MJF18002 [MOTOROLA]

POWER TRANSISTOR 2.0 AMPERES 1000 VOLTS 25 and 50 WATTS; 功率晶体管2.0安培1000伏特25和50瓦
MJF18002
型号: MJF18002
厂家: MOTOROLA    MOTOROLA
描述:

POWER TRANSISTOR 2.0 AMPERES 1000 VOLTS 25 and 50 WATTS
功率晶体管2.0安培1000伏特25和50瓦

晶体 晶体管 功率双极晶体管
文件: 总10页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MJE18002/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Bipolar Power Transistor  
For Switching Power Supply Applications  
*Motorola Preferred Device  
The MJE/MJF18002 have an applications specific state–of–the–art die designed  
for use in 220 V line operated Switchmode Power supplies and electronic light  
ballasts. These high voltage/high speed transistors offer the following:  
POWER TRANSISTOR  
2.0 AMPERES  
1000 VOLTS  
Improved Efficiency Due to Low Base Drive Requirements:  
25 and 50 WATTS  
— High and Flat DC Current Gain h  
— Fast Switching  
FE  
— No Coil Required in Base Circuit for Turn–Off (No Current Tail)  
Tight Parametric Distributions are Consistent Lot–to–Lot  
Two Package Choices: Standard TO–220 or Isolated TO–220  
MJF18002, Case 221D, is UL Recognized at 3500 V  
: File #E69369  
RMS  
MAXIMUM RATINGS  
Rating  
Symbol MJE18002 MJF18002  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
450  
1000  
9.0  
CEO  
V
CES  
EBO  
V
CASE 221A–06  
TO–220AB  
MJE18002  
Collector Current — Continuous  
— Peak(1)  
I
2.0  
5.0  
C
I
CM  
Base Current — Continuous  
— Peak(1)  
I
1.0  
2.0  
Adc  
V
B
I
BM  
RMS Isolated Voltage(2)  
(for 1 sec, R.H. < 30%,  
Test No. 1 Per Fig. 1  
Test No. 2 Per Fig. 2  
Test No. 3 Per Fig. 3  
V
4500  
3500  
1500  
ISOL  
T
C
= 25°C)  
Total Device Dissipation  
Derate above 25°C  
(T = 25°C)  
C
P
D
50  
0.4  
25  
0.2  
Watts  
W/°C  
Operating and Storage Temperature  
T , T  
J stg  
65 to 150  
°C  
THERMAL CHARACTERISTICS  
Rating  
Symbol MJE18002 MJF18002  
Unit  
CASE 221D–02  
ISOLATED TO–220 TYPE  
UL RECOGNIZED  
MJF18002  
Thermal Resistance — Junction to Case  
— Junction to Ambient  
R
θJC  
R
θJA  
2.5  
62.5  
5.0  
62.5  
°C/W  
Maximum Lead Temperature for Soldering  
Purposes: 1/8from Case for 5 Seconds  
T
L
260  
°C  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
450  
Vdc  
µAdc  
µAdc  
C
CEO(sus)  
Collector Cutoff Current (V  
= Rated V  
, I = 0)  
B
I
CEO  
100  
CE  
CEO  
Collector Cutoff Current (V  
Collector Cutoff Current (V  
= Rated V  
= 800 V, V  
, V  
= 0)  
T
C
T
C
= 125°C  
= 125°C  
I
100  
500  
100  
CE  
CE  
CES EB  
= 0)  
CES  
EB  
Emitter Cutoff Current (V  
EB  
= 9.0 Vdc, I = 0)  
I
100  
µAdc  
C
EBO  
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.  
(continued)  
(2) Proper strike and creepage distance must be provided.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
REV 1  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage (I = 0.4 Adc, I = 40 mAdc)  
V
0.825  
0.92  
1.1  
1.25  
Vdc  
Vdc  
C
B
BE(sat)  
Base–Emitter Saturation Voltage (I = 1.0 Adc, I = 0.2 Adc)  
