ICS8402010I [IDT]

FEMTOCLOCK™ CRYSTAL-TOLVDS/LVCMOS CLOCK GENERATOR; FEMTOCLOCK ™ CRYSTAL - TOLVDS / LVCMOS时钟发生器
ICS8402010I
型号: ICS8402010I
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FEMTOCLOCK™ CRYSTAL-TOLVDS/LVCMOS CLOCK GENERATOR
FEMTOCLOCK ™ CRYSTAL - TOLVDS / LVCMOS时钟发生器

时钟发生器
文件: 总16页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEMTOCLOCK™ CRYSTAL-TO-  
LVDS/LVCMOS CLOCK GENERATOR  
ICS8402010I  
GENERAL DESCRIPTION  
FEATURES  
ICS8402010I is a low phase noise Clock Generator  
Three banks of outputs:  
ICS  
HiPerClockS™  
and is a member of the HiperClockSfamily of high  
performance clock solutions from IDT. The device  
Bank A/B: three single-ended LVCMOS outputs at 16.66MHz  
Bank C: three differential LVDS outputs at 62.5MHz  
One single-ended reference clock output at 25MHz  
provides three banks of outputs and a reference  
clock. Each bank can be independently enabled by  
using output enable pins. A 25MHz, 18pF parallel resonant  
crystal is used to generate the 16.66MHz, 62.5MHz and 25MHz  
frequencies. The typical RMS phase jitter for this device is less  
than 1ps.  
Crystal input frequency: 25MHz  
Maximum output frequency: 62.5MHz  
RMS phase jitter @ 62.5MHz, using a 25MHz crystal,  
Integration Range (1.875MHz - 20MHz): 0.375ps (typical)  
Full 3.3V operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS6)  
packages  
BLOCK DIAGRAM  
3
Pullup  
OE[2:0]  
LVCMOS - 16.66MHz  
QA0  
QA1  
QA2  
÷30  
÷30  
PIN ASSIGNMENT  
25MHz  
XTAL_IN  
LVCMOS - 16.66MHz  
QB0  
OSC  
Phase  
Detector  
VCO  
500MHz  
XTAL_OUT  
QB1  
QB2  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
VDDO_C  
VDDO_REF  
REF_OUT  
GND  
1
2
3
4
5
6
7
8
nQC2  
QC2  
÷20  
LVDS 62.5MHz  
QC0  
ICS8402010I  
32-Lead VFQFN  
5mm x 5mm x 0.925mm  
package body  
nQC1  
QC1  
nQC0  
QC1  
GND  
QA0  
÷8  
nQC0  
QA1  
K Package  
Top View  
nQC1  
QC2  
QC0  
QA2  
VDDO_C  
VDDO_A  
nQC2  
9
10 11 12 13 14 15 16  
LVCMOS - 25MHz  
REF_OUT  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
1
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VDDO_REF  
Power  
Output power supply pin for REF_OUT output.  
Single-ended reference clock output. LVCMOS/LVTTL interface  
levels.  
2
REF_OUT  
GND  
Output  
3, 4, 13,  
16, 25, 32  
Power  
Power supply ground.  
5, 6, 7  
QA0, QA1, QA2  
VDDO_A  
Output  
Power  
Power  
Output  
Single-ended Bank A clock outputs. LVCMOS/LVTTL interface levels.  
Output power supply pin for Bank A LVCMOS outputs.  
8
9
VDDO_B  
Output power supply pin for Bank B LVCMOS outputs.  
10, 11, 12 QB0, QB1, QB2  
Single-ended Bank B clock outputs. LVCMOS/LVTTL interface levels.  
Master reset, resets the internal dividers. During reset, LVCMOS  
outputs are pulled LOW and LVDS outputs are pulled LOW and  
HIGH, (QCx pulled LOW, nQCx pulled HIGH).  
14  
MR  
Input  
Pulldown  
LVCMOS/LVTTL interface levels.  
15  
VDD  
Power  
Power  
Output  
Output  
Output  
Power  
Input  
Core supply pin.  
17, 24  
18, 19  
20, 21  
22, 23  
26  
VDDO_C  
Output power supply pin for Bank C LVDS outputs.  
Differential Bank C clock outputs. LVDS interface levels.  
Differential Bank C clock outputs. LVDS interface levels.  
Differential Bank C clock outputs. LVDS interface levels.  
Analog supply pin.  
QC0, nQC0  
QC1, nQC1  
QC2, nQC2  
VDDA  
27, 28, 29 OE0, OE1, OE2  
Pullup  
Output enable pins. See Table 3. LVCMOS/LVTTL interface levels.  
30,  
31  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_OUT is the output.  
XTAL_IN is the input.  
Input  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
QA[0:2],  
QB[0:2],  
REF_OUT  
Power Dissipation  
Capacitance (per output)  
VDD, VDDO_A = VDDO_B  
VDDO_REF = 3.465V  
=
CPD  
15  
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
QA[0:2],  
QB[0:2],  
REF_OUT  
ROUT Output Impedance  
20  
Ω
TABLE 3. OE FUNCTION TABLE  
Inputs  
OE2  
OE1  
OE0  
Output States  
X
X
0
QA0, QB0, QC0 disabled  
QA0, QB0, QC0 enabled  
QA1, QB1, QC1 disabled  
QA1, QB1, QC1 enabled  
QA2, QB2, QC2 disabled  
QA2, QB2, QC2 enabled  
X
X
X
0
X
0
1
X
X
X
X
1
X
X
1
