IRF7475 [INFINEON]

HEXFET Power MOSFET Selection for Non-Isolated DC/DC Converters; HEXFET功率MOSFET选择的非隔离式DC / DC转换器
IRF7475
型号: IRF7475
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET Selection for Non-Isolated DC/DC Converters
HEXFET功率MOSFET选择的非隔离式DC / DC转换器

转换器
文件: 总10页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94531A  
IRF7475  
HEXFET® Power MOSFET  
Applications  
VDSS  
RDS(on) max  
Qg  
19nC  
l High Frequency Point-of-Load  
Synchronous Buck Converter for  
Applications in Networking &  
Computing Systems.  
15m @VGS = 4.5V  
12V  
A
A
D
1
2
3
4
8
S
S
S
G
Benefits  
7
D
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
6
D
5
D
SO-8  
Top View  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
12  
Units  
V
VDS  
V
Gate-to-Source Voltage  
12  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
11  
D
D
@ TA = 100°C  
7.0  
88  
A
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
2.5  
1.6  
W
D
D
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
RθJL  
RθJA  
–––  
50  
Notes  through ƒ are on page 10  
www.irf.com  
1
11/12/02  
IRF7475  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
12 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
V
V
DSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.014 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
0.6  
11.5  
20  
15  
50  
VGS = 4.5V, ID = 8.8A  
VGS = 2.8V, ID = 5.5A  
VDS = VGS, ID = 250µA  
m
VGS(th)  
Gate Threshold Voltage  
–––  
3.2  
–––  
–––  
–––  
–––  
–––  
13  
2.0  
V
VGS(th)  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
22  
––– mV/°C  
IDSS  
100  
250  
200  
-200  
–––  
19  
µA  
nA  
S
V
V
V
V
DS = 9.6V, VGS = 0V  
DS = 9.6V, VGS = 0V, TJ = 125°C  
GS = 12V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
GS = -12V  
gfs  
Qg  
VDS = 6.0V, ID = 8.8A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
2.6  
1.5  
3.9  
5.0  
5.4  
17  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 6.0V  
Qgs2  
Qgd  
nC  
VGS = 4.5V  
ID = 7.0A  
Qgodr  
Gate Charge Overdrive  
See Fig. 16  
Qsw  
Switch Charge (Qgs2 + Qgd)  
Qoss  
td(on)  
tr  
Output Charge  
nC VDS = 10V, VGS = 0V  
VDD = 6.0V, VGS = 4.5V  
ID = 8.8A  
Turn-On Delay Time  
Rise Time  
7.5  
33  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
13  
ns Clamped Inductive Load  
7.5  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1590 –––  
––– 1310 –––  
V
GS = 0V  
pF  
VDS = 6.0V  
–––  
260  
–––  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
180  
8.8  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
0.25  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
–––  
–––  
11  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
88  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
42  
1.3  
63  
66  
V
T = 25°C, I = 8.8A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 8.8A, VDD = 10V  
J F  
Qrr  
ton  
di/dt = 100A/µs  
44  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF7475  
100  
10  
1
100  
10  
1
V
V
GS  
GS  
TOP  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.8V  
2.25V  
TOP  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.8V  
2.25V  
BOTTOM 2.0V  
BOTTOM 2.0V  
2.0V  
2.0V  
20µs PULSE WIDTH  
TJ = 25°C  
20µs PULSE WIDTH  
TJ = 150°C  
0.1  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
V
, Drain-to-Source Voltage  
,
Drain-to-Source Voltage (V)  
(V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
100  
ID = 11A  
GS = 4.5V  
V
1.5  
1.0  
0.5  
0.0  
TJ = 150°C  
10  
TJ = 25°C  
VDS = 10V  
20µs PULSE WIDTH  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
1
2
3
4
5
TJ, Junction Temperature (°C)  
V
, Gate-to-Source Voltage  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7475  
10000  
6
5
4
3
2
1
0
VGS = 0V,  
f = 1 MHZ  
ID = 7.0A  
Ciss = Cgs + Cgd, Cds SHORTED  
Crss = Cgd  
VDS = 12V  
V
DS = 6.0V  
Coss = Cds + Cgd  
Ciss  
1000  
Coss  
Crss  
100  
1
10  
100  
0
5
10  
15  
20  
VDS, Drain-to-Source voltage (V)  
QG, Total Gate Charge (nC)  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
100  
10  
1
OPERATION IN THIS AREA  
LIMITED BY RDS(on)  
TJ = 150ºC  
10µsec  
1msec  
10msec  
TJ = 25ºC  
1
TC = 25ºC  
TJ = 150ºC  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
VDS, Drain-to-Source Voltage (V)  
VSD, Source-to-Drain Voltage (V)  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7475  
1.6  
1.4  
1.2  
1.0  
0.8  
12  
9
ID = 250µA  
6
3
0
25  
50  
75  
100  
125  
150  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
°
T , Case Temperature ( C)  
C
TJ, Temperature (°C)  
Fig 10. Threshold Voltage Vs. Temperature  
Fig 9. Maximum Drain Current Vs.  
Case Temperature  
100  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
P
2
DM  
0.02  
0.01  
t
1
t
2
Notes:  
1. Duty factor D = t / t  
SINGLE PULSE  
1
(THERMAL RESPONSE)  
2. Peak T =P  
J
x Z  
+ T  
thJA A  
DM  
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF7475  
500  
400  
300  
200  
100  
0
15V  
I
D
TOP  
3.9A  
7.0A  
BOTTOM 8.8A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
RD  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
VGS  
D.U.T.  
RG  
+VDD  
-
Current Regulator  
Same Type as D.U.T.  
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
50KΩ  
.2µF  
12V  
Fig 14a. Switching Time Test Circuit  
.3µF  
+
V
DS  
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
V
I
I
GS  
G
D
Current Sampling Resistors  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRF7475  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF7475  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF7475  
SO-8 Package Details  
SO-8 Part Marking  
www.irf.com  
9
IRF7475  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 4.7mH  
RG = 25, IAS = 8.8A.  
ƒ Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/02  
10  
www.irf.com  

相关型号:

IRF7475PBF

HEXFET Power MOSFET
INFINEON

IRF7476

Power MOSFET(Vdss=12V, Id=15A)
INFINEON

IRF7476PBF

HEXFET Power MOSFET ( VDSS = 12V , RDS(on) max = 8.0mヘ@VGS = 4.5V , ID = 15A )
INFINEON

IRF7476TRPBF

Small Signal Field-Effect Transistor, 15A I(D), 12V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, SOP-8
INFINEON

IRF7477

SMPS MOSFET
INFINEON

IRF7477PBF

HEXFET Power MOSFET
INFINEON

IRF7478

Power MOSFET(Vdss=60V)
INFINEON

IRF7478PBF

SMPS MOSFET
INFINEON

IRF7478PBF-1

Small Signal Field-Effect Transistor
INFINEON

IRF7478QPBF

SMPS MOSFET
INFINEON

IRF7478QTRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF7478TR

Power Field-Effect Transistor, 7A I(D), 60V, 0.026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON