MJW16212 [ONSEMI]

POWER TRANSISTOR; 功率晶体管
MJW16212
型号: MJW16212
厂家: ONSEMI    ONSEMI
描述:

POWER TRANSISTOR
功率晶体管

晶体 晶体管
文件: 总8页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MJW16212/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Bipolar Power Deflection Transistor  
For High and Very High Resolution Monitors  
The MJW16212 is a state–of–the–art SWITCHMODE bipolar power transistor. It  
is specifically designed for use in horizontal deflection circuits for 20 mm diameter  
neck, high and very high resolution, full page, monochrome monitors.  
*Motorola Preferred Device  
POWER TRANSISTOR  
10 AMPERES  
1500 Volt Collector–Emitter Breakdown Capability  
Typical Dynamic Desaturation Specified (New Turn–Off Characteristic)  
Application Specific State–of–the–Art Die Design  
Fast Switching:  
1500 VOLTS – V  
50 AND 150 WATTS  
CES  
200 ns Inductive Fall Time (Typ)  
2000 ns Inductive Storage Time (Typ)  
Low Saturation Voltage:  
0.15 Volts at 5.5 Amps Collector Current and 2.5 A Base Drive  
Low Collector–Emitter Leakage Current — 250 µA Max at 1500 Volts — V  
High Emitter–Base Breakdown Capability For High Voltage Off Drive Circuits —  
8.0 Volts (Min)  
CES  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
1500  
650  
Unit  
Vdc  
Vdc  
Vdc  
V
Collector–Emitter Breakdown Voltage  
Collector–Emitter Sustaining Voltage  
Emitter–Base Voltage  
V
CES  
V
CEO(sus)  
V
EBO  
8.0  
RMS Isolation Voltage (2)  
(for 1 sec, T = 25 C,  
A
Rel. Humidity < 30%)  
V
ISOL  
Per Fig. 14  
Per Fig. 15  
Collector Current — Continuous  
Collector Current — Pulsed (1)  
I
10  
15  
Adc  
Adc  
C
I
CM  
Base Current — Continuous  
Base Current — Pulsed (1)  
I
5.0  
10  
B
I
BM  
CASE 340K–01  
TO–247AE  
Maximum Repetitive Emitter–Base  
Avalanche Energy  
W (BER)  
0.2  
mJ  
Total Power Dissipation @ T = 25 C  
P
150  
39  
1.49  
Watts  
C
D
Total Power Dissipation @ T = 100 C  
C
Derated above T = 25 C  
C
W/ C  
C
Operating and Storage Temperature Range  
T , T  
J
55 to 125  
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
0.67  
275  
Unit  
C/W  
C
Thermal Resistance — Junction to Case  
R
θJC  
Lead Temperature for Soldering Purposes  
1/8from the case for 5 seconds  
T
L
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle  
10%.  
(2) Proper strike and creepage distance must be provided.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
SCANSWITCH and SWITCHMODE are trademarks of Motorola Inc.  
REV 2  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (2)  
Collector Cutoff Current (V  
Collector Cutoff Current (V  
= 1500 V, V  
= 1200 V, V  
= 0 V)  
= 0 V)  
I
250  
25  
µAdc  
CE  
CE  
BE  
BE  
CES  
Emitter–Base Leakage (V  
= 8.0 Vdc, I = 0)  
I
11  
25  
µAdc  
Vdc  
EB  
C
EBO  
Emitter–Base Breakdown Voltage (I = 1.0 mA, I = 0)  
V
8.0  
650  
E
C
(BR)EBO  
Collector–Emitter Sustaining Voltage (Table 1) (I = 10 mAdc, I = 0)  
V
Vdc  
C
B
CEO(sus)  
ON CHARACTERISTICS (2)  
Collector–Emitter Saturation Voltage (I = 5.5 Adc, I = 2.2 Adc)  
V
V
0.15  
0.14  
1.0  
1.0  
Vdc  
C
B
CE(sat)  
Collector–Emitter Saturation Voltage (I = 3.0 Adc, I = 400 mAdc)  
C
B
Base–Emitter Saturation Voltage (I = 5.5 Adc, I = 2.2 Adc)  
0.9  
1.5  