C
B
Collector–Emitter Saturation Voltage  
(I = 0.4 Adc, I = 40 mAdc)  
V
CE(sat)  
0.2  
0.2  
0.25  
0.3  
0.5  
0.5  
0.5  
0.6  
C
B
@ T = 125°C  
C
(I = 1.0 Adc, I = 0.2 Adc)  
C
B
@ T = 125°C  
C
DC Current Gain (I = 0.2 Adc, V  
= 5.0 Vdc)  
= 1.0 Vdc)  
= 1.0 Vdc)  
h
FE  
14  
11  
27  
17  
20  
8.0  
8.0  
20  
34  
C
CE  
CE  
CE  
@ T = 125°C  
C
DC Current Gain (I = 0.4 Adc, V  
C
@ T = 125°C  
11  
C
DC Current Gain (I = 1.0 Adc, V  
6.0  
5.0  
10  
C
@ T = 125°C  
C
DC Current Gain (I = 10 mAdc, V  
C
= 5.0 Vdc)  
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.2 Adc, V  
= 10 Vdc, f = 1.0 MHz)  
f
13  
35  
60  
MHz  
pF  
C
CE  
T
Output Capacitance (V  
CB  
= 10 Vdc, I = 0, f = 1.0 MHz)  
C
E
ob  
Input Capacitance (V  
= 8.0 V)  
C
400  
600  
pF  
EB  
ib  
Dynamic Saturation:  
V
Vdc  
3.5  
8.0  
CE(dsat)  
1.0 µs  
3.0 µs  
1.0 µs  
3.0 µs  
I
I
V
= 0.4 A  
C
@ T = 125°C  
C
= 40 mA  
B1  
determined 1.0 µs and  
3.0 µs after rising I  
1.5  
3.8  
= 300 V  
CC  
B1  
@ T = 125°C  
C
reach 0.9 final I  
(see Figure 18)  
B1  
8.0  
14  
I
I
V
= 1.0 A  
= 0.2 A  
C
B1  
@ T = 125°C  
C
2.0  
7.0  
= 300 V  
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
I
I
I
= 0.4 Adc  
Turn–On Time  
t
on  
t
off  
t
on  
t
off  
200  
130  
300  
ns  
µs  
ns  
µs  
C
= 40 mAdc  
@ T = 125°C  
B1  
B2  
C
= 0.2 Adc  
= 300 V  
Turn–Off Time  
1.2  
1.5  
2.5  
V
CC  
@ T = 125°C  
C
I
= 1.0 Adc  
= 0.2 Adc  
= 0.5 Adc  
Turn–On Time  
Turn–Off Time  
85  
95  
150  
C
I
I
@ T = 125°C  
B1  
B2  
C
1.7  
2.1  
2.5  
V
= 300 V  
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
clamp  
= 300 V, V  
CC  
= 15 V, L = 200 µH)  
I
C
= 0.4 Adc, I = 40 mAdc,  
Fall Time  
t
125  
120  
200  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
B1  
fi  
I
= 0.2 Adc  
@ T = 125°C  
B2  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
0.7  
0.8  
1.25  
@ T = 125°C  
C
t
110  
110  
200  
c
fi  
@ T = 125°C  
C
I
C
= 1.0 Adc, I = 0.2 Adc,  
B1  
t
110  
120  
175  
I
= 0.5 Adc  
@ T = 125°C  
B2  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.7  
2.25  
2.75  
@ T = 125°C  
C
t
c
200  
250  
300  
@ T = 125°C  
C
I
C
= 0.4 Adc, I = 50 mAdc,  
B1  
t
fi  
140  
185  
200  
I
= 50 mAdc  
@ T = 125°C  
B2  
C
Storage Time  
Crossover Time  
t
si  
2.2  
2.5  
3.0  
@ T = 125°C  
C
t
c
140  
220  
250  
@ T = 125°C  
C
2
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
10  
1
100  
V
= 1 V  
V
= 5 V  
CE  
CE  
T
J
= 25°C  
T
= 125  
°
C
T
= 125°C  
J
J
T
= 25°C  
J
T
= 20°C  
J
10  
1
0.01  
0.01  
0.10  
1.00  
10.00  
0.10  
1.00  
10.00  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2
1
0
10.00  
T
= 25°C  
J
1.00  
0.10  
0.01  
2 A  
I
/I = 10  
1.5 A  
C B  
1 A  
I
/I = 5  
0.4 A  
C B  
T
T
= 25°C  
= 125°C  
J
J
I
= 0.2 A  
C
0.001  
0.010  
0.100  
1.000  
0.01  
0.10  
1.00  
10.00  
I
, BASE CURRENT (mA)  
I , COLLECTOR CURRENT (AMPS)  
C
