10-FZ06NBA075SA-P916L33 [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
10-FZ06NBA075SA-P916L33
型号: 10-FZ06NBA075SA-P916L33
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总17页 (文件大小:779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-FZ06NBA075SA-P916L33  
datasheet  
flowBOOST0  
600V/75A  
Features  
flow0 housing  
Symmetric boost  
Clip-In PCB mounting  
Low Inductance Layout  
Target Applications  
Schematic  
UPS  
Types  
10-FZ06NBA075SA-P916L33  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Boost IGBT  
VCE  
IC  
ICpulse  
Ptot  
Collector-emitter break down voltage  
DC collector current  
600  
V
A
Th=80°C  
Tc=80°C  
56  
74  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
225  
A
Th=80°C  
Tc=80°C  
93  
W
V
141  
VGE  
±20  
tSC  
Tj150°C  
6
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
175  
°C  
Input Boost Inverse Diode  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
Tj=25°C  
600  
V
A
Th=80°C  
Tc=80°C  
33  
44  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
90  
A
Th=80°C  
Tc=80°C  
53  
80  
W
°C  
Tjmax  
175  
copyright Vincotech  
1
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Boost FWD  
VRRM  
IF  
IFRM  
Ptot  
Tj=25°C  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
V
A
Th=80°C  
Tc=80°C  
63  
83  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
150  
A
Th=80°C  
Tc=80°C  
86  
W
°C  
130  
Tjmax  
Maximum Junction Temperature  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
copyright Vincotech  
2
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
ID [A]  
Input Boost IGBT  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
1
5,8  
6,5  
2,1  
0,2  
650  
VGE(th) VCE=VGE  
0,0012  
75  
V
V
1,63  
1,86  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
600  
0
mA  
nA  
Ω
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
151  
154  
20  
Rise time  
24  
ns  
209  
233  
93  
111  
1,09  
1,50  
1,78  
2,41  
td(off)  
tf  
Turn-off delay time  
Rgoff=8 Ω  
Rgon=8 Ω  
±15  
300  
75  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
4620  
288  
137  
470  
Output capacitance  
f=1MHz  
f=1MHz  
0
0
25  
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
1,02  
K/W  
Input Boost Inverse Diode  
Tj=25°C  
Tj=125°C  
1
1,63  
1,56  
2,05  
VF  
Diode forward voltage  
10  
V
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
1,8  
K/W  
Input Boost FWD  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
1,49  
1,46  
2
VF  
Irm  
Forward voltage  
75  
75  
V
µA  
30  
Reverse leakage current  
Peak recovery current  
Reverse recovery time  
Reverse recovery charge  
Reverse recovered energy  
Peak rate of fall of recovery current  
600  
300  
70  
86  
IRRM  
trr  
A
117  
152  
3,07  
6,19  
0,61  
1,33  
5142  
2414  
ns  
Qrr  
Erec  
Rgoff=8 Ω  
±15  
µC  
mWs  
A/µs  
di(rec)max  
/dt  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink  
1,11  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
ΔR/R  
P
Tj=25°C  
22000  
Ω
%
R100=1486 Ω  
Tj=100°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
-5  
+5  
200  
2
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B(25/100)  
B-value  
K
Vincotech NTC Reference  
B
* see details on Thermistor charts on Figure 2.  
copyright Vincotech  
3
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 1  
BOOST IGBT  
Figure 2  
Typical output characteristics  
BOOST IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
250  
250  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
250  
25  
μs  
250  
150  
μs  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
BOOST IGBT  
Figure 4  
BOOST FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
ID = f(VCE  
)
75  
250  
200  