Vdc  
C
B
BE(sat)  
DC Current Gain (I = 1.0 A, V  
= 5.0 Vdc)  
CE  
= 5.0 Vdc)  
CE  
h
t
4.0  
24  
6.0  
10  
C
FE  
DC Current Gain (I = 10 A, V  
C
DYNAMIC CHARACTERISTICS  
Dynamic Desaturation Interval (I = 5.5 A, I = 2.2 A, LB = 1.5 µH)  
350  
180  
ns  
C
B1  
ds  
Output Capacitance  
(V = 10 Vdc, I = 0, f = 100 kHz)  
test  
C
350  
pF  
ob  
T
CE  
Gain Bandwidth Product  
(V = 10 Vdc, I = 0.5 A, f = 1.0 MHz)  
test  
E
f
2.75  
35  
MHz  
µJ  
CE  
Emitter–Base Turn–Off Energy  
(EB = 500 ns, R  
C
EB  
(off)  
c–hs  
= 22 )  
(avalanche) BE  
Collector–Heatsink Capacitance — MJF16212 Isolated Package  
C
5.0  
pF  
(Mounted on a 1x 2x 1/16Copper Heatsink, V  
= 0, f  
= 100 kHz)  
test  
CE  
SWITCHING CHARACTERISTICS  
Inductive Load (I = 5.5 A, I = 2.2 A), High Resolution Deflection  
Simulator Circuit Table 2  
ns  
C
B
Storage  
Fall Time  
t
t
2000  
200  
4000  
350  
sv  
fi  
(2) Pulse Test: Pulse Width = 300 µs, Duty Cycle  
2.0%.  
SAFE OPERATING AREA  
100  
50  
18  
20  
I
T
/I = 5  
10 µs  
C B  
10  
5
100°C  
14  
10  
6
J
100  
ns  
2
5 ms  
MJH16212  
1
0.5  
II  
DC  
0.2  
BONDING WIRE LIMIT  
THERMAL LIMIT  
0.1  
0.05  
SECOND BREAKDOWN  
T
= 25  
°C  
2
J
0.02  
0.01  
1
2
3
5
7
10  
20 30 50 70100 200300 500700 1K  
0
300  
V
600  
900  
1200  
1500  
V
, COLLECTOR–EMITTER VOLTAGE (V)  
, COLLECTOR–EMITTER VOLTAGE (V)  
CE  
CE  
Figure 2. Maximum Reverse Bias  
Safe Operating Area  
Figure 1. Maximum Forward Bias  
Safe Operating Area  
3–2  
Motorola Bipolar Power Transistor Device Data  
SAFE OPERATING AREA (continued)  
1
FORWARD BIAS  
SECOND BREAKDOWN  
DERATING  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
0.8  
0.6  
0.4  
0.2  
0
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate.  
THERMAL  
DERATING  
The data of Figure 1 is based on T = 25 C; T  
is  
J(pk)  
C
variable depending on power level. Second breakdown pulse  
limits are valid for duty cycles to 10% but must be derated  
when T 25 C. Second breakdown limitations do not der-  
C
ate the same as thermal limitations. Allowable current at the  
voltages shown on Figure 1 may be found at any case tem-  
perature by using the appropriate curve on Figure 3.  
At high case temperatures, thermal limitations will reduce  
the power that can be handled to values less than the limita-  
tions imposed by second breakdown.  
25  
45  
65  
85  
125  
105  
T
, CASE TEMPERATURE (°C)  
C
Figure 3. Power Derating  
REVERSE BIAS  
RC snubbing, load line shaping, etc.  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn–off, in most cases, with  
the base–to–emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping,  
The safe level for these devices is specified as Reverse  
Biased Safe Operating Area and represents the voltage–  
current condition allowable during reverse biased turnoff.  
This rating is verified under clamped conditions so that the  
device is never subjected to an avalanche mode. Figure 2  
gives the RBSOA characteristics.  
Table 1. RBSOA/V  
Test Circuit  
(BR)CEO(SUS)  
+ V  
11 V  
0.02 µF  
100  
H.P. 214  
OR EQUIV.  
P.G.  
2N6191  
20  
+
10 µF  
0
R
B1  
A
– 35 V  
R
B2  
0.02 µF  
+
F
50  
2N5337  
– V  
1
µ
500  
100  
I