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
1.1  
1.0  
0.9  
0.8  
1000  
C
ib  
T
= 25°C  
J
f = 1 MHz  
100  
10  
1
T
= 25°C  
J
0.7  
0.6  
0.5  
0.4  
C
ob  
T
= 125°C  
J
I
I
/I = 10  
C B  
/I = 5  
C B  
0.01  
0.10  
1.00  
10.00  
1
10  
100  
1000  
I
, COLLECTOR CURRENT (AMPS)  
V
, COLLECTOR–EMITTER (VOLTS)  
C
CE  
Figure 5. Base–Emitter Saturation Region  
Figure 6. Capacitance  
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
2500  
2000  
1500  
1000  
500  
4500  
4000  
3500  
3000  
2500  
2000  
I
V
= I /2  
C
B(off)  
CC  
I
V
= I /2  
C
B(off)  
CC  
I
/I = 5  
= 300 V  
C B  
= 300 V  
PW = 20  
µs  
PW = 20 µs  
T
T
= 25°C  
= 125°C  
T
= 125°C  
J
J
J
I
/I = 5  
/I = 10  
I
/I = 10  
C B  
C B  
I
C B  
1500  
1000  
500  
0
T
= 25°C  
J
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 7. Resistive Switching, t  
Figure 8. Resistive Switching, t  
off  
on  
3000  
2500  
I
V
V
= I /2  
C
B(off)  
CC  
Z
C
I
V
V
= I /2  
= 15 V  
= 300 V  
= 200 µH  
B(off)  
CC  
Z
C
C
I
= 1 A  
C
= 15 V  
2500  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
= 300 V  
= 200 µH  
I
/I = 5  
C B  
L
L
I = 0.4 A  
C
T
T
= 25  
= 125  
°
C
J
J
T
T
= 25°C  
= 125°C  
I
/I = 10  
J
J
C B  
°C  
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
5
7
9
11  
13  
15  
I
, COLLECTOR CURRENT (AMPS)  
h
, FORCED GAIN  
C
FE  
Figure 9. Inductive Storage Time, t  
Figure 10. Inductive Storage Time  
si  
600  
450  
I
= I /2  
C
CC  
= 300 V  
I
= I /2  
= 15 V  
= 300 V  
= 200 µH  
B(off)  
B(off)  
CC  
Z
C
C
400  
350  
300  
250  
200  
150  
100  
50  
t
c
V
V
L
= 15 V  
V
V
L
500  
400  
300  
200  
100  
0
t
t
c
Z
C
t
fi  
= 200 µH  
T
T
= 25°C  
= 125°C  
fi  
J
J
t
t
c
t
c
fi  
t
fi  
T
T
= 25  
= 125°C  
°C  
J
J
0
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 11. Inductive Switching, t & t , I /I = 5  
fi C B  
Figure 12. Inductive Switching, t & t , I /I = 10  
fi C B  
c
c
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
250  
180  
160  
140  
120  
100  
80  
I
V
V
= I /2  
C
B(off)  
CC  
Z
C
I
V
V
= I /2  
C
230  
210  
190  
170  
150  
130  
110  
90  
B(off)  
CC  
Z
C
I
= 1 A  
C
= 15 V  
= 15 V  
= 300 V  
= 200 µH  
= 300 V  
= 200 µH  
L
L
I
= 0.4 A  
C
I
= 1 A  
C
I
= 0.4 A  
C
T
T
= 25°C  
T
T
= 25°C  
= 125°C  
J
J
J
J
= 125°C  
70  
50  
60  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
h
, FORCED GAIN  
h
, FORCED GAIN  
FE  
FE  
Figure 13. Inductive Fall Time  
Figure 14. Inductive Crossover Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
2.5  
10.00  
5 ms  
1 ms  
50  
µs  
10 µs 1 µs  
T
125°C  
C
/I  
DC (MJE18002)  
2.0  
1.5  
1.0  
0.5  
0
I
L
4
C B  
C
= 500 µH  
1.00  
0.10  
0.01  
DC (MJF18002)  
V
= 0.5 V  
BE(off)  
0 V  
–1.5 V  
10  
100  
1000  
0
200  
400  
600  
800  
1000  
1200  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 15. Forward Bias Safe Operating Area  
Figure 16. Reverse Bias Switching Safe  