150  
100  
60  
45  
30  
15  
50  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
3
VGS (V)  
VF (V)  
At  
At  
tp =  
tp =  
250  
10  
μs  
250  
μs  
VCE  
=
V
copyright Vincotech  
4
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 5  
BOOST IGBT  
Figure 6  
BOOST IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
5
4
3
2
1
0
5
4
3
2
1
0
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eon High T  
Eoff High T  
Eoff Low T  
Eon Low T  
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VCE  
25/150  
300  
±15  
8
°C  
25/150  
300  
°C  
V
V
A
=
=
=
=
V
V
Ω
Ω
V
GE  
±15  
=
IC =  
75  
Rgoff  
=
8
Figure 7  
BOOST IGBT  
Figure 8  
BOOST IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
2,0  
1,6  
1,2  
0,8  
0,4  
0,0  
2,0  
1,6  
1,2  
0,8  
0,4  
0,0  
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VCE  
25/150  
300  
±15  
8
°C  
25/150  
300  
°C  
V
V
A
=
=
=
=
V
V
Ω
Ω
V
GE  
±15  
=
IC =  
75  
Rgoff  
=
8
copyright Vincotech  
5
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 9  
BOOST IGBT  
Figure 10  
BOOST IGBT  
Typical switching times as a  
function of collector current  
t = f(ID)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdon  
tdoff  
tdon  
0,1  
0,1  
tf  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
0
25  
50  
75  
100  
125  
150  
I D (A)  
0
8
16  
24  
32  
40  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VCE  
150  
300  
±15  
8
°C  
150  
300  
±15  
75  
°C  
V
V
A
=
=
=
=
V
V
Ω
Ω
V
GE  
=
IC =  
Rgoff  
=
8,015  
Figure 11  
BOOST FWD  
Figure 12  
BOOST FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,20  
0,16  
0,12  
0,08  
0,04  
0,00  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
trr High T  
trr High T  
trr Low T  
trr Low T  
0
8
16  
24  
32  
40  
0
25  
50  
75  
100  
125  
I C (A) 150  
R Gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
8
°C  
25/150  
300  
°C  
V
A
V
=
V
V
Ω
=
75  
=
V
GE  
=
±15  
copyright Vincotech  
6
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 13  
BOOST FWD  
Figure 14  
BOOST FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
9,0  
7,5  
6,0  
4,5  
3,0  
1,5  
0,0  
10  
Qrr High T  
8
Qrr High T  
6
Qrr Low T  
4
Qrr Low T  
2
0
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
I C (A)  
R Gon ( )  
At  
At  
Tj =  
Tj =  
VCE  
VGE  
Rgon  
25/150  
300  
±15  
8
°C  
V
25/150  
300  
°C  
V
A
V
=
=
VR =  
V
IF  
=
75  
=
Ω
V
GE  
=
±15  
Figure 15  
BOOST FWD  
Figure 16  
BOOST FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
120  
100  
80  
60  
40  
20  
0
150  
120  
90  
60  
30  
0
IRRM High T  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
I C (A)  
R Gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
8
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
75  
=
VGE =  
Ω
±15  
copyright Vincotech  
7
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 17  
BOOST FWD  
Figure 18  
BOOST FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
7500  
15000  
12000  
9000  
6000  
3000  
0
dI0/dt  
dI0/dt  
dIrec/dt  
dIrec/dt  
6000  
4500  
3000  
1500  
0
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
I
C (A)  
R Gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Rgon  
Tj =  
VR =  
IF =  
25/150  
300  
±15  
8
°C  
V
25/150  
300  
°C  
V
A
V
=
=
V
75  
=
Ω
VCE  
=
±15  
Figure 19  
BOOST IGBT  
Figure 20  
BOOST FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,05  
0,02  
0,01  
0,005  
0.000  
t p (s)  
0.000  
t p (s)  
10-2  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1012  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101102  
At  
At  
tp / T  
1,02  
tp / T  
1,11  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
