RF1K4915796 [ETC]

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 6.3A I(D) | SO ; 晶体管| MOSFET | N沟道| 30V V( BR ) DSS | 6.3AI ( D) | SO\n
RF1K4915796
型号: RF1K4915796
厂家: ETC    ETC
描述:

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 6.3A I(D) | SO
晶体管| MOSFET | N沟道| 30V V( BR ) DSS | 6.3AI ( D) | SO\n

晶体 晶体管 开关 光电二极管
文件: 总8页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49157  
Data Sheet  
January 2002  
6.3A, 30V, 0.030 Ohm, Single N-Channel  
LittleFET™ Power MOSFET  
Features  
• 6.3A, 30V  
• r = 0.030Ω  
This Single N-Channel power MOSFET is manufactured  
using an advanced MegaFET process. This process, which  
uses feature sizes approaching those of LSI integrated  
circuits, gives optimum utilization of silicon, resulting in  
outstanding performance. It was designed for use in  
applications such as switching regulators, switching  
convertors, motor drivers, relay drivers, and low voltage bus  
switches. This device can be operated directly from  
integrated circuits.  
DS(ON)  
Temperature Compensating PSPICE™ Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49157.  
Symbol  
Ordering Information  
NC (1)  
DRAIN (8)  
DRAIN (7)  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49157  
RF1K49157  
MS-012AA  
SOURCE (2)  
NOTE: When ordering, use the entire part number. For ordering in tape  
and reel, add the suffix 96 to the part number, i.e., RF1K4915796.  
SOURCE (3)  
GATE (4)  
DRAIN (6)  
DRAIN (5)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
o
Absolute Maximum Ratings  
T = 25 C Unless Otherwise Specified  
A
RF1K49157  
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
30  
30  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Pulse width = 1s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
6.3  
A
D
Pulsed (Figure 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Refer to Peak Current Curve  
Refer to UIS Curve  
DM  
Pulsed Avalanche Rating (Figure 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation  
o
T
= 25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
2
W
A
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.016  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, (Figure 12)  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate Threshold Voltage  
I
30  
1
-
-
-
-
DSS  
D
GS  
V
V
= V , I = 250µA, (Figure 11)  
3
V
GS(TH)  
GS  
DS D  
o
Zero Gate Voltage Drain Current  
I
V
V
= 30V,  
= 0V  
T
T
= 25 C  
-
1
µA  
µA  
nA  
DSS  
DS  
GS  
A
o
= 150 C  
-
-
50  
A
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
= ±20V  
-
-
±100  
GSS  
GS  
r
I
= 6.3A  
(Figures 9, 10)  
V
= 10V  
-
-
0.030  
DS(ON)  
D
GS  
GS  
V
= 4.5V  
-
-
0.060  
Turn-On Time  
t
V
= 15V, I 6.3A,  
-
-
85  
ns  
ON  
DD  
D
R
R
= 2.38, V = 10V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
22  
43  
125  
85  
-
-
ns  
d(ON)  
= 25Ω  
GS  
t
-
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
265  
88  
48  
3.5  
-
ns  
OFF  
Total Gate Charge  
Gate Charge at 10V  
Threshold Gate Charge  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Q
V
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V = 24V,  
DD  
-
70  
38  
2.8  
1575  
700  
200  
-
nC  
nC  
nC  
pF  
pF  
pF  
g(TOT)  
GS  
GS  
GS  
DS  
I
= 6.3A,  
D
Q
-
g(10)  
g(TH)  
R
= 3.81Ω  
L
(Figure 14)  
Q
-
C
= 25V, V  
GS  
= 0V,  
-
ISS  
OSS  
RSS  
f = 1MHz  
(Figure 13)  
C
C
-
-
-
-
o
Thermal Resistance Junction-to-Ambient  
R
Pulse width = 1s  
Device mounted on FR-4 material  
-
62.5  
C/W  
JA  
θ
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
60  
UNITS  
V