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
2
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. These  
ratings are stress specifications only. Functional operation of  
product at these conditions or any conditions beyond those listed  
in the DC Characteristics or AC Characteristics is not implied.  
Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
Supply Voltage, VDD  
4.6V  
Inputs, VI  
-0.5V to VDD + 0.5V  
-0.5V to VDDO_A, _B + 0.5V  
Outputs, IO (LVCMOS)  
Outputs, IO (LVDS, VDDO_C  
)
Continuous Current  
Surge Current  
10mA  
15mA  
Operating Temperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG  
-65°C to 150°C  
Package Thermal Impedance, θJA  
Junction-to-Ambient  
37.0°C/W (0 mps)  
Package Thermal Impedance, θJB  
Junction-to-Board  
0.5°C/W  
Package Thermal Impedance, θJC  
Junction-to-Case  
29.6°C/W  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDO_A = VDDO_B = VDDO_REF = VDDO_C = 3.3V 5ꢀ,TA = -40°C TO 85°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
3.465  
VDD  
V
V
VDDA  
VDD – 0.15  
3.3  
VDDO_A,  
VDDO_B,  
VDDO_C,  
VDDO_REF  
Output Supply Voltage  
3.135  
3.3V  
3.465  
V
IDD  
Power Supply Current  
Analog Supply Current  
25  
15  
mA  
mA  
IDDA  
I
DDO_A + IDDO_B  
+
Output Supply Current  
30  
mA  
IDDO_C + IDDO_REF  
TABLE 3B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = VDDO_A = VDDO_B = VDDO_REF = 3.3V 5ꢀ,TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
V
Input Low Voltage  
-0.3  
0.8  
5
V
OE0, OE1, OE2  
MR  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
IIL  
150  
OE0, OE1, OE2  
MR  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
-150  
-5  
Input  
Low Current  
Output  
REF_OUT,  
VOH  
VOL  
2.6  
V
V
VDDO_X = 3.465V  
VDDO_X = 3.465V  
High Voltage; NOTE 1 QA[0:2], QB[0:2]  
Output REF_OUT,  
Low Voltage; NOTE 1 QA[0:2], QB[0:2]  
0.5  
NOTE: VDDO_X denotes VDDO_A, VDDO_B and VDDO_REF.  
NOTE 1: Outputs terminated with 50Ω to VDDO_A, _B, _REF/2. See Parameter Measurement Information,  
Output Load Test Circuit diagram.  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
3
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
TABLE 3C. LVDS DC CHARACTERISTICS, VDD = VDDO_C = 3.3V 5ꢀ,TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VOD  
Differential Output Voltage  
300  
450  
550  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.325  
1.450  
1.575  
50  
Δ VOS  
VOS Magnitude Change  
mV  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Typical Maximum Units  
Fundamental  
25  
Mode of Oscillation  
Frequency  
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
50  
7
pF  
1
mW  
NOTE: Characterized using an 18pF parallel resonant crystal.  
TABLE 5. AC CHARACTERISTICS, VDD = VDDO_A = VDDO_B = VDDO_REF = VDDO_C = 3.3V 5ꢀ,TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
QC[0:2]/  
nQC[0:2]  
REF_OUT  
QA[0:2],  
QB[0:2]  
QA[0:2],  
QB[0:2]  
QC[0:2]/  
nQC[0:2]  
62.5  
25  
MHz  
MHz  
MHz  
fOUT  
Output Frequency  
16.66  
Output Skew;  
NOTE 1, 2  
tsk(o)  
tsk(b)  
125  
60  
ps  
ps  
Bank Skew;  
NOTE 2, 3  
QA[0:2]  
QB[0:2]  
100  
125  
ps  
ps  
RMS Phase Jitter  
(Random); NOTE 4  
QC[0:2]/  
nQC[0:2]  
QC[0:2]/  
nQC[0:2]  
QA[0:2],  
QB[0:2]  
QC[0:2]/  
nQC[0:2]  
QA[0:2],  
QB[0:2]  
62.5MHz, Integration Range:  
1.875MHz – 20MHz  
tjit(Ø)  
tR / tF  
0.375  
ps  
ps  
ps  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
165  
450  
47  
450  
1000  
53  
Output  
Rise/Fall Time  
odc  
Output Duty Cycle  
45  
55  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VDDO_X/2.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.  
NOTE 4: Please refer to the Phase Noise Plot.  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
4
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
TYPICAL PHASE NOISE AT 62.5MHZ (LVDS)  
62.5MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.375ps (typical)  
Ethernet Filter  
Raw Phase Noise Data  
Phase Noise Result by adding  
Ethernet Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
5
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
1.65V 5ꢀ  
