  
ns  
ns  
FSX ext  
2P + 12  
2P + 7  
Enable time, DX  
driven from FSX  
high(4)  
FSX int  
FSX ext  
FSX int  
1
8
0
4
DXENA = 0  
DXENA = 1  
Only applies to first bit  
transmitted when in  
Data Delay 0  
(XDATDLY=00b)  
mode  
P - 1  
P - 3  
MC19 ten (FXH–DX)  
FSX ext  
P + 8  
P + 5  
MC1  
MC2, MC11  
MC3  
MC2, MC12  
CLKR  
FSR (Int)  
FSR (Ext)  
MC13  
MC4  
MC13  
MC5  
MC6  
MC7  
MC8  
DR  
Bit (n1)  
(n2)  
(n3)  
(n4)  
(RDATDLY=00b)  
MC7  
MC8  
(n2)  
DR  
Bit (n1)  
(n3)  
(RDATDLY=01b)  
MC7  
MC8  
(n2)  
DR  
Bit (n1)  
(RDATDLY=10b)  
Figure 5-24. McBSP Receive Timings  
88  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
MC1  
MC2, MC11  
MC2, MC12  
MC3  
MC4  
CLKX  
MC14  
MC14  
FSX (Int)  
MC9  
MC10  
FSX (Ext)  
MC18  
MC16  
MC19  
DX  
(XDATDLY=00b)  
Bit 0  
Bit (n1)  
MC17  
(n2)  
(n3)  
(n4)  
(n3)  
MC16  
(n2)  
DX  
(XDATDLY=01b)  
Bit 0  
Bit (n1)  
MC17  
MC16  
MC15  
Bit 0  
DX  
(XDATDLY=10b)  
Bit (n1)  
(n2)  
Figure 5-25. McBSP Transmit Timings  
5.14.3 McBSP as SPI Master or Slave Timings  
Table 5-27 to Table 5-34 assume testing over recommended operating conditions (see Figure 5-26 through  
Figure 5-29).  
Table 5-27. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
MASTER  
SLAVE  
MIN MAX  
MIN MAX  
MC23 tsu (DRV–CKXL)  
MC24 th (CKXL–DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
15  
0
3 - 6P  
3 + 6P  
10  
0
3 - 6P  
3 + 6P  
ns  
ns  
Setup time, FSX low before CLKX  
high  
MC25 tsu (FXL–CKXH)  
MC26 tc (CKX)  
5
5
ns  
ns  
Cycle time, CLKX  
2P  
16P  
2P  
16P  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
89  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 5-28. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
(3)  
(3)  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
MASTER  
MIN MAX  
SLAVE  
MIN  
MAX  
Delay time, CLKX low to FSX  
low(4)  
MC27 td (CKXL–FXL)  
MC28 td (FXL–CKXH)  
MC29 td (CKXH–DXV)  
T - 5 T + 5  
C - 5 C + 5  
T - 4 T + 4  
C - 4 C + 4  
ns  
ns  
ns  
Delay time, FSX low to CLKX  
high(5)  
Delay time, CLKX high to DX  
valid  
-4  
6
3P + 3 5P + 15  
-3  
3
3P + 3  
5P + 8  
Disable time, DX  
high–impedance following last  
data bit from CLKX low  
tdis  
(CKXL–DXHZ)  
MC30  
C - 4 C + 4  
C - 3 C + 1  
ns  
Disable time, DX  
MC31 tdis (FXH–DXHZ) high–impedance following last  
data bit from FSX high  
3P+ 4 3P + 19  
3P + 4 3P + 18  
3P+ 3 3P + 11  
3P + 4 3P + 10  
ns  
ns  
MC32 td (FXL–DXV)  
Delay time, FSX low to DX valid  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T = CLKX period = (1 + CLKGDV) * 2P  
C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
MC25  
MC28  
MC26  
LSB  
MSB  
CLKX  
FSX  
MC29  
MC27  
MC31  
MC30  
MC32  
DX  
DR  
Bit 0  
Bit (n1)  
Bit (n1)  
(n2)  
(n3)  
(n3)  
(n4)  
(n4)  
MC23  
MC24  
(n2)  
Bit 0  
Figure 5-26. McBSP Timings as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
90  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 5-29. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
MASTER  
MIN  
15  
SLAVE  
MA  
MASTER  
SLAVE  
UNIT  
MAX MIN  
MIN MAX MIN MAX  
X
MC33 tsu (DRV–CKXH)  
MC34 th (CKXH–DRV)  
MC25 tsu (FXL–CKXH)  
MC26 tc (CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
3 - 6P  
3 + 6P  
5
10  
0
3 - 6P  
3 + 6P  
5
ns  
ns  
ns  
ns  
0
2P  
16P  
2P  
16P  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
Table 5-30. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
(3)  
(3)  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
MASTER  
