SSM6E03TU(TE85L,F) [TOSHIBA]

TRANSISTOR,MOSFET,PAIR,COMPLEMENTARY,20V V(BR)DSS,1.8A I(D),SOT-363VAR;
SSM6E03TU(TE85L,F)
型号: SSM6E03TU(TE85L,F)
厂家: TOSHIBA    TOSHIBA
描述:

TRANSISTOR,MOSFET,PAIR,COMPLEMENTARY,20V V(BR)DSS,1.8A I(D),SOT-363VAR

文件: 总8页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SSM6E03TU  
TOSHIBA Multi-Chip Device Silicon P-Channel MOS Type + N-Channel MOS Type  
SSM6E03TU  
Power Management Switch Applications  
Unit: mm  
P-channel MOSFET and 1.8 V drive  
N-channel MOSFET and 1.5 V drive  
2.1±0.1  
1.7±0.1  
P-channel MOSFET and N-channel MOSFET incorporated into one  
package.  
Low power dissipation due to P-channel MOSFET that features low  
1
2
6
5
R
and low-voltage operation  
DS (ON)  
Q1 Absolute Maximum Ratings (Ta = 25°C)  
4
3
Characteristics  
Drain-Source voltage  
Symbol  
Rating  
Unit  
20  
± 8  
V
V
V
DS  
Gate-Source voltage  
V
GSS  
DC  
I
-1.8  
-3.6  
D
Drain current  
A
Pulse  
I
(Note 1)  
DP  
1.Nch source  
2.Pch drain  
3.Pch drain  
4.Pch source  
Q2 Absolute Maximum Ratings (Ta = 25°C)  
5.Nch gate  
6.Pch gate  
Nch drain  
Characteristics  
Drain-Source voltage  
Symbol  
Rating  
Unit  
UF6  
V
20  
± 10  
0.1  
V
V
DS  
JEDEC  
Gate-Source voltage  
V
GSS  
DC  
I
JEITA  
D
Drain current  
A
Pulse  
I
(Note 1)  
0.2  
DP  
TOSHIBA  
2-2T1D  
Weight: 7.0 mg (typ.)  
Absolute Maximum Ratings (Q1, Q2 common)  
(Ta = 25°C)  
Characteristics  
Symbol  
(Note 2)  
Rating  
Unit  
Drain power dissipation  
Channel temperature  
P
0.5  
150  
W
°C  
°C  
D
T
ch  
Storage temperature range  
T
stg  
55 to 150  
Note:  
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly  
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute  
maximum ratings.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc).  
Note 1: Pulse width limited by maximum channel temperature.  
Note 2: Mounted on an FR4 board (25.4 mm × 25.4 mm × 1.6 mm, Cu pad: 645 mm2)  
Marking  
Equivalent Circuit (top view)  
6
5
4
6
5
4
Q1  
KTC  
Q2  
1
2
3
1
2
3
1
2009-10-07  
SSM6E03TU  
Q1 Electrical Characteristics (Ta = 25°C)  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
V
V
I
I
= -1 mA, V  
= -1 mA, V  
= 0  
-20  
-12  
(BR) DSS  
(BR) DSX  
D
D
GS  
GS  
Drain–source breakdown voltage  
= +8 V  
Drain cutoff current  
I
V
V
V
V
= -20 V, V  
= 0  
-10  
±1  
μA  
μA  
V
DSS  
GSS  
DS  
GS  
DS  
DS  
GS  
Gate leakage current  
Gate threshold voltage  
Forward transfer admittance  
I
= ±8 V, V  
= 0  
DS  
V
= -3 V, I = -1 mA  
-0.3  
1.8  
-1.0  
th  
D
Y ⏐  
= -3 V, I = -1 A  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
3.7  
105  
138  
190  
335  
70  
S
fs  
D
I
I
I
= -1.0 A, V  
= -0.5 A, V  
= -0.2 A, V  
= -4 V  
144  
180  
335  
D
D
D
GS  
GS  
GS  
Drain–source ON-resistance  
R
mΩ  
= -2.5 V  
= -1.8 V  
DS (ON)  
Input capacitance  
C
C
iss  
V
= -10 V, V  
= 0, f = 1 MHz  
GS  
pF  
Output capacitance  
DS  
oss  
Reverse transfer capacitance  
C
56  
rss  
on  
Turn-on time  
Switching time  
t
t
V
V
= -10 V, I = -1.0 A,  
20  
DD  
GS  
D
ns  
V
= 0 to -2.5 V, R = 4.7 Ω  
Turn-off time  
20  
G
off  
Drain–source forward voltage  
Note 3: Pulse test  
V
I
= 1.8 A, V = 0  
GS  
(Note 3)  
0.85  
1.2  
DSF  
D
Q2 Electrical Characteristics (Ta = 25°C)  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Drain-Source breakdown voltage  
Drain cut-off current  
V
I
= 0.1 mA, V  
= 0  
= 0  
20  
0.6  
40  
1
V
μA  
μA  
V
(BR) DSS  
D
GS  
I
V
V
V
V
= 20 V, V  