1.65V 5ꢀ  
,
VDD  
SCOPE  
VDDO_A,  
VDDO_B,  
VDDO_REF  
SCOPE  
Qx  
,
VDDA  
VDD  
VDDO_C  
Qx  
3.3V 5ꢀ  
POWER SUPPLY  
LVCMOS  
+
Float GND –  
LVDS  
VDDA  
GND  
nQx  
-1.65V 5ꢀ  
3.3V LVDS OUTPUT LOAD AC TEST CIRCUIT  
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
Phase Noise Plot  
VDDO  
Qx  
Qy  
2
Phase Noise Mask  
VDDO  
2
tsk(o)  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS PHASE JITTER  
LVCMOS OUTPUT SKEW  
nQCx  
QCx  
VDDO  
2
QXx  
nQCy  
QCy  
VDDO  
2
QXy  
tsk(b)  
tsk(b)  
Where X = A or B  
LVDS BANK SKEW  
LVCMOS BANK SKEW  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
6
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
VDDO  
2
nQC[0:2]  
QC[0:2]  
QA[0:2], QB[0:2]  
tPW  
tPW  
tPERIOD  
tPERIOD  
tPW  
tPW  
odc =  
x 100ꢀ  
x 100ꢀ  
odc =  
tPERIOD  
tPERIOD  
LVDS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
nQC[0:2]  
80ꢀ  
80ꢀ  
80ꢀ  
80ꢀ  
tR  
VOD  
QA[0:2], QB[0:2],  
REF_OUT  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
QC[0:2]  
tF  
tF  
tR  
VOS  
GND  
LVDS OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT RISE/FALL TIME  
VDDO  
VDDO  
out  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
VOS/Δ VOS  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
OFFSET VOLTAGE SETUP  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
7
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perfor-  
mance, power supply isolation is required. The ICS8402010I pro-  
vides separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VDD, VDDA and VDDO_X should  
be individually connected to the power supply plane through  
vias, and 0.01µF bypass capacitors should be used for each pin.  
Figure 1 illustrates this for a generic VCC pin and also shows that  
VDDA requires that an additional 10Ω resistor along with a 10µF  
bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS OUTPUTS  
LVCMOS CONTROL PINS  
All unused LVCMOS output can be left floating. There should be  
no trace attached.  
Control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
LVDS OUTPUTS  
All unused LVDS outputs should be terminated with 100Ω resistor  
between the differential pair.  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
8
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
CRYSTAL INPUT INTERFACE  
The ICS8402010I has been characterized with 18pF parallel  
resonant crystals. The capacitor values shown in Figure 2 below  
were determined using a 25MHz, 18pF parallel resonant crystal  
and were chosen to minimize the ppm error.  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
27p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
(Ro) plus the series resistance (Rs) equals the transmission  
line impedance. In addition, matched termination at the crystal  
input will attenuate the signal in half. This can be done in one  
of two ways. First, R1 and R2 in parallel should equal the  
transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω. This can also be accomplished by  
removing R1 and making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS  
signal through an AC couple capacitor. A general interface  
diagram is shown in Figure 3. The XTAL_OUT pin can be left  
floating. The input edge rate can be as slow as 10ns. For  
LVCMOS inputs, it is recommended that the amplitude be  
reduced from full swing to half swing in order to prevent signal  
interference with the power rail and to reduce noise. This  
configuration requires that the output impedance of the driver  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_I N  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
9
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 4. In a 100Ω  
differential transmission line environment, LVDS drivers  
require a matched load termination of 100Ω across near  
the receiver input. For a multiple LVDS outputs buffer, if only  
partial outputs are used, it is recommended to terminate the  
unused outputs.  
3.3V  
3.3V  
LVDS_Driv er  
+
R1  
100  
-
100 Ohm Differiential Transmission Line  
FIGURE 4. TYPICAL LVDS DRIVER TERMINATION  