IGBT thermal model values  
K/W  
FWD thermal model values  
R (C/W)  
0,037  
0,176  
0,550  
0,179  
0,042  
0,037  
Tau (s)  
6,37E+00  
R (C/W)  
0,03  
Tau (s)  
9,19E+00  
8,57E-01  
1,57E-01  
2,60E-02  
3,81E-03  
3,09E-04  
0,13  
9,97E-01  
1,49E-01  
3,47E-02  
5,94E-03  
3,69E-04  
0,43  
0,33  
0,12  
0,07  
copyright Vincotech  
8
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 21  
BOOST IGBT  
Figure 22  
BOOST IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
200  
160  
120  
80  
90  
75  
60  
45  
30  
15  
0
40  
0
Th ( o C)  
Th ( o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
ºC  
175  
15  
ºC  
V
=
Figure 23  
Power dissipation as a  
BOOST FWD  
Figure 24  
Forward current as a  
BOOST FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
180  
150  
120  
90  
100  
80  
60  
40  
20  
0
60  
30  
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright Vincotech  
9
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
INPUT BOOST  
Figure 25  
BOOST IGBT  
Figure 26  
BOOST IGBT  
Safe operating area as a function  
of drain-source voltage  
Gate voltage vs Gate charge  
I
C = f(VCE  
)
VGE = f(Qg)  
16  
103  
14  
12  
10  
8
120V  
102  
101  
100  
10uS  
400V  
1mS  
100uS  
10mS  
6
DC  
4
100mS  
2
0
103  
0
100  
200  
300  
400  
500  
600  
VDS (V)  
101  
102  
100  
Qg (nC)  
At  
At  
IC  
=
D =  
Th =  
VGE  
75  
A
single pulse  
80  
ºC  
=
V
±15  
Tj =  
Tjmax  
ºC  
copyright Vincotech  
10  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
BOOST INV. DIODE  
Figure 1  
BOOST INV. DIODE  
Figure 2  
BOOST INV. DIODE  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
100  
80  
60  
40  
D = 0,5  
0,2  
0,1  
0,05  
20  
0,02  
0,01  
0,005  
0.000  
Tj = Tjmax-25°C  
Tj = 25°C  
0
10-2  
t p (s)  
0
0,5  
1
1,5  
2
2,5  
3
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1012  
At  
tp =  
At  
tp / T  
250  
μs  
D =  
RthJH  
=
1,800  
K/W  
R (C/W)  
Tau (s)  
0,03771 8,99E+00  
0,1799  
0,599  
8,31E-01  
1,28E-01  
2,78E-02  
5,76E-03  
4,67E-04  
0,4734  
0,3096  
0,2008  
Figure 3  
Power dissipation as a  
BOOST INV. DIODE  
Figure 4  
Forward current as a  
BOOST INV. DIODE  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
T h  
(
o C)  
200  
0
50  
100  
150  
T h  
(
o C)  
200  
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright Vincotech  
11  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Figure 2  
Typical NTC resistance values  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
1
1
NTC-typical temperature characteristic  
B25/100  
24000  
R(T) = R25 e  
[]  
T
T25  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T ( ° C)  
copyright Vincotech  
12  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Switching Definitions Boost IGBT  
General conditions  
Tj  
=
=
=
150 °C  
8 Ω  
Rgon  
Rgoff  
8 Ω  
Figure 1  
BOOST IGBT  
Figure 2  
BOOST IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
250  
150  
%
%
IC  
200  
150  
100  
50  
120  
tdoff  
VCE  
VGE 90%  
90  
VCE 90%  
IC  
VCE  
60  
30  
VGE  
tdon  
tEoff  
V CE  
3%  
VGE 10%  
VGE  
Ic 10%  
tEon  
0
0
IC 1%  
-30  
-50  
-0,3  
-0,15  
0
0,15  
0,3  
0,45  
0,6  
0,75  
time (us)  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
15  
V
-15  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
V
300  
74  
V
300  
74  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,23  
0,61  
μs  
μs  
0,15  
0,30  
μs  
μs  
Figure 3  
BOOST IGBT  
Figure 4  
BOOST IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
250  
fitted  
VCE  
%
%
Ic  
IC  
100  
200  
IC 90%  
75  
150  
IC 60%  
VCE  
50  
100  
IC 90%  
IC 40%  
tr  
25  
50  
IC 10%  
IC 10%  
0
0
tf  
-25  
-50  