DSS  
DS  
GS  
DS  
DS  
GS  
Gate leakage current  
I
= ±10 V, V = 0  
DS  
±1  
1.1  
3.0  
4.0  
15  
GSS  
Gate threshold voltage  
Forward transfer admittance  
V
= 3 V, I = 0.1 mA  
th  
D
|Y |  
fs  
= 3 V, I = 10 m A  
(Note 3)  
mS  
D
I
I
I
= 10 mA, V  
= 4 V  
(Note 3)  
(Note 3)  
(Note 3)  
1.5  
2.2  
5.2  
9.3  
9.8  
4.5  
70  
D
D
D
GS  
GS  
Drain-Source on-resistance  
R
Ω
= 10 mA, V  
= 1 mA, V  
= 2.5 V  
DS (ON)  
= 1.5 V  
GS  
Input capacitance  
C
iss  
V
= 3 V, V  
GS  
= 0  
DS  
pF  
ns  
Output capacitance  
C
oss  
f = 1 MHz  
Reverse transfer capacitance  
C
rss  
on  
Turn-on time  
t
t
V
V
= 3 V, I = 10 mA,  
D
DD  
GS  
Switching time  
= 0 to 2.5 V, R = 50 Ω  
G
Turn-off time  
125  
off  
Note 3: Pulse test  
2
2009-10-07  
SSM6E03TU  
Switching Time Test Circuit (Q1)  
(a) Test circuit  
(b) V  
(c) V  
IN  
0 V  
10%  
OUT  
0
IN  
90%  
2.5 V  
2.5V  
R
L
V
DS (ON)  
90%  
10%  
OUT  
10 μs  
V
DD  
V
= − 10 V  
DD  
V
DD  
R
G
= 4.7 Ω  
t
t
r
f
Duty 1%  
: t , t < 5 ns  
Common Source  
V
IN  
r f  
t
t
off  
on  
Ta = 25°C  
Switching Time Test Circuit (Q2)  
(a) Test circuit  
(b) V  
(c) V  
IN  
2.5 V  
0 V  
90%  
OUT  
2.5 V  
0
IN  
10%  
R
L
V
10 μs  
OUT  
DD  
V
DD  
10%  
90%  
V
= 3 V  
DD  
Duty 1%  
: t , t < 5 ns  
V
DS (ON)  
V
IN  
(Z  
r f  
= 50 Ω)  
t
t
f
r
out  
Common Source  
t
t
off  
on  
Ta = 25°C  
Precaution(Pch)  
V
th  
can be expressed as the voltage between the gate and source when the low operating current value is I = -1mA  
D
for this product. For normal switching operation, V  
requires a higher voltage than V and V  
requires a  
GS (on)  
th  
GS (off)  
lower voltage than V . (The relationship can be established as follows: V  
th  
< V < V  
)
GS (off)  
th  
GS (on).  
Be sure to take this into consideration when using the device.  
Precaution(Nch)  
V
th  
can be expressed as the voltage between the gate and source when the low operating current value is I = 0.1mA  
D
for this product. For normal switching operation, V  
requires a higher voltage than V and V  
requires a  
GS (on)  
th  
GS (off)  
lower voltage than V . (The relationship can be established as follows: V  
th  
< V < V  
)
GS (off)  
th  
GS (on).  
Be sure to take this into consideration when using the device.  
Handling Precaution  
When handling individual devices (which are not yet mounted on a circuit board), ensure that the environment is  
protected against static electricity. Operators should wear anti-static clothing, and containers and other objects that come  
into direct contact with devices should be made of anti-static materials.  
Thermal resistance R  
and drain power dissipation P vary depending on board material, board area, board  
D
th (j-a)  
thickness and pad area. When using this device, please take heat dissipation into consideration.  
3
2009-10-07  
SSM6E03TU  
Q1 (Pch MOSFET)  
ID - VDS  
ID - VGS  
-10  
-1  
-5  
-4  
-3  
-2  
-1  
0
-10  
-4  
Common Source  
VDS = -3 V  
Common Source  
-2.5  
Ta = 25  
-0.1  
-1.8  
25  
-25  
-0.01  
-0.001  
-0.0001  
Ta = 85  
-1.5  
VGS = -1.2 V  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
-0.2 -0.4 -0.6 -0.8  
-1  
-1.2 -1.4 -1.6 -1.8  
-2  
-2.2 -2.4  
Gate-Source Voltage VGS (V)  
Drain-Source Voltage VDS (V)  
RDS (ON) - VGS  
RDS (ON) - Ta  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
Common Source  
Ta = 25  
Common Source  
-0.5 A  
-1.8 V, -0.2 A  
ID = -1 A  