SLAVE  
MIN MAX  
MIN  
MAX  
Delay time, CLKX low to FSX  
low(4)  
MC27 td (CKXL–FXL)  
C - 5 C + 5  
T - 5 T + 5  
C - 4  
C + 4  
ns  
ns  
Delay time, FSX low to CLKX  
high(5)  
MC28 td (FXL–CKXH)  
MC35 td (CKXL–DXV)  
T - 4  
-3  
T + 4  
3
Delay time, CLKX low to DX valid  
-4  
-4  
6
4
3P + 3 5P + 15  
3P + 4 3P + 19  
3P + 3 5P + 8 ns  
3P + 3 3P + 12 ns  
Disable time, DX high–impedance  
following last data bit from CLKX  
low  
tdis  
(CKXL–DXHZ)  
MC30  
-3  
1
MC32 td (FXL–DXV)  
Delay time, FSX low to DX valid  
D - 4 D + 4 3P + 4 3P + 18  
D - 3  
D + 3 3P + 4 3P + 10 ns  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T = CLKX period = (1 + CLKGDV) * 2P  
C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
MC25  
MC28  
MC26  
LSB  
MSB  
CLKX  
FSX  
MC35  
MC27  
MC32  
MC30  
DX  
DR  
Bit 0  
Bit 0  
Bit (n1)  
(n2)  
(n3)  
(n3)  
(n4)  
(n4)  
MC33  
MC34  
(n2)  
Bit (n1)  
Figure 5-27. McBSP Timings as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
91  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Table 5-31. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
MASTER  
SLAVE  
MASTER  
SLAVE  
UNIT  
MA  
X
MIN MAX  
MIN  
MIN MAX MIN MAX  
MC33 tsu (DRV–CKXH)  
MC34 th (CKXH–DRV)  
MC36 tsu (FXL–CKXL)  
MC26 tc (CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
15  
0
3 - 6P  
3 + 6P  
5
10  
0
3 - 6P  
3 + 6P  
5
ns  
ns  
ns  
ns  
2P  
16P  
2P  
16P  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
Table 5-32. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
(3)  
(3)  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
Delay time, CLKX high to FSX  
low(4)  
MC37 td(CKXH–FXL)  
T - 5 T + 5  
T - 4 T + 4  
ns  
MC38 td(FXL–CKXL)  
MC35 td(CKXL–DXV)  
Delay time, FSX low to CLKX low(5)  
Delay time, CLKX low to DX valid  
Disable time, DX high–impedance  
D - 5 D + 5  
D - 4 D + 4  
ns  
ns  
-4  
6
3P + 3 5P + 15  
-3  
3
3P + 3 5P + 8  
MC39 tdis(CKXH–DXHZ) following last data bit from CLKX  
high  
D - 4 D + 4  
D - 3 D + 1  
ns  
Disable time, DX high–impedance  
MC31 tdis(FXH–DXHZ)  
3P + 4 3P +19  
3P + 4 3P + 18  
3P + 3 3P +11  
3P + 4 3P + 10  
ns  
ns  
following last data bit from FSX high  
MC32 td(FXL–DXV)  
Delay time, FSX low to DX valid  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T = CLKX period = (1 + CLKGDV) * 2P  
C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
MC36  
LSB  
MSB  
MC26  
CLKX  
FSX  
MC38  
MC35  
MC37  
MC31  
MC39  
MC32  
DX  
DR  
Bit 0  
Bit (n1)  
(n2)  
(n3)  
(n3)  
(n4)  
MC33  
MC34  
(n2)  
Bit 0  
Bit (n1)  
(n4)  
Figure 5-28. McBSP Timings as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
92  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Table 5-33. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MASTER  
SLAVE  
MASTER  
SLAVE  
MIN MAX MIN MAX MIN MAX MIN MAX  
MC23 tsu (DRV–CKXL)  
MC24 th (CKXL–DRV)  
MC36 tsu (FXL–CKXL)  
MC26 tc (CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
15  
0
3 - 6P  
3 + 6P  
5
10  
0
3 - 6P  
3 + 6P  
5
ns  
ns  
ns  
ns  
2P  
16P  
2P  
16P  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
Table 5-34. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)(1) (2)  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
(3)  
(3)  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
Delay time, CLKX high to FSX  
low(4)  
MC37 td(CKXH–FXL)  
MC38 td(FXL–CKXL)  
MC29 td(CKXH–DXV)  
D - 5 D + 5  
T - 5 T + 5  
D - 4 D + 4  
T - 4 T + 4  
ns  
ns  
Delay time, FSX low to CLKX  
low(5)  
