STPS1L20 [ETC]

LOW DROP POWER SCHOTTKY RECTIFIER ; 电力低压降肖特基整流器
STPS1L20
型号: STPS1L20
厂家: ETC    ETC
描述:

LOW DROP POWER SCHOTTKY RECTIFIER
电力低压降肖特基整流器

文件: 总5页 (文件大小:50K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STPS1L20M  
®
LOW DROP POWER SCHOTTKY RECTIFIER  
MAIN PRODUCT CHARACTERISTICS  
IF(AV)  
VRRM  
1 A  
20 V  
Tj (max)  
VF (max)  
150°C  
0.37 V  
FEATURES AND BENEFITS  
A
VERY SMALL CONDUCTION LOSSES  
NEGLIGIBLE SWITCHING LOSSES  
EXTREMELY FAST SWITCHING  
C
LOW FORWARD VOLTAGE DROP FOR  
HIGHER  
BATTERY LIFE  
LOW THERMAL RESISTANCE  
AVALANCHE CAPABILITY SPECIFIED  
EFFICIENCY  
&
EXTENDED  
ST Mite  
(DO-216AA)  
DESCRIPTION  
Single Schottky rectifier suited for switch mode  
power supplies and high frequency DC to DC  
converters.  
Packaged in ST Mite, this device is intended for  
use in low voltage, high frequency inverters, free  
wheeling and polarity protection applications. Due  
to the small size of the package this device fits  
battery powered equipment (cellular, notebook,  
PDA’s, printers) as well chargers and PCMCIA  
cards.  
ABSOLUTE RATINGS (limiting values)  
Symbol  
Parameter  
Value  
Unit  
V
VRRM Repetitive peak reverse voltage  
IF(RMS) RMS forward current  
20  
2
A
IF(AV)  
IFSM  
PARM Repetitive peak avalanche power  
Average forward current  
Tc = 140°C δ = 0.5  
1
A
Surge non repetitive forward current 10 ms sinusoidal  
tp = 1µs Tj = 25°C  
50  
1400  
A
W
Tstg  
Tj  
Storage temperature range  
Maximum operating junction temperature*  
- 65 to + 150  
150  
°C  
°C  
V/µs  
dV/dt Critical rate of rise of reverse voltage (rated Vr, Tj = 25°C)  
10000  
dPtot  
dTj  
1
* :  
<
thermal runaway condition for a diode on its own heatsink  
Rth(j a)  
July 2003 - Ed : 2A  
1/5  
STPS1L20M  
THERMAL RESISTANCE  
Symbol  
Parameter  
Value  
20  
Unit  
°C/W  
°C/W  
Rth (j-c)  
*
Junction to case  
Rth (j-a)  
*
Junction to ambient  
250  
* Monted with minimum recommended pad size, PC board FR4.  
STATIC ELECTRICAL CHARACTERISTICS  
Value  
Typ.  
0.015  
0.9  
Symbol  
Parameter  
Tests conditions  
Unit  
Min.  
Max.  
IR *  
Reverse leakage current Tj = 25°C  
VR = VRRM  
VR = 10 V  
VR = 5 V  
IF = 1A  
0.075  
4.5  
mA  
Tj = 85°C  
Tj = 25°C  
Tj = 85°C  
Tj = 25°C  
Tj = 85°C  
0.005  
0.45  
0.003  
0.3  
0.035  
2.5  
0.025  
1.6  
VF *  
Forward voltage drop  
Tj = 25°C  
Tj = 85°C  
Tj = 25°C  
Tj= 85°C  
0.38  
0.32  
0.46  
0.42  
0.43  
0.37  
0.53  
0.49  
V
IF = 3 A  
Pulse test : * tp 380 µs, δ ≤ 2%  
To evaluate the conduction losses use the following equation :  
2
P = 0.34 x IF(AV) + 0.07 IF (RMS)  
2/5  
STPS1L20M  
Fig. 2: Average forward current versus ambient  
temperature (δ = 0.5)  
Fig. 1: Conduction losses versus average current.  
IF(AV)(A)  
PF(AV)(W)  
0.50  
1.1  
Rth(j-a)=Rth(j-a)  
δ = 0.2  
δ = 0.5  
δ = 0.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
δ = 0.05  
δ = 1  
Rth(j-a)=270°C/W  
0.5  
0.4  
0.3  
0.2  
T
0.1  
Tamb(°C)  
IF(AV)(A)  
tp  
=tp/T  
δ
0.0  
0
25  
50  
75  
100  
125  
150  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
Fig. 3: Normalized avalanche power derating ver-  
sus pulse duration.  
Fig. 4: Normalized avalanche power derating  
versus junction temperature.  
P
(t )  
p
(1µs)  
ARM  
P
ARM  
(t )  
p
(25°C)  
ARM  
P
ARM  
P
1
1.2  
1
0.1  
0.8  
0.6  
0.4  
0.2  
0
0.01  
T (°C)  
j
t (µs)  
p
0.001  
0
25  
50  
75  
100  
125  
150  