C(pk)  
T
+ V  
1
I
C
0 V  
*I  
– V  
C
V
CE(pk)  
L
L
(I )  
A
T.U.T.  
coil Cpk  
V
CE  
T
MR856  
V
1
V
CC  
*I  
B
50  
T
adjusted to obtain I  
I
1
C(pk)  
V
CC  
B1  
clamp  
I
B
V
RBSOA  
L = 200 µH  
(BR)CEO  
I
L = 10 mH  
B2  
R
V
= ∞  
= 20 Volts  
R
= 0  
B2  
CC  
B2  
V
R
= 20 Volts  
CC  
B1  
selected for desired I  
B1  
*Tektronix  
*P–6042 or  
*Equivalent  
Note: Adjust V to obtain desired V  
at Point A.  
BE(off)  
3–3  
Motorola Bipolar Power Transistor Device Data  
10  
10  
7
5
7
5
I
= 2  
4
5.5  
8
10 A  
C
3
2
I
T
/I = 5  
C B  
3
2
= 100°C  
J
1
0.7  
0.5  
= 25°C  
1
0.7  
0.3  
0.2  
T
= 25°C  
J
0.5  
0.1  
0.07  
0.05  
0.03  
0.02  
I
/I = 10  
C B  
0.3  
0.2  
T = 100°C  
J
= 25  
°C  
0.01  
0.1  
.01  
.05 0.1 0.2 0.3 0.5  
1
2
5 7  
10  
.02.03  
3
0.1  
0.2 0.3  
0.5 0.7  
1
2
3
5
7
10  
I
, COLLECTOR CURRENT (A)  
I
, BASE CURRENT (A)  
C
B
Figure 5. Typical Emitter–Base  
Saturation Voltage  
Figure 4. Typical Collector–Emitter  
Saturation Region  
5
4
3
2
10  
7
5
I
T
/I = 10  
C B  
V
= 10 V  
= 1 MHz  
= 25°C  
= 100°C  
CE  
J
3
2
f
T
(test)  
C
= 25°C  
1
0.7  
I
T
/I = 5  
C B  
0.5  
= 100  
°C  
J
0.3  
0.2  
1
0
= 25  
1
°C  
0.1  
0.1  
0.2  
0.3  
0.5 0.7  
2
3
5
7
10  
0
1
2
3
4
5
6
I
, COLLECTOR CURRENT (A)  
I
, COLLECTOR CURRENT (A)  
C
C
Figure 7. Typical Transition Frequency  
Figure 6. Typical Collector–Emitter  
Saturation Voltage  
10000  
5000  
C
2000  
1000  
ib  
500  
200  
100  
50  
C
ob  
20  
f
= 1 MHz  
test  
10  
5
2
1
5
30  
70  
200  
1000  
300 500  
1
2
3
7
10  
20  
50  
100  
V
, REVERSE VOLTAGE (V)  
R
Figure 8. Typical Capacitance  
3–4  
Motorola Bipolar Power Transistor Device Data  
DYNAMIC DESATURATIION  
The SCANSWITCH series of bipolar power transistors are  
the voltage across the yoke drops. Roll off in the collector  
current ramp results in improper beam deflection and distor-  
tion of the image at the right edge of the screen. Design  
changes have been made in the structure of the SCANS-  
WITCH series of devices which minimize the dynamic desa-  
turation interval. Dynamic desaturation has been defined in  
specifically designed to meet the unique requirements of hor-  
izontal deflection circuits in computer monitor applications.  
Historically, deflection transistor design was focused on mini-  
mizing collector current fall time. While fall time is a valid  
figure of merit, a more important indicator of circuit perfor-  
mance as scan rates are increased is a new characteristic,  
“dynamic desaturation.” In order to assure a linear collector  
current ramp, the output transistor must remain in hard satu-  
ration during storage time and exhibit a rapid turn–off transi-  
tion. A sluggish transition results in serious consequences.  
As the saturation voltage of the output transistor increases,  
terms of the time required for the V  
to rise from 1.0 to  
CE  
5.0 volts (Figures 9 and 10) and typical performance at opti-  
mized drive conditions has been specified. Optimization of  
device structure results in a linear collector current ramp, ex-  
cellent turn–off switching performance, and significantly low-  
er overall power dissipation.  
+24 V  