Delay time, CLKX high to DX  
valid  
-4  
-4  
6
4
3P + 3 5P + 15  
3P + 4 3P + 19  
-3  
-3  
3
1
3P + 3  
5P + 8 ns  
Disable time, DX  
MC39 tdis(CKXH–DXHZ) high–impedance following last  
data bit from CLKX high  
3P + 3 3P + 12 ns  
MC32 td(FXL–DXV)  
Delay time, FSX low to DX valid  
C - 4 C + 4 3P + 4 3P + 18  
C - 3 C + 3 3P + 4 3P + 10 ns  
(1) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/CPU clock frequency. For example, when running parts at 200 MHz, use P = 5 ns.  
(3) T = CLKX period = (1 + CLKGDV) * 2P  
C = CLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on  
FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
(5) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master  
clock (CLKX).  
MC36  
LSB  
MSB  
MC26  
CLKX  
FSX  
MC38  
MC32  
MC29  
MC37  
MC39  
DX  
DR  
Bit 0  
Bit 0  
Bit (n1)  
Bit (n1)  
(n2)  
(n3)  
(n4)  
MC23  
MC24  
(n2)  
(n3)  
(n4)  
Figure 5-29. McBSP Timings as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
93  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5.14.4 McBSP General-Purpose I/O Timings  
Table 5-35 and Table 5-36 assume testing over recommended operating conditions (see Figure 5-30).  
Table 5-35. McBSP General-Purpose I/O Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN MAX  
MC20  
MC21  
tsu(MGPIO–COH)  
th(COH–MGPIO)  
Setup time, MGPIOx input mode before CLKOUT high(1)  
Hold time, MGPIOx input mode after CLKOUT high(1)  
7
0
7
0
ns  
ns  
(1) MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general-purpose input.  
Table 5-36. McBSP General-Purpose I/O Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN  
MAX  
MC22  
td(COH-MGPIO)  
Delay time, CLKOUT high to MGPIOx output mode(1)  
0
7
0
7
ns  
(1) MGPIOx refers to CLKRx, FSRx, CLKXx, FSXx, or DXx when configured as a general-purpose output.  
Figure 5-30. McBSP General-Purpose I/O Timings  
94  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.15 Enhanced Host-Port Interface (EHPI) Timings  
Table 5-37 and Table 5-38 assume testing over recommended operating conditions (see Figure 5-31 through  
Figure 5-36).  
Table 5-37. EHPI Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
E11  
E12  
tsu (HASL–HDSL)  
th (HDSL–HASL)  
Setup time, HAS low before HDS low  
Hold time, HAS low after HDS low  
4
3
4
3
ns  
ns  
Setup time, (HR/W, HA[13:0], HBE [1:0], HCNTL[1:0]) valid  
before HDS low  
E13  
E14  
tsu (HCNTLV–HDSL)  
th (HDSL–HCNTLIV)  
2
2
ns  
ns  
Hold time, (HR/W, HA[13:0], HBE [1:0], HCNTL[1:0]) invalid  
after HDS low  
4
4
E15  
E16  
E17  
E18  
tw (HDSL)  
Pulse duration, HDS low  
4P(1)  
4P(1)  
3
4P(1)  
4P(1)  
3
ns  
ns  
ns  
ns  
tw (HDSH)  
Pulse duration, HDS high  
tsu (HDV–HDSH)  
th (HDSH–HDIV)  
Setup time, HD bus write data valid before HDS high  
Hold time, HD bus write data invalid after HDS high  
4
4
Setup time, (HR/W, HBE [1:0], HCNTL[1:0]) valid before  
HAS low  
E19  
E20  
tsu (HCNTLV–HASL)  
th (HASL–HCNTLIV)  
3
4
3
4
ns  
ns  
Hold time, (HR/W, HBE [1:0], HCNTL[1:0]) valid after HAS  
low  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
Table 5-38. EHPI Switching Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
MIN MAX  
NO.  
UNIT  
MIN MAX  
26  
E1  
E2  
E4  
E5  
ten (HDSL–HDD)M  
td (HDSL–HDV)M  
ten (HDSL–HDD)R  
td (HDSL–HDV)R  
Enable time, HDS low to HD bus enabled (memory access)  
6
6
19  
ns  
ns  
ns  
ns  
Delay time, HDS low to HD bus read data valid  
(memory access)  
14P(1) (2)  
6
14P(1) (2)  
6
Enable time, HDS low to HD enabled (register access)  
26  
26  
19  
19  
Delay time, HDS low to HD bus read data valid  
(register access)  
E6  
E7  
tdis (HDSH–HDIV)  
td (HDSL–HRDYL)  
td (HDV–HRDYH)  
td (HDSH–HRDYL)  
Disable time, HDS high to HD bus read data invalid  
Delay time, HDS low to HRDY low (during reads)  
Delay time, HD bus valid to HRDY high (during reads)  
Delay time, HDS high to HRDY low (during writes)  
6
2
26  
18  
6
2
19  
15  
ns  
ns  
ns  
ns  
ns  
ns  
E8  
E9  
18  
11  
15  
8
E10  
E21  
td (HDSH–HRDYH) Delay time, HDS high to HRDY high (during writes)  
td (COH–HINT) Delay time, CLKOUT high to HINT high/low  
14P(1) (2)  
0
14P(1) (2)  
0
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
(2) EHPI latency is dependent on the number of DMA channels active, their priorities and their source/destination ports. The latency shown  
assumes no competing CPU or DMA activity to the memory resource being accessed by the EHPI.  
CLKOUT  
E21  
HINT  
CLKOUT reflects the CPU clock.  
Figure 5-31. HINT Timings  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
95  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Read  
E15  
Write  
HCS  
HDS  
E16  
E13  
E15  
E14  
E14  
E13  
HR/W  
HBE[1:0]  
HCNTL0  
HA[13:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
E2  
E1  
E6  
HD[15:0]  
(read)  
Read Data  
E17  
E18  
HD[15:0]  
(write)  
Write Data  
E9  
E10  
E7  
E8  
HRDY  
NOTES: A. Any non-multiplexed access with HCNTL0 low will result in HPIC register access. For data read or write, HCNTL0 must stay high  
during the EHPI access.  
B. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur  
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a strobe,  
the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal state.  
Figure 5-32. EHPI Nonmultiplexed Read/Write Timings  
96  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
Read  
Write  
E12  
HCS  
HAS  
E11  
E12  
E11  
E15  
E16  
E19  
E15  
E14  
HDS  
E20  
E19  
E20  
E13  
E14  
E13  
HR/W  
Valid  
Valid  
HBE[1:0]  
Valid (11)  
Valid (11)  
HCNTL[1:0]  
E2  
E6  
E1  
HD[15:0]  
(read)  
Read Data  
E17  
E18  
HD[15:0]  
(write)  
Write Data  
E10  
E7  
E8  
E9  
HRDY  
NOTE: The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur concurrent  
with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a strobe, the timing  
requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal state.  
Figure 5-33. EHPI Multiplexed Memory (HPID) Read/Write Timings Without Autoincrement  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
97  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
HCS  
E11  
E12  
E15  
HAS  
E16  
HDS  
E19  
E20  
E13  
E14  
HR/W  
HBE[1:0]  
Valid  
Valid  
HCNTL[1:0]  
Valid (01)  
E1  
Valid (01)  
E1  
E2  
E2  
E6  
E6  
HD[15:0]  
(read)  
Read Data  
Read Data  
E7  
E8  
E7  
E8  
HRDY  
HPIA contents  
n
n + 1  
n + 2  
NOTES: A. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host  
will always indicate the base address.  
B. In autoincrement mode, if HBE[1:0] are used to access the data as 8-bit-wideunits, the HPIA increments only following each high  
byte (HBE1 low) access.  
C. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur  
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCSis used as a strobe,  
the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal state.  
Figure 5-34. EHPI Multiplexed Memory (HPID) Read Timings With Autoincrement  
98  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
HCS  
HAS  
E12  
E15  
E11  
E16  
HDS  
E19  
E20  
E13  
E14  
HR/W  
HBE[1:0]  
Valid  
Valid  
HCNTL[1:0]  
Valid (01)  
Valid (01)  
E17  
E18  
E10  
HD[15:0]  
(write)  
Write Data  
Write Data  
E10  
E9  
E9  
HRDY  
n
HPIA contents  
n + 1  
NOTES: A. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host  
will always indicate the base address.  
B. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur  
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCSis used as a strobe,  
the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal state.  
Figure 5-35. EHPI Multiplexed Memory (HPID) Write Timings With Autoincrement  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
99  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
Read  
Write  
E12  
HCS  
E11  
E11  
E12  
HAS  
E15  
E16  
E15  
HDS  
E19  
E20  
E19  
E20  
E14  
E13  
E14  
E13  
HR/W  
Valid  
Valid  
HBE[1:0]  
Valid (10 or 00)  
Valid (10 or 00)  
HCNTL[1:0]  
E5  
E6  
E4  
HD[15:0]  
(read)  
Read Data  
E17  
E18  
HD[15:0]  
(write)  
Write Data  
HRDY  
NOTES: A. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by the host  
will always indicate the base address.  
B. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur  
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCSis used as a strobe,  
the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal state.  
Figure 5-36. EHPI Multiplexed Register Read/Write Timings  
100  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
5.16 I2C Timings  
Table 5-39 and Table 5-39 assume testing over recommended operating conditions (see Figure 5-37 and  
Figure 5-38).  
Table 5-39. I2C Signals (SDA and SCL) Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
STANDARD  
MODE  
FAST  
MODE  
STANDARD  
MODE  
FAST  
MODE  
UNIT  
MIN  
MAX  
MIN  
2.5  
MAX  
MIN  
MAX  
MIN  
MAX  
IC1 tc (SCL)  
Cycle time, SCL  
10  
10  
2.5  
0.6  
μs  
μs  
Setup time, SCL high  
before SDA low for a  
repeated START  
condition  
IC2 tsu (SCLH–SDAL)  
4.7  
4
0.6  
4.7  
Hold time, SCL low  
after SDA low for a  
START and a  
IC3 th (SCLL–SDAL)  
0.6  
4
0.6  
μs  
repeated START  
condition  
Pulse duration, SCL  
low  
IC4 tw (SCLL)  
4.7  
4
1.3  
0.6  
4.7  
4
1.3  
0.6  
μs  
μs  
ns  
Pulse duration, SCL  
high  
IC5 tw (SCLH)  
Setup time, SDA valid  
before SCL high  
IC6 tsu (SDA–SCLH)  
IC7 th (SDA–SCLL)  
250  
0(2)  
100(1)  
0(2)  
250  
0(2)  
100(1)  
Hold time, SDA valid  
after SCL low  
0.9(3)  
0(2) 0.9(3) μs  
Pulse duration, SDA  
high between STOP  
and START  
IC8 tw (SDAH)  
4.7  
1.3  
4.7  
1.3  
μs  
conditions  
20 +  
20 +  
0.1Cb  
IC9 tr (SDA)  
IC10 tr (SCL)  
IC11 tf (SDA)  
IC12 tf (SCL)  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000  
1000  
300  
300  
300  
300  
300  
1000  
1000  
300  
0.1Cb  
300 ns  
300 ns  
300 ns  
300 ns  
μs  
(4)  
(4)  
20 +  
20 +  
0.1Cb  
(4)  
0.1Cb  
(4)  
20 +  
20 +  
0.1Cb  
(4)  
0.1Cb  
(4)  
20 +  
20 +  
300  
300  
0.1Cb  
(4)  
0.1Cb  
(4)  
Setup time, SCL high  
before SDA high (for  
STOP condition)  
IC13 tsu (SCLH–SDAH)  
4
0.6  
0
4
0.6  
0
Pulse duration, spike  
(must be suppressed)  
IC14 tw (SP)  
50  
50 ns  
Capacitive load for  
each bus line  
(4)  
IC15 Cb  
400  
400  
400  
400 pF  
(1) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) 250 ns must then be  
met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch  
the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns  
(according to the Standard-mode I2C-Bus Specification) before the SCL line is released.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(3) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period [tw(SCLL)] of the SCL signal.  
(4) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
101  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
IC11  
IC9  
SDA  
SCL  
IC6  
IC8  
IC14  
IC13  
IC4  
IC5  
IC10  
IC1  
IC3  
IC12  
IC3  
IC2  
IC7  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-37. I2C Receive Timings  
Table 5-40. I2C Signals (SDA and SCL) Timing Requirements  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
STANDARD  
MODE  
FAST  
MODE  
STANDARD  
MODE  
FAST  
MODE  
UNIT  
MIN MAX  
MIN  
MAX  
MIN  
10  
MAX  
MIN MAX  
IC16 tc(SCL)  
Cycle time, SCL  
10  
2.5  
2.5  
μs  
μs  
Delay time, SCL high to  
SDA low for a repeated  
START condition  
IC17 td(SCLH–SDAL)  
4.7  
0.6  
4.7  
0.6  
Delay time, SDA low to  
SCL low for a START and  
a repeated START  
condition  
IC18 td(SDAL–SCLL)  
4
0.6  
4
0.6  
μs  
IC19 tw(SCLL)  
IC20 tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
4.7  
4
1.3  
0.6  
μs  
μs  
Delay time, SDA valid to  
SCL high  
IC21 td(SDA–SCLH)  
IC22 tv(SCLL–SDAV)  
250  
0
100  
0
250  
0
100  
0
ns  
Valid time, SDA valid after  
SCL low  
0.9  
0.9  
μs  
Pulse duration, SDA high  
between STOP and  
START conditions  
IC23 tw(SDAH)  
IC24 tr(SDA)  
IC25 tr(SCL)  
IC26 tf(SDA)  
IC27 tf(SCL)  
4.7  
1.3  
4.7  
1.3  
μs  
ns  
ns  
ns  
ns  
20 +  
20 +  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000  
1000  
300  
300  
300  
300  
300  
1000  
1000  
300  
0.1Cb  
300  
300  
300  
300  
(1)  
0.1Cb  
(1)  
20 +  
20 +  
0.1Cb  
(1)  
0.1Cb  
(1)  
20 +  
20 +  
0.1Cb  
(1)  
0.1Cb  
(1)  
20 +  
20 +  
300  
300  
0.1Cb  
(1)  
0.1Cb  
(1)  
Delay time, SCL high to  
SDA high for a STOP  
condition  
IC28 td(SCLH–SDAH)  
4
0.6  
4
0.6  
μs  
Capacitance for each  
I2C pin  
IC29 Cp  
10  
10  
10  
10  
pF  
(1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
102 Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
IC24  
www.ti.com  
IC26  
SDA  
IC21  
IC23  
IC19  
IC28  
IC20  
IC27  
IC25  
SCL  
IC16  
IC18  
IC18  
IC17  
IC22  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-38. I2C Transmit Timings  
5.17 Universal Serial Bus (USB) Timings  
Table 5-41 assumes testing over recommended operating conditions (see Figure 5-39 and Figure 5-40).  
Table 5-41. Universal Serial Bus (USB) Characteristics  
CVDD = 1.2 V  
CVDD = 1.6 V  
CVDD = 1.35 V  
NO.  
FULL SPEED  
12Mbps  
FULL SPEED  
12Mbps  
UNIT  
MIN  
TYP  
MAX  
20  
MIN  
TYP  
MAX  
20  
U1 tr  
U2 tf  
Rise time of DP and DN signals(1)  
Fall time of DP and DN signals(1)  
Rise/Fall time matching(2)  
Output signal cross–over voltage(1)  
Differential propagation jitter(3) (4)  
Operating frequency (full speed mode)  
Series resistor  
4
4
4
4
ns  
ns  
20  
20  
tRFM  
VCRS  
tjr  
90  
1.3  
-2  
111.11  
90  
1.3  
-2  
111.11  
%
2
2
2
2
V
ns  
fop  
12  
12  
Mb/s  
W
U3 Rs(DP)  
U4 Rs(DN)  
U5 Cedge(DP)  
U6 Cedge(DN)  
24  
24  
22  
22  
24  
24  
22  
22  
Series resistor  
W
Edge rate control capacitor  
Edge rate control capacitor  
pF  
pF  
(1) CL = 50 pF  
(2) (tr/tf) x 100  
(3)  
tpx(1) tpx(0)  
(4) USB PLL is susceptible to power supply ripple, refer to recommend operating conditions for allowable supply ripple to meet the USB  
peak-to-peak jitter specification.  
tperiod + Jitter  
VOH  
VOL  
D-  
90%  
10%  
VCRS  
D+  
U2  
U1  
Figure 5-39. USB Timings  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Specifications  
103  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
SPRS613SEPTEMBER 2009  
www.ti.com  
5507  
USBV  
DD  
PU  
DP  
R(PU)  
1.5 k  
U3  
D+  
U5  
C
L
L
U4  
DN  
D
U6  
C
NOTES: A. A full-speed buffer is measured with the load shown.  
B. = 50 pF  
C
L
Figure 5-40. Full-Speed Loads  
5.18 ADC Timings  
Table 5-42 assumes testing over recommended operating conditions.  
Table 5-42. ADC Characteristics  
CVDD = 1.2 V  
CVDD = 1.35 V  
CVDD = 1.6 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
500  
MAX  
A1  
A2  
A3  
tc(SCLC)  
td(AQ)  
Cycle time, ADC internal conversion clock  
500  
ns  
Delay time, ADC sample and hold acquisition  
time  
40  
40  
μs  
td(CONV)  
Delay time, ADC conversion time  
Static differential non–linearity error  
Static integral non–linearity error  
Zero–scale offset error  
13 * tc(SCLC)  
13 * tc(SCLC)  
ns  
2
3
9
9
2
3
9
9
A4  
SDNL  
LSB  
A5  
A6  
A7  
Zset  
Fset  
LSB  
LSB  
MW  
Full–scale offset error  
Analog input impedance  
1
1
104  
Electrical Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
SM320VC5507-EP  
www.ti.com  
SPRS613SEPTEMBER 2009  
6
Mechanical Data  
6.1 Package Thermal Resistance Characteristics  
Table 6-1 and Table 6-2 provide the estimated thermal resistance characteristics for the SM320VC5507  
DSP package types.  
Table 6-1. Thermal Resistance Characteristics (Ambient)  
(1)  
PACKAGE  
R
ΘJA (°C/W)  
BOARD TYPE  
High–K  
High–K  
High–K  
High–K  
Low–K  
AIRFLOW (LFM)  
71.2  
0
61.8  
150  
250  
500  
0
58.9  
54.8  
PGE  
103.6  
84.2  
Low–K  
150  
250  
500  
77.8  
Low–K  
69.4  
Low–K  
(1) Board types are as defined by JEDEC. Reference JEDEC Standard JESD51-9, Test Boards for Area Array Surface Mount Package  
Thermal Measurements.  
Table 6-2. Thermal Resistance Characteristics (Case)  
(1)  
PACKAGE  
RΘJA (°C/W)  
BOARD TYPE  
PGE  
13.8  
2s JEDEC Test Card  
(1) Board types are as defined by JEDEC. Reference JEDEC Standard JESD51-9, Test Boards for Area Array Surface Mount Package  
Thermal Measurements.  
6.2 Packaging Information  
The following packaging information reflects the most current released data available for the designated  
device(s). This data is subject to change without notice and without revision of this document.  
Copyright © 2009, Texas Instruments Incorporated  
Mechanical Data  
105  
Submit Documentation Feedback  
Product Folder Link(s): SM320VC5507-EP  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Oct-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SM320VC5507PGESEP  
ACTIVE  
LQFP  
PGE  
144  
60 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

V62/10603-01XE

3.0-V TO 5.5-V, 12-BIT, 200-KSPS, 4-/8-CHANNEL, LOW-POWER SERIAL ANALOG-TO-DIGITAL CONVERTER WITH AUTOPOWER-DOWN
TI

V62/10604-01XE

All-Format Oversampled Component Video/PC Graphics D/A System With Three 11-Bit DACs, CGMS Data Insertion
TI

V62/10605-01XE

PRECISION, LOW POWER INSTRUMENTATION AMPLIFIERS
TI

V62/10606-01XE

1-Mbps QUAD DIGITAL ISOLATORS
TI

V62/10607-01XE

ULTRALOW-POWER 100-mA LOW DROPOUT LINEAR REGULATORS
TI

V62/10610-01XE

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL
TI

V62/10610-01YE

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL
TI

V62/10611-01XE

3.0-A ULTRA-LDO WITH PROGRAMMABLE SOFT-START
TI

V62/10613-01XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-02XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-03XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-04XE

Low-Noise, Very Low Drift, Precision Voltage Reference
TI