0,05  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time(us)  
time (us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
300  
V
300  
74  
V
74  
A
A
0,11  
μs  
0,02  
μs  
copyright Vincotech  
13  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Switching Definitions Boost IGBT  
Figure 5  
BOOST IGBT  
Figure 6  
BOOST IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
150  
%
IC  
%
Poff  
1%  
Eoff  
100  
125  
Pon  
Eon  
80  
100  
75  
60  
40  
50  
20  
25  
VGE90%  
VCE3%  
V GE10%  
0
0
tEon  
tEoff  
-20  
-25  
-0,15  
0
0,15  
0,3  
0,45  
0,6  
0,75  
time (us)  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
22,30  
2,41  
0,61  
kW  
mJ  
μs  
22,30  
1,50  
0,30  
kW  
mJ  
μs  
tEoff  
=
tEon =  
Figure 7  
BOOST IGBT  
Figure 8  
BOOST FWD  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
%
15  
10  
5
Id  
100  
trr  
50  
Vd  
0
0
IRRM 10%  
fitted  
-5  
-50  
-10  
-15  
-20  
-100  
IRRM 90%  
IRRM 100%  
-150  
-200  
0
200  
400  
600  
800  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(us)  
Qg (nC)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
15  
V
300  
V
V
74  
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
300  
74  
V
-86  
0,15  
A
trr  
=
A
μs  
794,04  
nC  
copyright Vincotech  
14  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Switching Definitions Boost IGBT  
Figure 9  
BOOST FWD  
Figure 10  
BOOST FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
125  
%
%
Id  
Erec  
100  
100  
75  
50  
25  
0
tQrr  
50  
tErec  
Qrr  
0
-50  
-100  
-150  
Prec  
-25  
3
3,15  
3,3  
3,45  
3,6  
3,75  
3,9  
3
3,15  
3,3  
3,45  
3,6  
3,75  
3,9  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
74  
A
22,30  
1,33  
0,55  
kW  
mJ  
μs  
Qrr (100%) =  
6,19  
0,55  
μC  
μs  
tQrr  
=
tErec =  
copyright Vincotech  
15  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
P916L33  
in packaging barcode as  
Standard in flow0 12mm housing  
10-FZ06NBA075SA-P916L33  
P916L33  
Outline  
Pinout  
copyright Vincotech  
16  
Revision: 8  
10-FZ06NBA075SA-P916L33  
datasheet  
PRODUCT STATUS DEFINITIONS  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice. The data contained is exclusively  
intended for technically trained staff.  
Target  
Formative or In Design  
First Production  
This datasheet contains preliminary data, and  
supplementary data may be published at a later date.  
Vincotech reserves the right to make changes at any time  
without notice in order to improve design. The data  
contained is exclusively intended for technically trained  
staff.  
Preliminary  
This datasheet contains final specifications. Vincotech  
reserves the right to make changes at any time without  
notice in order to improve design. The data contained is  
exclusively intended for technically trained staff.  
Final  
Full Production  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
17  
Revision: 8  

相关型号:

10-FZ06NIA030SA-P924F33

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH
VINCOTECH
VINCOTECH

10-FZ06NMA080SH-M269F

Mixed voltage component topology
VINCOTECH

10-FZ06NRA045FH01

reactive power capability
VINCOTECH

10-FZ06NRA045FH01-P965F10

Neutral point clamped inverter
VINCOTECH

10-FZ06PPA030SJ-LS54E08

5us short circuit withstand time;High speed switching;Low EMI;Short tail current
VINCOTECH

10-FZ071SA050SM02-L524L18

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ071SA075S501-L525L58

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ071SA075SM02-L525L18

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ071SA100SM02-L526L18

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ073BA030SM02-M575L38

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH