SP000219536 [INFINEON]

Smart High-Side Power Switch; 智能高侧电源开关
SP000219536
型号: SP000219536
厂家: Infineon    Infineon
描述:

Smart High-Side Power Switch
智能高侧电源开关

开关 电源开关
文件: 总19页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ITS 4141N  
Smart High-Side Power Switch  
for Industrial Applications  
1 Channel: 1 x 200mΩ  
Features  
Product Summary  
Overvoltage protection  
Operating voltage  
On-state resistance  
Operating temperature  
Short circuit protection  
Current limitation  
Overload protection  
Overvoltage protection  
(including load dump)  
V
V
R
47  
12...45  
200  
V
V
mΩ  
bb(AZ)  
bb(on)  
ON  
T
-30...+85 °C  
a
Undervoltage shutdown with auto-  
restart and hysteresis  
Switching inductive loads  
Clamp of negative voltage at output  
with inductive loads  
PG-SOT223  
CMOS compatible input  
Thermal shutdown with restart  
ESD - Protection  
Loss of GND and loss of V protection  
bb  
Very low standby current  
Reverse battery protection with external resistor  
Improved electromagnetic compatibility (EMC)  
Application  
All types of resistive, inductive and capacitive loads  
µC compatible power switch for 12 V and 24 V DC industrial applications  
Replaces electromechanical relays and discrete circuits  
General Description  
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,  
monolithically integrated in Smart SIPMOS technology.  
Providing embedded protective functions.  
2006-03-09  
Page 1  
ITS 4141N  
Block Diagram  
+ V  
bb  
4
1
Voltage  
source  
Gate  
Overvoltage  
protection  
Current  
limit  
protection  
V
Logic  
OUT  
Limit for  
Charge pump  
Level shifter  
Voltage  
sensor  
unclamped  
ind. loads  
Temperature  
sensor  
Rectifier  
R
in  
3 IN  
Load  
Logic  
ESD  
miniPROFET®  
GND  
2
Load GND  
Signal GND  
Pin  
1
2
3
4
Symbol  
Function  
Output to the load  
Logic ground  
OUT  
GND  
IN  
Input, activates the power switch in case of logic high signal  
Positive power supply voltage  
Vbb  
2006-03-09  
Page 2  
ITS 4141N  
Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
at T = 25°C, unless otherwise specified  
j
1)  
V
Supply voltage  
V
V
-0,3 ...48  
bb  
IN  
2)  
Continuous input voltage  
-10...V  
bb  
self limited  
±5  
-0.5  
internal limited  
A
mA  
Load current (Short - circuit current, see page 5) I  
L
Current through input pin (DC)  
Reverse current through GND-pin  
Junction temperature  
I
IN  
3)  
-I  
T
T
T
P
E
A
°C  
GND  
j
Operating temperature  
-30...+85  
-40 ... +105  
1.4  
°C  
°C  
W
J
a
Storage temperature  
stg  
tot  
4)  
Power dissipation  
4)5)  
0.7  
Inductive load switch-off energy dissipation  
single pulse  
AS  
T = 125 °C, I = 0.5 A  
j
L
5)  
6)  
V
Load dump protection V  
= V + V  
V
LoadDump  
A
S
Loaddump  
R =2, t =400ms, V = low or high, V =13,5V  
I
d
IN  
A
R = 47 Ω  
83  
L
kV  
Electrostatic discharge voltage (Human Body Model) V  
according to ANSI EOS/ESD - S5.1 - 1993  
ESD STM5.1 - 1998  
ESD  
Input pin  
All other pins  
±1  
±5  
1
2
3
4
defined by P  
tot  
At V > Vbb, the input current is not allowed to exceed ±5 mA.  
IN  
defined by P  
tot  
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V  