Table 2. High Resolution Deflection Application Simulator  
U2  
MC7812  
G
N
D
V
V
O
I
+
(IC)  
C1  
100  
Q5  
MJ11016  
Q2  
MJ11016  
R5  
1 k  
+
µ
F
C2  
10  
µ
F
(IB)  
R1  
1 k  
+
6.2 V  
C6  
100  
+
C3  
10  
R7  
2.7 k  
R8  
9.1 k  
R9  
470  
µ
F
µ
F
R10  
47  
LY  
100 V  
C5  
0.1  
C4  
0.005  
Q3  
MJE  
15031  
D2  
CY  
R11  
470  
1 W  
7
6
MUR460  
OSC  
V
CC  
OUT  
(DC)  
R2  
R3  
8
1
%
V
CE  
LB  
R510  
250  
U1  
MC1391P  
T1  
GND  
2
Q4  
SYNC  
R6  
1 k  
DUT  
Q1  
R12  
470  
1 W  
D1  
MUR110  
R4  
22  
BS170  
T1: Ferroxcube Pot Core #1811 P3C8  
Primary/Sec. Turns Ratio = 18:6  
LB = 1.5 µH  
CY = 0.01 µF  
LY = 13 µH  
Gapped for L = 30 µH  
P
5
4
I
= 1.3 A  
DYNAMIC DESATURATION TIME  
IS MEASURED FROM V = 1 V  
B1  
CE  
TO V  
= 5 V  
CE  
3
2
I
= 4.9 A  
B2  
1
0
t
ds  
0
4
6
8
2
10  
TIME (ns)  
TIME (2 µs/DIV)  
Figure 10. Definition of Dynamic  
Desaturation Measurement  
Figure 9. Deflection Simulator Circuit Base  
Drive Waveform  
3–5  
Motorola Bipolar Power Transistor Device Data  
15  
1500  
1000  
700  
10  
7
I
= I  
B2 B1  
5
500  
I
= I  
B2 B1  
3
2
300  
200  
I
= 2 (I )  
B1  
I
= 2 (I  
)
B2  
β
= 5  
= 25°C  
B2  
B1  
f
T
J
β
= 5  
= 25°C  
f
T
J
1
100  
1
2
3
5
7
10  
15  
1
2
3
5
7
10  
15  
I
, COLLECTOR CURRENT (A)  
I , COLLECTOR CURRENT (A)  
C
C
Figure 11. Typical Resistive Storage Time  
Figure 12. Typical Resistive Fall Time  
Table 3. Resistive Load Switching  
+15  
1
100 µF  
t and t  
s
µF  
150  
100 Ω  
f
MTP8P10  
MTP8P10  
V
adjusted  
(off)  
R
B1  
MPF930  
to give specified  
off drive  
A
+10 V  
50  
MPF930  
R
B2  
MUR105  
MJE210  
MTP12N10  
V
250 V  
CC  
R
28 Ω  
5.5 A  
L
500 µF  
I
1 µF  
C
150  
I
I
1.1 A  
B1  
V
off  
Per Spec  
3.3 Ω  
B2  
T.U.T.  
A
R
R
B1  
*I  
C
R
L
*I  
Per Spec  
B
B2  
V
CC  
1
D = 0.5  
0.5  
0.2  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
0.1  
= 0.7  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
t
1
READ TIME AT t  
t
1
2
SINGLE PULSE  
T
– T = P R (t)  
(pk) θJC  
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.1  
1
10  
100  
1000  
10000  
t, TIME (ms)  
Figure 13. Thermal Response  
3–6  
Motorola Bipolar Power Transistor Device Data  
EMITTER–BASE TURN–OFF ENERGY, EB  
(off)  
drive has two additional important advantages. First, the con-  
figuration of T1 allows L to be placed outside the path of for-  
b
Emitter–base turn–off energy is a new specification  
included on the SCANSWITCH data sheets. Typical  
techniques for driving horizontal outputs rely on a pulse  
transformer to supply forward base current, and a turnoff net-  
work that includes a series base inductor to limit the rate of  
transition from forward to reverse. An alternate drive scheme  
has been used to characterize the SCANSWITCH series of  
devices (see Figure 2). This circuit ramps the base drive to  
eliminate the heavy overdrive at the beginning of the collec-  
tor current ramp and underdrive just prior to turn–off ob-  
served in typical drive topologies. This high performance  
ward base current making it unnecessary to expend energy  
to reverse the current flow as in a series based inductor. Se-  
cond, there is no base resistor to limit forward base current  
and hence no power loss associated with setting the value of  
the forward base current. The ramp generating process  
stores rather than dissipates energy. Tailoring the amount of  
energy stored in T1 to the amount of energy, EB  
, that is  
(off)  
required to turn the output transistor off results in essentially  
lossless operation. [Note: B+ and the primary inductance of  
2
T1 (L ) are chosen such that 1/2L l = EB  
P b  
.]  
(off)  
P
TEST CONDITIONS FOR ISOLATION TESTS* (MJF16212 ONLY)  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
0.099” MIN  
LEADS  
LEADS  
HEATSINK  
HEATSINK  
0.110” MIN  
Figure 14. Screw or Clip Mounting Position  
for Isolation Test Number 1  
Figure 15. Screw or Clip Mounting Position  
for Isolation Test Number 2  
* Measurement made between leads and heatsink with all leads shorted together  
MOUNTING INFORMATION** (MJF16212 ONLY)  
4–40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
NUT  
HEATSINK  
Figure 16a. Screw–Mounted  
Figure 16b. Clip–Mounted  
Figure 16. Typical Mounting Techniques*  
Laboratorytestsonalimitednumberofsamplesindicate, whenusingthescrewandcompressionwashermountingtechnique, ascrew  
.
torque of 6 to 8 in lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a con-  
stant pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affecting the pack-  
age. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10  
.
in lbs of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
Motorola Bipolar Power Transistor Device Data  
3–7  
PACKAGE DIMENSIONS  
–T–  
E
–Q–  
M
M
0.25 (0.010)  
T B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
–B–  
C
4
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
U
L
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
E
MIN  
19.7  
15.3  
4.7  
1.0  
1.27 REF  
2.0  
5.5 BSC  
2.2  
0.4  
14.2  
MAX  
20.3  
15.9  
5.3  
MIN  
MAX  
0.799  
0.626  
0.209  
0.055  
A
K
0.776  
0.602  
0.185  
0.039  
0.050 REF  
0.079  
R
1
2
3
1.4  
F
2.4  
0.094  
–Y–  
G
H
J
K
L
0.216 BSC  
P
2.6  
0.8  
14.8  
0.087  
0.016  
0.559  
0.102  
0.031  
0.583  
5.5 NOM  
0.217 NOM  
P
3.7  
3.55  
5.0 NOM  
5.5 BSC  
3.0  
4.3  
3.65  
0.146  
0.140  
0.197 NOM  
0.217 BSC  
0.118 0.134  
0.169  
0.144  
V
H
Q
R
U
V
F
J
G
D
3.4  
M
S
0.25 (0.010)  
Y
Q
STYLE 3:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 340K–01  
ISSUE O  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MJW16212/D  

相关型号:

MJW18020

NPN Silicon Power Transistors High Voltage Planar
ONSEMI

MJW18020G

NPN Silicon Power Transistors High Voltage Planar
ONSEMI

MJW18020_10

NPN Silicon Power Transistors High Voltage Planar
ONSEMI

MJW21191

8.0 AMPERES POWER TRANSISTORS COMPLEMENTARY SILICON 150 VOLTS 100 WATTS
MOTOROLA

MJW21191

POWER TRANSISTORS COMPLEMENTARY SILICON
ONSEMI

MJW21191

isc Silicon PNP Power Transistor
ISC

MJW21191

Silicon PNP Power Transistors
SAVANTIC

MJW21191G

8.0 A POWER TRANSISTORS COMPLEMENTARY SILICON 150 V, 125 W
ONSEMI

MJW21192

8.0 AMPERES POWER TRANSISTORS COMPLEMENTARY SILICON 150 VOLTS 100 WATTS
MOTOROLA

MJW21192

POWER TRANSISTORS COMPLEMENTARY SILICON
ONSEMI

MJW21192

isc Silicon NPN Power Transistor
ISC

MJW21192

Silicon NPN Power Transistors
SAVANTIC