VFQFN EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 5. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadfame Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”. The number of vias (i.e.heat pipes”)  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
FIGURE 5. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
10  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8402010I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8402010I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
DD  
Core and Output Power Dissipation  
Power (core, output) = V  
* (I + I  
+ I ) = 3.465V * (25mA + 30mA + 15mA) = 242.6mW  
DDO_X DDA  
DD_MAX  
DD  
LVCMOS Output Power Dissipation  
Output Impedance R Power Dissipation due to Loading 50Ω to V /2  
OUT  
DDO  
Output Current IOUT = VDDO_MAX / [2 * (50Ω + ROUT)] = 3.465V / [2 * (50Ω + 20Ω)] = 24.7mA  
Power Dissipation on the ROUT per LVCMOS output  
2
Power (ROUT) = ROUT * (IOUT  
)
= 20Ω * (24.7mA)2 = 12.25mW per output  
Total Power Dissipation on the ROUT  
Total Power (ROUT) = 12.25mW * 6 = 73.5mW  
Total Power Dissipation  
Total Power  
= Power (core, output) + Power Dissipation (ROUT  
= 242.6mW + 73.5mW  
)
= 316.1mW  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
12  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the  
TM  
reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θ
= Junction-to-Ambient Thermal Resistance  
JA  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used.  
JA  
Assuming no air flow and a multi-layer board, the appropriate value is 37°C/W per Table 6.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.316W * 37°C/W = 96.7°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board.  
TABLE 6. THERMAL RESISTANCE θ FOR 32-LEAD VFQFN, FORCED CONVECTION  
JA  
θ vs. Air Flow (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
13  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 32 LEAD VFQFN  
JA  
θ vs. Air Flow (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
TRANSISTOR COUNT  
The transistor count for ICS8402010I is: 7782  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
14  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
PACKAGE OUTLINE - K SUFFIX FOR 32 LEAD VFQFN  
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package.This draw-  
ing is not intended to convey the actual pin count or pin layout of  
this device.The pin count and pinout are shown on the front page.  
The package dimensions are in Table 8 below.  
TABLE 7. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS (VHHD -2/ -4)  
SYMBOL  
Minimum  
Maximum  
N
A
32  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
8
8
NE  
D, E  
D2, E2  
L
5.0 BASIC  
3.0  
3.3  
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
15  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
8402010AKI  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS402010AI  
ICS402010AI  
ICS02010AIL  
ICS02010AIL  
32 Lead VFQFN  
8402010AKIT  
32 Lead VFQFN  
1000 Tape & Reel  
Tray  
8402010AKILF  
8402010AKILFT  
32 Lead "Lead-Free" VFQFN  
32 Lead "Lead-Free" VFQFN  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSLVDS/LVCMOS CLOCK GENERATOR  
16  
ICS8402010AKI REV. A AUGUST 28, 2008  
ICS8402010I  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS CLOCK GENERATOR  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS8402015I

FemtoClock™ Crystal-to-LVDS/LVCMOS Frequency
IDT

ICS84021

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS84021AY

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS84021AYLF

Clock Generator, 260MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

ICS84021AYT

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS840245AGILF

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

ICS840245AGILFT

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

ICS840245AGIT

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, MO-153, TSSOP-16
IDT

ICS840245IAGILF

Clock Generator
IDT

ICS840245IAGILFT

Clock Generator
IDT

ICS84025

CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER WITH FANOUT BUFFER
ICSI

ICS84025DM

Clock Generator
IDT