V
I
I
= 6.3A  
-
-
-
-
SD  
SD  
t
= 6.3A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
Typical Performance Curves  
1.2  
1.0  
0.8  
7
6
5
4
3
2
0.6  
0.4  
0.2  
0
1
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
1
0.5  
P
DM  
0.2  
0.1  
0.1  
t
1
t
2
0.05  
0.02  
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
x R  
+ T  
JA A  
J
DM  
2
JA  
θ
θ
0.01  
-3  
-2  
10  
-1  
0
1
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
100  
10  
300  
o
T
= MAX RATED, T = 25 C  
A
V
= 20V  
= 10V  
o
J
GS  
T
= 25 C  
A
V
GS  
100  
10  
1
5ms  
10ms  
THERMAL IMPEDANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
1
100ms  
FOR TEMPERATURES  
o
0.1  
0.01  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
1s  
OPERATION IN THIS  
AREA MAY BE  
150 - T  
125  
V
= 30V  
A
I = I  
DSS(MAX)  
DC  
25  
LIMITED BY r  
DS(ON)  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
0.1  
1
10  
100  
10  
10  
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
Typical Performance Curves (Continued)  
50  
If R = 0  
50  
40  
t
= (L)(I )/(1.3*RATED BV  
DSS  
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
PULSE DURATION = 80µs  
V
= 20V  
= 10V  
= 7V  
GS  
DUTY CYCLE = 0.5% MAX  
V
V
GS  
t
- V ) +1]  
DD  
o
AV  
AS DSS  
T
= 25 C  
A
GS  
V
= 5V  
GS  
o
10  
STARTING T = 25 C  
J
30  
20  
10  
0
V
= 4V  
GS  
o
STARTING T = 150 C  
J
1
0.1  
1
10  
100  
0
1
2
3
4
5
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 7. SATURATION CHARACTERISTICS  
50  
40  
250  
200  
o
o
25 C  
V
= 15V  
DD  
PULSE DURATION = 80µs  
-55 C  
PULSE DURATION = 80µs  
I
= 15A  
o
D
DUTY CYCLE = 0.5% MAX  
= 15V  
150 C  
DUTY CYCLE = 0.5% MAX  
V
DD  
I
= 6.3A  
= 3.5A  
= 1.75A  
D
I
D
I
D
30  
20  
150  
100  
50  
10  
0
0
8
6
10  
2
4
0
1.5  
3.0  
4.5  
6.0  
7.5  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
2.0  
1.5  
1.0  
2.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
V
= 10V, I = 6.3A  
GS  
D
1.5  
1.0  
0.5  
0
0.5  
0
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
Typical Performance Curves (Continued)  
2.0  
2500  
V
= 0V, f = 1MHz  
I
= 250µA  
GS  
ISS  
D
C
C
C
= C  
+ C  
GS  
GD  
= C  
= C  
RSS  
OSS  
GD  
DS  
2000  
1500  
1000  
+ C  
GD  
1.5  
C
ISS  
1.0  
0.5  
0
C
C
OSS  
RSS  
500  
0
-80  
-40  
0
40  
80  
120  
160  
0
5
V
10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
15  
20  
25  
o
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10.0  
30  
22.5  
7.5  
V
= BV  
DSS  
DD  
R
= 4.76Ω  
L
I
= 0.8mA  
G(REF)  
15  
7.5  
0
5.0  
V
= 10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
2.5  
0
V
V
V
V
= BV  
DD  
DD  
DD  
DD  
DSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
G(REF)  
G(REF)  
t, TIME (µs)  
20---------------------  
80---------------------  
I
I
G(ACT)  
G(ACT)  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
V
DS  
90%  
90%  
R
L
+
10%  
10%  
0
0
V
DD  
R
G
-
90%  
50%  
DUT  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
V
DS  
V
Q
DD  
g(TOT)  
R
L
V
DS  
V
= 20V  
GS  
Q
g(10)  
V
GS  
+
-
V
= 10V  
V
V
GS  
DD  
GS  
V
= 2V  
GS  
DUT  
0
I
G(REF)  
Q
g(TH)  
I
G(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORM  
Soldering Precautions  
o
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which the  
devices are subjected.  
3. Themaximumtemperaturegradientshouldbelessthan5 C  
per second when changing from preheating to soldering.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced  
cooling will increase the temperature gradient and may  
result in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. The deltatemperature between the preheatandsoldering  
o
should always be less than 100 C. Failure to preheat the  
device can result in excessive thermal stress which can  
damage the device.  
7. During cooling, mechanical stress or shock should be  
avoided.  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
RF1K49157  
PSPICE Electrical Model  
SUBCKT RF1K49157 2 1 3  
;rev 3/14/95  
CA 12 8 1.834e-9  
CB 15 14 1.72e-9  
CIN 6 8 1.416e-9  
LDRAIN  
DPLCAP  
5
DRAIN  
2
DBODY 7 5 DBDMOD  
10  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RLDRAIN  
DBREAK  
EBREAK 11 7 17 18 34.89  
EDS 14 8 5 8 1  
RDRAIN  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRESH 6 21 19 8 1  
EZTEMPCO 20 6 18 22 1  
-
11  
6
8
+
-
DBODY  
ESG  
16  
EVTHRESH  
EBREAK  
MOS2  
17  
18  
+
+
-
19  
8
LGATE  
EZTEMPCO  
21  
GATE  
1
IT 8 17 1  
9
20  
6
+
-
18  
22  
MOS1  
RGATE  
LDRAIN 2 5 1.0e-9  
LGATE 1 9 1.04e-9  
RLGATE  
CIN  
RIN  
LSOURCE  
LSOURCE 3 7 0.237e-9  
RSOURCE  
SOURCE  
3
8
7
MOS1 16 6 8 8 MSTRONG M = 0.99  
MOS2 16 21 8 8 MWEAK M = 0.01  
RLSOURCE  
RBREAK  
S1A  
12  
S2A  
15  
13 14  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 5 16 RDRAINMOD 4.39e-3  
RGATE 9 20 1.53  
RIN 6 8 1e9  
RLDRAIN 2 5 1.0  
RLGATE 1 9 10.4  
RLSOURCE 3 7 0.237  
RSOURCE 8 7 RSOURCEMOD 4.44e-3  
RTHRESH 22 8 RTHRESMOD 1  
RZTEMPCO 18 19 RZTEMPCOMOD 1  
17  
18  
8
13  
S1B  
CA  
S2B  
13  
RZTEMPCO  
IT  
19  
-
CB  
+
+
6
14  
5
8
VBAT  
+
EDS  
EGS  
8
-
-
22  
RVTHRESH  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
.MODEL DBDMOD D (IS = 1.14e-12 RS = 6.01e-3 TRS1 = 1.05e-4 TRS2 = -2.46e-5 CJO = 2.62e-9 TT = 2.44e-8)  
.MODEL DBREAKMOD D (RS = 4.89e- 1TRS1 = 2.11e- 3TRS2 = -3.19e-6)  
.MODEL DPLCAPMOD D (CJO = 1.007e- 9IS = 1e-3 0N = 10)  
.MODEL MSTRONG NMOS (VTO = 2.567 KP = 33.21 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAK  
NMOS (VTO=2.0225 KP = 33.21 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL RBREAKMOD RES (TC1 = 9.59e- 4TC2 = -2.87e-7)  
.MODEL RDRAINMOD RES (TC1 = 8.08e-3 TC2 = 1.6e-5)  
.MODEL RSOURCEMOD RES (TC1=0 TC2=0)  
.MODEL RTHRESHMOD RES (TC1=-6.4e-4 TC2=-8.1e-6)  
.MODEL RZTEMPCOMOD RES (TC1 = -2.43e- 3TC2 = 1.57e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.47 VOFF= -4.47)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.47 VOFF= -6.47)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.3 VOFF= 1.7)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.7 VOFF= -3.3)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.  
©2002 Fairchild Semiconductor Corporation  
RF1K49157 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

RF1K49211

7A, 12V, 0.020 Ohm, Logic Level, Single N-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K49211

7A, 12V, 0.020 Ohm, Logic Level, Single N-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K49211

7A, 12V, 0.02ohm, N-CHANNEL, Si, POWER, MOSFET, MS-012AA
RENESAS

RF1K4921196

TRANSISTOR | MOSFET | N-CHANNEL | 12V V(BR)DSS | 7A I(D) | SO
FAIRCHILD

RF1K49221

2.5A, 60V, 0.130 Ohm, ESD Rated, Dual N-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922196

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 60V V(BR)DSS | 2.5A I(D) | SO
ETC

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922396

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K4922396

2.5A, 30V, 0.36ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, MS-012AA
RENESAS

RF1K49224

3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922496

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
ETC