bb  
connection. PCB is vertical without blown air.  
5
6
not subject to production test, specified by design  
is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .  
V
Loaddump  
Supply voltages higher thanV  
150resistor in GND connection. A resistor for the protection of the input is integrated.  
require an external current limit for the GND pin, e.g. with a  
bb(AZ)  
2006-03-09  
Page 3  
ITS 4141N  
Unit  
Electrical Characteristics  
Parameter  
Symbol  
Values  
at T = -40...125 °C, V = 15...30 V unless otherwise specified  
min. typ. max.  
j
bb  
Thermal Characteristics  
-
-
-
-
-
-
125 K/W  
70  
Thermal resistance @ min. footprint  
R
th(JA)  
R
th(JA)  
2
1)  
Thermal resistance @ 6 cm cooling area  
Thermal resistance, junction - soldering point  
R
7
K/W  
thJS  
Load Switching Capabilities and Characteristics  
On-state resistance  
R
mΩ  
ON  
T = 25 °C, I = 0.5 A  
-
-
150  
270  
-
200  
320  
-
j
L
T = 125 °C  
j
2)  
0.7  
A
Nominal load current  
I
L(nom)  
1)  
Device on PCB  
Turn-on time  
to 90% V  
t
µs  
OUT  
on  
R = 47 , V = 0 to 10 V  
-
-
-
-
50  
75  
1
100  
150  
2
L
IN  
Turn-off time  
to 10% V  
t
OUT  
off  
R = 47 , V = 10 to 0 V  
L
IN  
Slew rate on 10 to 30% V  
,
dV/dt  
V/µs  
OUT  
OUT  
on  
R = 47 , V = 15 V  
L
bb  
Slew rate off 70 to 40% V  
R = 47 , V = 15 V  
,
-dV/dt  
off  
1
2
L
bb  
1
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V  
bb  
connection. PCB is vertical without blown air.  
2
Nominal load current is limited by the current limitation ( see page 5 )  
2006-03-09  
Page 4  
ITS 4141N  
Unit  
Electrical Characteristics  
Parameter  
Symbol  
Values  
at T = -40...125 °C, V = 15...30 V unless otherwise specified  
min. typ. max.  
j
bb  
Operating Parameters  
Operating voltage  
Undervoltage shutdown  
Undervoltage restart  
Undervoltage hysteresis  
12  
7
-
-
-
-
45  
10.5  
11  
-
V
V
V
V
bb(on)  
bb(under)  
bb(u rst)  
-
0.5  
V  
bb(under)  
V  
= V  
- V  
bb(under)  
bb(u rst) bb(under)  
µA  
Standby current  
T = -40...85 °C, V 1,2 V  
I
bb(off)  
-
-
-
-
10  
-
25  
50  
j
IN  
1)  
T = 125 °C  
j
1
3.5  
1.6 mA  
10 µA  
Operating current  
Leakage output current (included in I  
I
GND  
I
L(off)  
)
bb(off)  
V
1,2 V  
IN  
2)  
Protection Functions  
Initial peak short circuit current limit  
A
I
L(SCp)  
T = -40 °C, V = 20 V, t = 150 µs  
-
-
-
1.4  
-
2.1  
-
-
j
bb  
m
T = 25 °C  
j
T = 125 °C  
0.7  
j
-
1.1  
68  
-
-
Repetitive short circuit current limit  
T = T (see timing diagrams)  
I
L(SCr)  
j
jt  
62  
47  
-
-
V
Output clamp (inductive load switch off)  
at V = V - V , I = 4 mA  
V
V
ON(CL)  
bb(AZ)  
jt  
OUT  
bb  
ON(CL) bb  
3)  
Overvoltage protection  
= 4 mA  
I
bb  
4)  
135  
-
-
10  
-
-
°C  
K
Thermal overload trip temperature  
Thermal hysteresis  
T
T  
jt  
1
2
higher current due temperature sensor  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the data sheet. Fault conditions are considered as "outside" normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
3
see also V  
in circuit diagram  
ON(CL)  
4
higher operating temperature at normal function available  
2006-03-09  
Page 5  
ITS 4141N  
Unit  
Electrical Characteristics  
Parameter  
Symbol  
Values  
at T = -40...125 °C, V = 15...30 V unless otherwise specified  
min. typ. max.  
j
bb  
Input  
1)  
2)  
-
-
V
Continuous input voltage  
V
V
V
-10  
V
bb  
3.0  
IN  
-
1.82  
-
Input turn-on threshold voltage  
Input turn-off threshold voltage  
Input threshold hysteresis  
Off state input current  
IN(T+)  
IN(T-)  
-
-
-
0.2  
V  
IN(T)  
IN(off)  
µA  
I
V
1,8 V  
20  
-
-
-
-
IN  
110  
On state input current  
I
IN(on)  
Input delay time at switch on V  
Input resistance (see page 8)  
t
R
150  
1.5  
340  
3
-
5
µs  
kΩ  
bb  
d(Vbbon)  
I
Reverse Battery  
Reverse battery voltage  
3)2)  
V
-V  
bb  
R
= 0 Ω  
= 150 Ω  
-
-
-
-
-
-
0.3  
45  
1
GND  
R
GND  
2)  
A
V
Continuous reverse drain current  
I
S
T = 25 °C  
j
-
0.6  
1.2  
Drain-source diode voltage (V  
> V )  
-V  
ON  
OUT  
bb  
I = 1 A  
F
1
At V > Vbb, the input current is not allowed to exceed ±5 mA.  
IN  
2
3
not subject to production test, guaranted by design  
defined by P  
tot  
2006-03-09  
Page 6  
ITS 4141N  
EMC-Characteristics  
All EMC-Characteristics are based on limited number of sampels and no part of production test.  
Test Conditions:  
If not other specified the test circuitry is the minimal functional configuration without any external  
components for protection or filtering.  
Supply voltage:  
Load:  
Operation mode:  
V
= 13.5V  
Temperature:  
T = 23 ±5°C ;  
bb  
L
a
R = 220Ω  
PWM  
Frequency:  
100Hz / Duty Cycle: 50%  
DC On/Off  
DUT-Specific.:  
R
GND  
Fast electrical transients  
Acc. ISO 7637  
Test Pulse  
Test Level  
Test Results  
Pulse Cycle Time and  
Generator Impedance  
500ms ; 10Ω  
On  
Off  
1
2
-200 V  
+200 V  
-200 V  
+ 200 V  
-7 V  
C
C
C
C
500ms ; 10Ω  
3a  
3b  
C
C
C
C
100ms ; 50Ω  
100ms ; 50Ω  
1)  
4
C
C
0,01Ω  
5
175 V  
E (70V)  
E (70V)  
400ms ; 2Ω  
The test pulses are applied at V  
bb  
Definition of functional status  
Class  
Content  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more function of a device does not perform as designed after exposure  
and can not be returned to proper operation without repairing or replacing the  
device. The value after the character shows the limit.  
Test circuit:  
Pulse  
Bat.  
V
bb  
IN  
P R O FE T O U T  
G N D  
R L  
R G N D  
1
Supply voltage V = 12 V instead of 13,5 V.  
bb  
2006-03-09  
Page 7  
ITS 4141N  
Conducted Emission  
Acc. IEC 61967-4 (1/ 150method)  
Typ. V -Pin Emission at DC-On with 150-matching network  
bb  
1 0 0  
1 5 0 o h m C la s s 6  
9 0  
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
2 0  
1 0  
0
1 5 0 o h m C la s s 1  
V B B , n o is e flo o r  
V B B , O N  
1 5 0 Ω / 8 -H  
1 5 0 Ω / 1 3 -N  
-1 0  
-2 0  
0 ,1  
1
1 0  
1 0 0  
1 0 0 0  
f
/
M H z  
Typ. V -Pin Emission at PWM-Mode with 150-matching network  
bb  
1 0 0  
1 5 0 o h m C la s s 6  
1 5 0 o h m C la s s 1  
V B B , n o is e flo o r  
9 0  
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
2 0  
1 0  
0
V B B , P W  
M
1 5 0 Ω / 8 -H  
1 5 0 Ω / 1 3 - N  
- 1 0  
- 2 0  
0 ,1  
1
1 0  
1 0 0  
1 0 0 0  
f / M H z  
Test circuit:  
150-Network  
5µH  
V
bb  