Operating Area  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
1.0  
down. Safe operating area curves indicate I –V  
limits of  
C
CE  
SECOND  
BREAKDOWN  
DERATING  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate. The data of Figure 15 is based  
0.8  
0.6  
0.4  
0.2  
0
on T = 25°C; T (pk) is variable depending on power level.  
C
J
Second breakdown pulse limits are valid for duty cycles to  
10% but must be derated when T > 25°C. Second break-  
C
down limitations do not derate the same as thermal limita-  
tions. Allowable current at the voltages shown on Figure 15  
may be found at any case temperature by using the appropri-  
THERMAL  
DERATING  
ate curve on Figure 17. T (pk) may be calculated from the  
J
data in Figures 20 and 21. At any case temperatures, thermal  
limitations will reduce the power that can be handled to val-  
ues less the limitations imposed by second breakdown. For  
inductive loads, high voltage and current must be sustained  
simultaneously during turn–off with the base to emitter junc-  
tion reverse biased. The safe level is specified as a reverse  
biased safe operating area (Figure 16). This rating is verified  
under clamped conditions so that the device is never sub-  
jected to an avalanche mode.  
20  
40  
60  
80  
100  
120  
140  
160  
T
, CASE TEMPERATURE (°C)  
C
Figure 17. Forward Bias Power Derating  
5
Motorola Bipolar Power Transistor Device Data  
10  
5
4
V
CE  
90% I  
I
C
9
8
7
6
5
C
t
fi  
3
dyn 1 µs  
t
si  
2
dyn 3 µs  
1
T
10% I  
C
C
V
I
10% V  
0
CLAMP  
CLAMP  
–1  
–2  
–3  
–4  
–5  
4
3
2
1
0
90% I  
B
90% I  
B
1
B
1 µs  
3 µs  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
MTP8P10  
MUR105  
MJE210  
100  
3 V  
150  
3 V  
V
PEAK  
CE  
V
CE  
MTP8P10  
Rb1  
MPF930  
I
1
B
MPF930  
+10 V  
I
out  
I
B
A
I
2
B
50  
Rb2  
V(BR)CEO(sus)  
INDUCTIVE SWITCHING  
RBSOA  
L = 500  
RB2 = 0  
COMMON  
MTP12N10  
150  
3 V  
L = 10  
RB2 =  
µ
H
L = 200  
µH  
µH  
RB2 = 0  
500 µF  
V
= 20 VOLTS  
V
= 15 VOLTS  
V
= 15 VOLTS  
CC  
(pk) = 100 mA  
CC  
RB1 SELECTED FOR  
DESIRED I  
CC  
RB1 SELECTED  
FOR DESIRED I  
I
C
1 µF  
1
1
B
B
–V  
off  
Table 1. Inductive Load Switching Drive Circuit  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL THERMAL RESPONSE  
1.00  
0.10  
0.01  
0.5  
0.2  
0.1  
0.05  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
P
(pk)  
=
0.02  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
t
t
1
SINGLE PULSE  
2
1
T
– T = P R (t)  
(pk) θJC  
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
t, TIME (ms)  
Figure 20. Typical Thermal Response (Z  
θJC  
(t)) for MJE18002  
1.00  
0.10  
0.01  
0.5  
0.2  
0.1  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
P
(pk)  
=
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
0.02  
t
t
1
2
1
T
– T = P R (t)  
(pk) θJC  
J(pk)  
C
DUTY CYCLE, D = t /t  
SINGLE PULSE  
1 2  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