0.01  
0.1  
1
10  
100  
1000  
Fig. 5: Non repetitive surge peak forward current  
versus overload duration (maximum values).  
Fig. 6: Relative variation of thermal impedance  
junction to case versus pulse duration.  
IM(A)  
25  
Zth(j-c)/Rth(j-c)  
1.0  
0.9  
0.8  
0.7  
20  
15  
0.6  
δ = 0.5  
TC=25°C  
0.5  
0.4  
10  
5
TC=75°C  
0.3  
δ = 0.2  
T
TC=125°C  
0.2  
IM  
δ = 0.1  
0.1  
t(s)  
Single pulse  
t
tP(s)  
tp  
1.E-01  
=tp/T  
δ
δ=0.5  
0.0  
0
1.E-04  
1.E-03  
1.E-02  
1.E-03  
1.E-02  
1.E-01  
1.E+00  
3/5  
STPS1L20M  
Fig. 8: Reverse leakage current versus junction  
temperature (typical values).  
Fig. 7: Reverse leakage current versus reverse  
voltage applied (typical values).  
IR(mA)  
1.E+02  
IR(mA)  
1.E+02  
Tj=150°C  
VR=20V  
Tj=125°C  
1.E+01  
1.E+00  
1.E-01  
1.E-02  
1.E+01  
Tj=100°C  
1.E+00  
Tj=75°C  
1.E-01  
Tj=50°C  
1.E-02  
Tj=25°C  
Tj(°C)  
75  
VR(V)  
10  
1.E-03  
1.E-03  
0
25  
50  
100  
125  
150  
0
2
4
6
8
12  
14  
16  
18  
20  
Fig. 10: Forward voltage drop versus forward cur-  
rent.  
Fig. 9: Junction capacitance versus reverse volt-  
age applied (typical values).  
IFM(A)  
2.0  
C(pF)  
1000  
F=1MHz  
1.8  
Vosc=30mV  
Tj=25°C  
Tj=85°C  
(Maximum values)  
1.6  
1.4  
1.2  
Tj=85°C  
(Typical values)  
100  
1.0  
0.8  
0.6  
0.4  
Tj=25°C  
(Maximum values)  
0.2  
VR(V)  
10  
VFM(V)  
10  
0.0  
1
100  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
Fig. 11: Thermal resistance junction to ambient  
versus copper surface under tab (epoxy printed  
board FR4, Cu = 35µm, typical values).  
Rth(j-a)(°C/W)  
250  
200  
150  
100  
50  
S(mm²)  
100  
0
0
20  
40  
60  
80  
120  
140  
160  
180  
200  
4/5  
STPS1L20M  
PACKAGE MECHANICAL DATA  
ST Mite  
DIMENSIONS  
Millimeters Inches  
REF.  
Min. Typ. Max. Min. Typ. Max.  
L3  
D
A
A1  
b
0.85 1.00 1.15 0.033 0.039 0.045  
0.10  
0.004  
0.025  
0.039  
0.010  
b2  
b
0.40  
0.70  
0.10  
0.65 0.016  
1.00 0.027  
0.25 0.004  
b2  
c
H
D
1.75 1.90 2.05 0.069 0.075 0.081  
1.75 1.90 2.05 0.069 0.075 0.081  
3.60 3.75 3.90 0.142 0.148 0.154  
0.50 0.63 0.80 0.047 0.025 0.031  
1.20 1.35 1.50 0.047 0.053 0.059  
L2  
E
E
L
R
H
C
A
L
L2  
L3  
R
A1  
0° to 6°  
R1  
0.50 ref (Typ.)  
0.07  
0.019 ref (Typ.)  
0.003  
0.003  
R1 0.07  
Note:  
The anode is connected to the longer tab  
The cathode is connected to the shorter tab (heatsink)  
FOOTPRINT (dimensions in mm)  
2.67  
0.762  
2.54  
1.27  
0.635  
Type  
Marking  
Package  
ST Mite  
Weight  
Base qty  
12000  
Delivery mode  
STPS1L20M  
1L2  
15.5 mg  
Tape & reel  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of  
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore  
Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
5/5  

相关型号:

STPS1L20M

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L20MF

Low drop power Schottky rectifier in flat package
STMICROELECTR

STPS1L20M_05

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30A

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30AFN

Rectifier Diode
STMICROELECTR

STPS1L30AU

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30M

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30MF

Low drop power Schottky rectifier in flat package
STMICROELECTR

STPS1L30M_04

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30U

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30U

SCHOTTKY RECTIFIER
INFINEON