-0.2 A  
-2.5 V, -0.5 A  
VGS = -4 V, ID = -1 A  
0
-60  
-35  
-10  
15  
40  
65  
90  
115  
140  
−4  
7  
8  
9  
10  
0
1  
2  
3
5
6
Ambient Temperature Ta (℃)  
Gate-Source Voltage VGS (V)  
RDS (ON) - ID  
Vth - Ta  
300  
250  
200  
150  
100  
50  
-1.4  
-1.2  
-1  
Common Source  
Ta = 25  
Common Source  
ID = -1 mA  
VDS = -3 V  
VGS = -1.8 V  
-0.8  
-0.6  
-0.4  
-0.2  
-0  
-2.5 V  
-4 V  
0
0
-1  
-2  
-3  
-4  
-5  
-25  
0
25  
50  
75  
100  
125  
150  
Drain Current ID (A)  
Ambient Temperature Ta (℃)  
4
2009-10-07  
SSM6E03TU  
Q1 (Pch MOSFET)  
|Yfs| - ID  
IDR - VDS  
10  
1
10  
Common Source  
VGS = 0  
Common Source  
VDS = -3 V  
Ta = 25  
Ta = 25  
25  
25  
Ta = 85  
-25  
-25  
0.1  
1
Ta = 85  
0.01  
0.001  
0.1  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
-0.01  
-0.1  
-1  
-10  
Drain-Source Voltage VDS (V)  
Drain Current ID (A)  
C - VDS  
t - ID  
1000  
100  
10  
1000  
100  
10  
Common Source  
VDD = -10 V  
VGS = 0 to -2.5 V  
Ta = 25  
toff  
Ciss  
tf  
Coss  
Crss  
ton  
tr  
Common Source  
VGS = 0 V  
f = 1 MHz  
Ta = 25  
1
-0.1  
-1  
-10  
-100  
0.01  
0.1  
1  
10  
Drain-Source Voltage VDS (V)  
Drain Current ID (A)  
PD - Ta  
1000  
Mounted on an FR4 board  
(25.4mm×25.4mm×1.6mm)  
Cu Pad :25.4mm×25.4mm  
800  
600  
400  
200  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature Ta (°C)  
5
2009-10-07  
SSM6E03TU  
Q2 (Nch MOSFET)  
I
– V  
I – V  
D GS  
D
DS  
250  
1000  
100  
10  
Common source  
Common source  
2.5  
2.3  
Ta = 25 °C  
V
= 3 V  
DS  
4
3
200  
150  
100  
50  
10  
2.1  
1.9  
Ta = 100°C  
25°C  
25°C  
1.7  
1
1.5  
0.1  
V
= 1.3 V  
GS  
0
0
0.01  
0.5  
1
1.5  
2
0
1
2
3
Drain-Source voltage  
V
DS  
(V)  
Gate-Source voltage  
V
(V)  
GS  
R
– I  
R
– V  
DS (ON)  
D
DS (ON) GS  
12  
10  
8
6
5
4
3
2
1
0
Common source  
Common source  
= 10 mA  
Ta = 25 °C  
I
D
V
= 1.5 V  
GS  
6
Ta = 100°C  
4
25°C  
2.5 V  
4 V  
2
25°C  
0
1
10  
100  
1000  
0
2
4
6
8
10  
Drain current  
I
(mA)  
Gate-Source voltage  
V
(V)  
GS  
D
R
Ta  
V
Ta  
th  
DS (ON)  
8
6
4
2
2
Common source  
Common source  
I
= 0.1 mA  
D
V
= 3 V  
DS  
1.6  
V
= 1.5 V, I = 1 mA  
GS  
D
1.2  
0.8  
0.4  
0
2.5 V, 10 mA  
4 V, 10 mA  
0
25  
0
25  
50  
75  
100  
125  
150  
25  
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
6
2009-10-07  
SSM6E03TU  
Q2 (Nch MOSFET)  
Y – I  
fs  
I
– V  
DR DS  
D
500  
250  
200  
150  
100  
50  
Common source  
= 0 V  
Common source  
300  
V
GS  
V
= 3 V  
DS  
Ta = 25 °C  
Ta = 25 °C  
D
100  
50  
30  
I
DR  
G
S
10  
5
3
1
1
0
0
0.2  
0.4  
0.6  
0.8  
1  
1.2  
1.4  
10  
100  
1000  
Drain current  
I
(mA)  
Drain-Source voltage  
V
DS  
(V)  
D
C – V  
t – I  
D
DS  
100  
5000  
3000  
Common source  
V
V
= 3 V  
= 0 to 2.5 V  
50  
30  
DD  
GS  
t
off  
Ta = 25 °C  
1000  
10  
500  
300  
t
f
C
iss  
5
3
C
oss  
C
rss  
100  
Common source  
= 0 V  
t
on  
V
1
GS  
50  
30  
f = 1 MHz  
Ta = 25 °C  
t
r
0.5  
0.3  
0.1  
0.5  
1
5
10  
50 100  
30  
0.3  
3
10  
0.1  
1
10  
100  
Drain-Source voltage  
V
DS  
(V)  
Drain current  
I
(mA)  
D
7
2009-10-07  
SSM6E03TU  
RESTRICTIONS ON PRODUCT USE  
Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information  
in this document, and related hardware, software and systems (collectively “Product”) without notice.  
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with  
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.  
Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are  
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and  
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily  
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the  
Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of  
all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes  
for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the  
instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their  
own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such  
design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts,  
diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating  
parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR  
APPLICATIONS.  
Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring  
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.  
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or  
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious  
public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used  
in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling  
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric  
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this  
document.  
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.  
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any  
applicable laws or regulations.  
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any  
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to  
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.  
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE  
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY  
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR  
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND  
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO  
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS  
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.  
Do not use or otherwise make available Product or related software or technology for any military purposes, including without  
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile  
technology products (mass destruction weapons). Product and related software and technology may be controlled under the  
Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product  
or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.  
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.  
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,  
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of  
noncompliance with applicable laws and regulations.  
8
2009-10-07  

相关型号:

SSM6G18NU

TRANSISTOR 2000 mA, 20 V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, 2-2Y1A, UDFN-6, FET General Purpose Small Signal
TOSHIBA

SSM6G18NU(TE85L)

TRANSISTOR,MOSFET,P-CHANNEL,20V V(BR)DSS,2A I(D),LLCC
TOSHIBA

SSM6J06FU

Power Management Switch High Speed Switching Applications
TOSHIBA

SSM6J06FU(TE85L,F)

TRANSISTOR,MOSFET,P-CHANNEL,20V V(BR)DSS,650MA I(D),SOT-323VAR
TOSHIBA

SSM6J06FU_07

Power Management Switch
TOSHIBA

SSM6J07FU

TOSHIBA Transistor Silicon P Channel MOS Type
TOSHIBA

SSM6J07FU(TE85L)

SSM6J07FU(TE85L)
TOSHIBA

SSM6J07FU(TE85L,F)

SSM6J07FU(TE85L,F)
TOSHIBA

SSM6J07FU_07

Power Management Switch
TOSHIBA

SSM6J08FU

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSII)
TOSHIBA

SSM6J08FU_07

Power Management Switch
TOSHIBA

SSM6J205FE

High-Speed Switching Applications
TOSHIBA