10000.00  
100000.00  
t, TIME (ms)  
Figure 21. Typical Thermal Response (Z  
θJC  
(t)) for MJF18002  
7
Motorola Bipolar Power Transistor Device Data  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
FULLY ISOLATED  
CLIP  
CLIP  
PACKAGE  
0.107  
MIN  
0.107MIN  
LEADS  
LEADS  
LEADS  
HEATSINK  
0.110 MIN  
HEATSINK  
HEATSINK  
Figure 22a. Screw or Clip Mounting Position Figure 22b. Clip Mounting Position  
for Isolation Test Number 1 for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
* Measurement made between leads and heatsink with all leads shorted together  
MOUNTING INFORMATION**  
4–40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
NUT  
HEATSINK  
Figure 23a. Screw–Mounted  
Figure 23b. Clip–Mounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw  
.
torque of 6 to 8 in lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a con-  
stant pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affecting the pack-  
age. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10  
.
in lbs of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
8
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
SEATING  
PLANE  
–T–  
B
F
C
T
NOTES:  
S
4
INCHES  
MIN  
MILLIMETERS  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
A
K
Q
Z
1
2
3
H
U
L
R
V
T
U
V
J
G
D
Z
0.080  
2.04  
N
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
SEATING  
PLANE  
–T–  
–B–  
C
NOTES:  
F
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
S
Q
H
U
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MIN  
MAX  
0.629  
0.402  
0.189  
0.034  
0.129  
MIN  
15.78  
10.01  
4.60  
MAX  
15.97  
10.21  
4.80  
A
0.621  
0.394  
0.181  
0.026  
0.121  
1
2 3  
0.67  
0.86  
3.08  
3.27  
–Y–  
K
0.100 BSC  
2.54 BSC  
0.123  
0.018  
0.500  
0.045  
0.129  
0.025  
0.562  
0.060  
3.13  
0.46  
3.27  
0.64  
12.70  
1.14  
14.27  
1.52  
G
N
J
0.200 BSC  
5.08 BSC  
R
0.126  
0.107  
0.096  
0.259  
0.134  
0.111  
0.104  
0.267  
3.21  
2.72  
2.44  
6.58  
3.40  
2.81  
2.64  
6.78  
L
D 3 PL  
U
M
M
0.25 (0.010)  
B
Y
STYLE 2:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
CASE 221D–02  
(ISOLATED TO–220 TYPE)  
UL RECOGNIZED: FILE #E69369  
ISSUE D  
9
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MJE18002/D  

相关型号:

MJF18004

POWER TRANSISTOR 5.0 AMPERES 1000 VOLTS 35 and 75 WATTS
MOTOROLA

MJF18004

POWER TRANSISTOR
ONSEMI

MJF18004

Silicon NPN Power Transistors
ISC

MJF18004G

NPN Bipolar Power Transistor For Switching Power Supply Applications
ONSEMI

MJF18006

POWER TRANSISTOR 6.0 AMPERES 1000 VOLTS 40 and 100 WATTS
MOTOROLA

MJF18006

POWER TRANSISTOR
ONSEMI

MJF18006

Silicon NPN Power Transistors
ISC

MJF18006

Silicon NPN Power Transistors
SAVANTIC

MJF18006

Silicon NPN Power Transistors
JMNIC

MJF18008

POWER TRANSISTOR 8.0 AMPERES 1000 VOLTS 45 and 125 WATTS
MOTOROLA

MJF18008

POWER TRANSISTOR
ONSEMI

MJF18008

Silicon NPN Power Transistors
ISC