IN  
PROFET OUT  
GND  
5µH  
R
R
GND  
For defined decoupling and high reproducibility a defined choke (5µH at 1 MHz)  
is inserted between supply andV -pin.  
bb  
2006-03-09  
Page 8  
ITS 4141N  
Conducted Susceptibility  
Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)  
Direct Power Injection:  
Failure criteria:  
Forward Power CW  
Amplitude and frequency deviation max. 10% at Out  
Typ. V -Pin Susceptibility at DC-On/Off  
bb  
4 0  
3 5  
3 0  
2 5  
2 0  
1 5  
L im it  
D e v ic e :  
B T S 4 1 4 2  
4 7 O h m s  
L o a d :  
V B B , O N  
O -M o d e :  
O N  
/
O F F  
/
P W  
M
1 0  
C o u p lin g P o in t:  
M o n ito rin g :  
M o d u la tio n :  
V B B  
O u t  
C W  
V B B , O F F  
5
0
1
1 0  
1 0 0  
1 0 0 0  
f / M H z  
Typ. V -Pin Susceptibility at PWM-Mode  
bb  
4 0  
3 5  
3 0  
2 5  
2 0  
1 5  
1 0  
5
L im it  
D e v ic e :  
B T S 4 1 4 2  
4 7 O h m s  
L o a d :  
V B B , P W  
M
O -M o d e :  
O N  
/
O F F  
/
P W  
M
C o u p lin g P o in t:  
M o n ito rin g :  
M o d u la tio n :  
V B B  
O u t  
C W  
0
1
1 0  
1 0 0  
1 0 0 0  
f / M H z  
Test circuit:  
HF  
5µH  
V
bb  
150Ω  
PROFET OUT  
IN  
GND  
150Ω  
5µH  
6,8nF  
RGND  
R
L
6,8nF  
For defined decoupling and high reproducibility the same choke and the same  
150-matching network as for the emission measurement is used.  
2006-03-09  
Page 9  
ITS 4141N  
Terms  
Inductive and overvoltage output clamp  
+ V  
bb  
I
bb  
V
Z
V
bb  
V
ON  
I
I
IN  
V
ON  
L
IN  
OUT  
PROFET  
OUT  
V
IN  
GND  
I
GND  
V
bb  
V
GND  
OUT  
R
GND  
VON clamped to 63 V min.  
Input circuit (ESD protection)  
Overvoltage protection of logic part  
V b b  
+ V  
bb  
R
I
IN  
V
Z2  
IN  
I
I
Logic  
G N D  
G N D  
R
The use of ESD zener diodes as voltage clamp  
at DC conditions is not recommended  
G N D  
optiona l  
S igna l G N D  
VZ2=Vbb(AZ)=47V min.,  
RI=3 ktyp., RGND=150Ω  
Reverse battery protection  
V
-
b b  
R
I
IN  
O U T  
P o w e r  
In v e r s e  
D io d e  
L o g ic  
G N D  
R
G N D  
o p tio n a l  
R
L
P o w e r G N D  
S ig n a l G N D  
R
=150, R =3ktyp.,  
I
GND  
Temperature protection is not active during inverse  
current  
2006-03-09  
Page 10  
ITS 4141N  
GND disconnect  
Inductive Load switch-off energy  
dissipation  
E
bb  
V
E
bb  
AS  
E
Load  
IN  
OUT  
V
bb  
PROFET  
IN  
OUT  
PROFET  
GND  
L
=
E
V
V
L
V
bb  
IN  
GND  
GND  
Z
L
{
E
R
R
L
GND disconnect with GND pull up  
2
Energy stored in load inductance: E = ½ * L * I  
L
While demagnetizing load inductance,  
the enérgy dissipated in PROFET is  
L
V
bb  
E
= E + E - E = V  
bb  
* i (t) dt,  
ON(CL) L  
AS  
L
R
with an approximate solution for R > 0:  
L
IN  
OUT  
PROFET  
GND  
I
L
* L  
I
L
* R  
L
E
A S  
=
* (V bb +|V O U T ( C L )| ) * ln(1 +  
)
2 * R  
L
|V O U T ( C L )|  
V
V
V
IN  
GND  
bb  
V
load  
disconnect with charged inductive  
bb  
V
bb  
high  
IN  
OUT  
PROFET  
GND  
V
bb  
2006-03-09  
Page 11  
ITS 4141N  
Typ. transient thermal impedance  
=f(t ) @ min. footprint  
Typ. transient thermal impedance  
2
Z
=f(t ) @ 6cm heatsink area  
Z
thJA  
p
thJA  
p
Parameter: D=t /T  
Parameter: D=t /T  
p
p
10 2  
10 2  
K/W  
K/W  
10 1  
10 0  
10 -1  
10 1  
10 0  
10 -1  
D=0,5  
D=0,2  
D=0,1  
D=0,05  
D=0,02  
D=0,01  
D=0  
D=0,5  
D=0,2  
D=0,1  
D=0,05  
D=0,02  
D=0,01  
D=0  
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2  
10 4  
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1  
10 3  
s
p
s
p
t
t
Typ. on-state resistance  
Typ. on-state resistance  
R
= f(T ) ; V = 15 V ; V = high  
R
= f(V ); I = 0.5A ; V = high  
ON  
j
bb  
in  
ON  
bb  
L
in  
300  
300  
mΩ  
mΩ  
125°C  
200  
150  
100  
50  
200  
150  
100  
50  
25°C  
-40°C  
0
0
-40 -20  
0
20 40 60 80 100  
140  
0
5
10 15 20 25 30 35 40  
50  
°C  
j
V
bb  
V
T
2006-03-09  
Page 12  
ITS 4141N  
Typ. turn on time  
= f(T ); R = 47Ω  
Typ. turn off time  
t = f(T ); R = 47Ω  
off  
t
on  
j
L
j
L
100  
120  
µs  
µs  
15...30V  
15V  
30V  
80  
60  
40  
20  
0
60  
40  
20  
0
-40 -20  
0
20 40 60 80 100  
140  
-40 -20  
0
20 40 60 80 100  
140  
°C  
j
°C  
T
T
j
Typ. slew rate on  
Typ. slew rate off  
dV/dt = f(T ) ; R = 47 Ω  
dV/dt = f(T ); R = 47 Ω  
on  
j
L
off  
j
L
2
4
V/µs  
V/µs  
1.6  
3
1.4  
1.2  
1
2.5  
30V  
15V  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
30V  
15V  
0.5  
0
-40 -20  
0
20 40 60 80 100  
140  
-40 -20  
0
20 40 60 80 100  
140  
°C  
j
°C  
T
j
T
2006-03-09  
Page 13  
ITS 4141N  
Typ. initial peak short circuit current limit  
= f(T ) ; V = 20V; t = 150µs  
Typ. initial short circuit shutdown time  
I
t
= f(T  
) ; V = 20V  
L(SCp)  
j
bb  
m
off(SC)  
j,start  
bb  
2
300  
A
ms  
1.6  
1.4  
1.2  
1
200  
150  
100  
50  
0.8  
0.6  
0.4  
0.2  
0
0
-40 -20  
0
20 40 60 80 100  
140  
-40 -20  
0
20 40 60 80 100  
140  
°C  
j
°C  
T
j
T
Typ. initial peak short circuit current limit  
= f(V ); t = 150µs  
Typ. input current  
= f(T ); V = 15 V; V = low/high  
I
I
L(SCp)  
bb  
m
IN(on/off)  
j
bb  
= 5V  
IN  
V
1,8V; V  
INlow  
INhigh  
2
60  
-40°C  
25°C  
A
µA  
1.5  
1.25  
1
on  
off  
40  
125°C  
30  
20  
10  
0
0.75  
0.5  
0.25  
0
0
5
10 15 20 25 30 35 40  
50  
-40 -20  
0
20 40 60 80 100  
140  
V
°C  
j
V
T
bb  
2006-03-09  
Page 14  
ITS 4141N  
Typ. input current  
I = f(V ); V =15 V  
Typ. input threshold voltage  
= f(T ) ; V = 15 V  
V
IN  
IN  
bb  
IN(th)  
j
bb  
-40°C  
25°C  
60  
3
on  
off  
µA  
V
40  
30  
20  
10  
0
2
125°C  
1.5  
1
0.5  
0
0
2.5  
5
7.5  
10 12.5 15  
20  
-40 -20  
0
20 40 60 80 100  
140  
V
°C  
j
V
T
IN  
Typ. input threshold voltage  
= f(V ) ; T = 25°C  
Typ. standby current  
V
I
= f(T ) ; V = 32V ; V 1,2 V  
IN(th)  
bb  
j
bb(off)  
j bb IN  
3
22  
µA  
V
18  
16  
14  
12  
10  
8
on  
2
off  
1.5  
1
6
4
0.5  
2
0
0
0
10  
20  
30  
50  
V
-40 -20  
0
20 40 60 80 100  
140  
°C  
j
V
bb  
T
2006-03-09  
Page 15  
ITS 4141N  
Maximum allowable inductive switch-off  
energy, single pulse  
Typ. leakage current  
I
= f(T ) ; V = 32V ; V 1,2 V  
L(off)  
j bb IN  
E
= f(I ); T  
= 125°C  
AS  
L
jstart  
2.5  
4
µA  
J
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.4  
-40 -20  
0
20 40 60 80 100  
140  
A
°C  
j
I
T
L
Typ. input delay time at switch on V  
bb  
t
= f(V )  
d(Vbbon)  
bb  
400  
µs  
300  
250  
200  
150  
100  
50  
0
0
5
10 15 20 25 30 35 40  
50  
V
bb  
V
2006-03-09  
Page 16  
ITS 4141N  
Timing diagrams  
Figure 1a: Vbb turn on:  
Figure 2b: Switching a lamp  
IN  
IN  
V
bb  
VOUT  
IL  
I L  
t
t d(Vbbon)  
t
Figure 2a: Switching a resistive load,  
turn-on/off time and slew rate definition  
Figure 2c: Switching an inductive load  
IN  
IN  
VOUT  
V
OUT  
90%  
t on  
dV/dton  
dV/dtoff  
t off  
10%  
IL  
I
L
t
t
2006-03-09  
Page 17  
ITS 4141N  
Figure 3a: Turn on into short circuit,  
Figure 3b: Short circuit in on-state  
shut down by overtemperature, restart by cooling  
IN  
shut down by overtemperature, restart by cooling  
IN  
VOUT  
VOUT  
normal  
Output short to GND  
Output short to GND  
operation  
I
IL  
IL  
L(SCp)  
I
I
L(SCr)  
L(SCr)  
t
t
Heating up of the chip may require several milliseconds, depending  
on external conditions.  
Figure 5: Undervoltage shutdown and restart  
Figure 4: Overtemperature:  
Reset if T < T  
j
jt  
IN  
IN  
V
bb  
VOUT  
10,5V  
V
out  
TJ  
t
t
t
t
d(Vbbon)  
d(Vbbon)  
2006-03-09  
Page 18  
ITS 4141N  
Package and ordering code  
all dimensions in mm  
Sales code  
Ordering code, standard (1000 pcs.)  
ITS 4141N  
SP000219536  
±0.1  
1.6  
±0.2  
6.5  
A
±0.1  
0.1 max  
3
B
4
+0.2  
acc. to  
DIN 6784  
1
2
3
0.28 ±0.04  
2.3  
±0.1  
0.7  
4.6  
M
M
0.25  
A
0.25  
B
GPS05560  
Published by  
Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81669 München  
© Infineon Technologies AG 2001  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee  
of characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,  
regarding circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your  
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide  
(see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the  
types in question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express  
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to  
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device  
or system. Life support devices or systems are intended to be implanted in the human body, or to support  
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
2006-03-09  
Page 19  

相关型号:

SP000219823

Smart Power High-Side-Switch for Industrial Applications
INFINEON

SP000219824

Smart Power High-Side-Switch for Industrial Applications
INFINEON

SP000219825

Smart Power High-Side-Switch for Industrial Applications
INFINEON

SP000219826

Smart High-Side Power Switch for Industrial Applications
INFINEON

SP000219835

Smart High-Side Power Switch For Industrial Applications Four Channels: 4 x 90mз
INFINEON

SP000221217

Smart Sense High-Side Power Switch For Industrial Applications
INFINEON

SP000221218

Smart High-Side Power Switch for Industrial Applications
INFINEON

SP000221219

Smart Highside Power Switch for Industrial Applications
INFINEON

SP000221220

Smart High-Side Power Switch for Industrial Applications
INFINEON

SP000221224

Smart Two Channel Highside Power Switch for Industrial Applications
INFINEON

SP000221225

Smart Sense High-Side Power Switch For Industrial Applications
INFINEON

SP000221227

Smart Highside Power Switch for Industrial Applications
INFINEON