NSVT3906DXV6T1G [ONSEMI]

双 PNP 双极晶体管;
NSVT3906DXV6T1G
型号: NSVT3906DXV6T1G
厂家: ONSEMI    ONSEMI
描述:

双 PNP 双极晶体管

小信号双极晶体管
文件: 总8页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NST3906DXV6T1,  
NST3906DXV6T5  
Dual General Purpose  
Transistor  
The NST3906DXV6T1 device is a spin- off of our popular  
SOT-23/SOT-323 three-leaded device. It is designed for general  
purpose amplifier applications and is housed in the SOT- 563  
six-leaded surface mount package. By putting two discrete devices in  
one package, this device is ideal for low-power surface mount  
applications where board space is at a premium.  
http://onsemi.com  
(3)  
(2)  
(1)  
Q
Q
1
2
h , 100-300  
FE  
Low V , 0.4 V  
CE(sat)  
Simplifies Circuit Design  
Reduces Board Space  
(4)  
(5)  
(6)  
NST3906DXV6T1  
Reduces Component Count  
Lead-Free Solder Plating  
4
5
6
MAXIMUM RATINGS  
Rating  
3
2
1
Symbol  
Value  
-40  
Unit  
Vdc  
Vdc  
Vdc  
mAdc  
V
Collector- Emitter Voltage  
Collector- Base Voltage  
Emitter- Base Voltage  
Collector Current - Continuous  
Electrostatic Discharge  
V
CEO  
V
CBO  
V
EBO  
SOT-563  
CASE 463A  
PLASTIC  
-40  
-5.0  
-200  
I
C
MARKING DIAGRAM  
ESD  
HBM>16000,  
MM>2000  
A2 D  
THERMAL CHARACTERISTICS  
Characteristic  
(One Junction Heated)  
A2 = Specific Device Code  
= Date Code  
Symbol  
Max  
Unit  
D
Total Device Dissipation  
T = 25°C  
A
P
357  
(Note 1)  
2.9  
mW  
D
Derate above 25°C  
mW/°C  
°C/W  
(Note 1)  
ORDERING INFORMATION  
Thermal Resistance  
Junction-to-Ambient  
R
350  
(Note 1)  
q
JA  
Device  
Package  
Shipping  
NST3906DXV6T1 SOT-563  
4 mm pitch  
4000/Tape & Reel  
Characteristic  
(Both Junctions Heated)  
Symbol  
Max  
Unit  
NST3906DXV6T5 SOT-563  
2 mm pitch  
8000/Tape & Reel  
Total Device Dissipation  
T = 25°C  
A
P
500  
(Note 1)  
4.0  
mW  
D
Derate above 25°C  
mW/°C  
°C/W  
°C  
(Note 1)  
Thermal Resistance  
Junction-to-Ambient  
R
250  
(Note 1)  
q
JA  
Junction and Storage  
Temperature Range  
T , T  
J
- 55 to +150  
stg  
1. FR-4 @ Minimum Pad  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
March, 2003 - Rev. 0  
NST3906DXV6T1/D  
NST3906DXV6T1, NST3906DXV6T5  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Collector- Emitter Breakdown Voltage (Note 2)  
Collector- Base Breakdown Voltage  
Emitter- Base Breakdown Voltage  
Base Cutoff Current  
V
-40  
-40  
-5.0  
-
-
-
Vdc  
Vdc  
(BR)CEO  
(BR)CBO  
(BR)EBO  
V
V
-
Vdc  
I
BL  
-50  
-50  
nAdc  
nAdc  
Collector Cutoff Current  
I
-
CEX  
ON CHARACTERISTICS (Note 2)  
DC Current Gain  
h
FE  
-
(I = -0.1 mAdc, V = -1.0 Vdc)  
60  
80  
-
-
C
CE  
(I = -1.0 mAdc, V = -1.0 Vdc)  
C
CE  
(I = -10 mAdc, V = -1.0 Vdc)  
100  
60  
30  
300  
-
-
C
CE  
(I = -50 mAdc, V = -1.0 Vdc)  
C
CE  
(I = -100 mAdc, V = -1.0 Vdc)  
C
CE  
Collector- Emitter Saturation Voltage  
(I = -10 mAdc, I = -1.0 mAdc)  
V
Vdc  
Vdc  
CE(sat)  
-
-
-0.25  
-0.4  
C
B
(I = -50 mAdc, I = -5.0 mAdc)  
C
B
Base- Emitter Saturation Voltage  
(I = -10 mAdc, I = -1.0 mAdc)  
V
BE(sat)  
-0.65  
-
-0.85  
-0.95  
C
B
(I = -50 mAdc, I = -5.0 mAdc)  
C
B
SMALL- SIGNAL CHARACTERISTICS  
Current- Gain - Bandwidth Product  
Output Capacitance  
f
250  
-
MHz  
pF  
T
C
-
-
4.5  
10.0  
12  
obo  
Input Capacitance  
C
pF  
ibo  
Input Impedance  
h
2.0  
k  
ie  
re  
fe  
(V = -10 Vdc, I = -1.0 mAdc, f = 1.0 kHz)  
CE  
C
- 4  
Voltage Feedback Ratio  
(V = -10 Vdc, I = -1.0 mAdc, f = 1.0 kHz)  
h
h
0.1  
100  
3.0  
-
10  
400  
60  
X 10  
CE  
C
Small- Signal Current Gain  
-
(V = -10 Vdc, I = -1.0 mAdc, f = 1.0 kHz)  
CE  
C
Output Admittance  
h
oe  
mmhos  
dB  
(V = -10 Vdc, I = -1.0 mAdc, f = 1.0 kHz)  
CE  
C
Noise Figure  
NF  
4.0  
(V = -5.0 Vdc, I = -100 mAdc, R = 1.0 k , f = 1.0 kHz)  
CE  
C
S
SWITCHING CHARACTERISTICS  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
(V  
= -3.0 Vdc, V = 0.5 Vdc)  
t
t
-
-
-
-
35  
35  
CC  
BE  
d
ns  
ns  
(I = -10 mAdc, I = -1.0 mAdc)  
C
t
r
B1  
(V  
CC  
= -3.0 Vdc, I = -10 mAdc)  
225  
75  
C
s
(I = I = -1.0 mAdc)  
B1  
t
f
B2  
2. Pulse Test: Pulse Width 300 µs; Duty Cycle 2.0%.  
http://onsemi.com  
2
NST3906DXV6T1, NST3906DXV6T5  
3 V  
3 V  
< 1 ns  
+9.1 V  
275  
275  
< 1 ns  
+0.5 V  
10 k  
10 k  
0
C < 4 pF*  
s
C < 4 pF*  
s
1N916  
10.6 V  
300 ns  
10 < t < 500 ms  
1
t
1
10.9 V  
DUTY CYCLE = 2%  
DUTY CYCLE = 2%  
* Total shunt capacitance of test jig and connectors  
Figure 1. Delay and Rise Time  
Equivalent Test Circuit  
Figure 2. Storage and Fall Time  
Equivalent Test Circuit  
TYPICAL TRANSIENT CHARACTERISTICS  
10  
7.0  
C
obo  
5.0  
C
ibo  
3.0  
2.0  
1.0  
0.1  
0.2 0.3 0.5 0.7 1.0  
2.0 3.0 5.0 7.0 10  
20 30 40  
REVERSE BIAS (VOLTS)  
Figure 3. Capacitance  
T = 25°C  
J
T = 125°C  
J
500  
500  
I /I = 10  
C B  
V
= 40 V  
CC  
300  
200  
300  
200  
I = I  
B1 B2  
I /I = 20  
C B  
100  
70  
100  
70  
t @ V = 3.0 V  
r CC  
50  
50  
15 V  
30  
30  
20  
I /I = 10  
C B  
20  
40 V  
10  
10  
2.0 V  
7
5
7
5
t @ V = 0 V  
OB  
d
1.0  
2.0 3.0 5.0 7.0 10  
20 30 50 70 100  
200  
200  
1.0  
2.0 3.0 5.0 7.0 10  
20 30 50  
70 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 5. Fall Time  
Figure 4. Turn- On Time  
http://onsemi.com  
3
NST3906DXV6T1, NST3906DXV6T5  
TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS  
NOISE FIGURE VARIATIONS  
(VCE = -5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz)  
5.0  
4.0  
3.0  
2.0  
1.0  
0
12  
SOURCE RESISTANCE = 200 W  
= 1.0 mA  
f = 1.0 kHz  
I
= 1.0 mA  
C
I
C
10  
8
I
C
= 0.5 mA  
SOURCE RESISTANCE = 200 W  
= 0.5 mA  
I
C
SOURCE RESISTANCE = 2.0 k  
= 50 mA  
6
I
C
4
I
= 50 mA  
C
SOURCE RESISTANCE = 2.0 k  
= 100 mA  
I
= 100 mA  
C
2
I
C
0
0.1 0.2  
0.4  
1.0 2.0 4.0  
10  
20  
40  
100  
0.1 0.2  
0.4  
1.0 2.0  
4.0  
10  
20  
40  
100  
f, FREQUENCY (kHz)  
R , SOURCE RESISTANCE (k OHMS)  
g
Figure 6.  
Figure 7.  
h PARAMETERS  
(VCE = -10 Vdc, f = 1.0 kHz, TA = 25°C)  
300  
200  
100  
70  
50  
30  
20  
100  
70  
10  
7
50  
30  
5
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 8. Current Gain  
Figure 9. Output Admittance  
20  
10  
10  
7.0  
5.0  
7.0  
5.0  
3.0  
2.0  
3.0  
2.0  
1.0  
0.7  
0.5  
1.0  
0.7  
0.5  
0.3  
0.2  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 10. Input Impedance  
Figure 11. Voltage Feedback Ratio  
http://onsemi.com  
4
NST3906DXV6T1, NST3906DXV6T5  
TYPICAL STATIC CHARACTERISTICS  
2.0  
1.0  
T = +125°C  
J
V
CE  
= 1.0 V  
+25°C  
−ꢀ55°C  
0.7  
0.5  
0.3  
0.2  
0.1  
0.1  
0.2  
0.3  
0.5 0.7  
1.0  
2.0  
3.0  
5.0 7.0 10  
20  
30  
50  
70 100  
200  
I , COLLECTOR CURRENT (mA)  
C
Figure 12. DC Current Gain  
1.0  
0.8  
0.6  
0.4  
T = 25°C  
J
I
C
= 1.0 mA  
10 mA  
30 mA  
100 mA  
0.2  
0
0.01  
0.02  
0.03  
0.05 0.07 0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
I , BASE CURRENT (mA)  
B
Figure 13. Collector Saturation Region  
1.0  
0.8  
0.6  
1.0  
T = 25°C  
J
V
@ I /I = 10  
BE(sat) C B  
0.5  
0
+25°C TO +125°C  
−ꢀ55°C TO +25°C  
q
FOR V  
CE(sat)  
VC  
V
BE  
@ V = 1.0 V  
CE  
−ꢀ0.5  
−ꢀ1.0  
+25°C TO +125°C  
−ꢀ55°C TO +25°C  
0.4  
0.2  
0
V
@ I /I = 10  
C B  
CE(sat)  
q
FOR V  
BE(sat)  
VB  
−ꢀ1.5  
−ꢀ2.0  
1.0  
2.0 5.0  
10  
20  
50  
100  
200  
0
20  
40  
60  
80 100 120 140 160 180 200  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 14. “ON” Voltages  
Figure 15. Temperature Coefficients  
http://onsemi.com  
5
NST3906DXV6T1, NST3906DXV6T5  
INFORMATION FOR USING THE SOT-563 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.3  
1.0  
0.45  
1.35  
0.5  
0.5  
Dimensions in mm  
SOT-563  
SOT-563 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT-563 is a function of  
the pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipa-  
tion. Power dissipation for a surface mount device is deter-  
The melting temperature of solder is higher than the  
rated temperature of the device. When the entire device is  
heated to a high temperature, failure to complete soldering  
within a short time could result in device failure. There-  
fore, the following items should always be observed in  
order to minimize the thermal stress to which the devices  
are subjected.  
mined by T , the maximum rated junction temperature  
J(max)  
of the die, R , the thermal resistance from the device  
θJA  
junction to ambient, and the operating temperature, T .  
A
Using the values provided on the data sheet for the  
SOT-563 package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
TJ(max) - TA  
PD  
=
Rθ  
JA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 150 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C - 25°C  
833°C/W  
PD  
=
= 150 milliwatts  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
The 833°C/W for the SOT-563 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 150 milli-  
watts. There are other alternatives to achieving higher  
power dissipation from the SOT-563 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause exces-  
sive thermal shock and stress which can result in damage  
to the device  
http://onsemi.com  
6
NST3906DXV6T1, NST3906DXV6T5  
PACKAGE DIMENSIONS  
SOT-563, 6 LEAD  
CASE 463A-01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETERS  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
C
-X-  
K
6
5
2
4
3
MILLIMETERS  
DIM MIN MAX  
INCHES  
B
-Y-  
MIN  
MAX  
0.067  
0.051  
0.024  
0.011  
S
A
B
C
D
G
J
1.50  
1.10  
0.50  
0.17  
1.70 0.059  
1.30 0.043  
0.60 0.020  
0.27 0.007  
1
0.50 BSC  
0.020 BSC  
D 56 PL  
J
0.08  
0.10  
1.50  
0.18 0.003  
0.30 0.004  
1.70 0.059  
0.007  
0.012  
0.067  
G
M
0.08 (0.003)  
X Y  
K
S
STYLE 1:  
PIN 1. EMITTER 1  
2. BASE 1  
STYLE 2:  
STYLE 3:  
PIN 1. CATHODE 1  
2. CATHODE 1  
STYLE 4:  
PIN 1. EMITTER 1  
2. EMITTER2  
3. BASE 2  
4. COLLECTOR 2  
5. BASE 1  
6. COLLECTOR 1  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
3. COLLECTOR 2  
4. EMITTER 2  
5. BASE 2  
3. ANODE/ANODE 2  
4. CATHODE 2  
5. CATHODE 2  
6. COLLECTOR 1  
6. ANODE/ANODE 1  
http://onsemi.com  
7
NST3906DXV6T1, NST3906DXV6T5  
Thermal Clad is a registered trademark of the Bergquist Company.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051  
Phone: 81-3-5773-3850  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800-282-9855 Toll Free USA/Canada  
NST3906DXV6T1/D  

相关型号:

NSVT3946DP6T5G

NPN PNP 双极晶体管
ONSEMI

NSVT3946DXV6T1G

双 NPN PNP 双极晶体管
ONSEMI

NSVT45010MW6T1G

双 PNP 双极晶体管
ONSEMI

NSVT45010MW6T3G

双 PNP 双极晶体管
ONSEMI

NSVT45011MW6T1G

TRANSISTOR SMALL SIGNAL TRANSISTOR, BIP General Purpose Small Signal
ONSEMI

NSVT45011MW6T3G

General Purpose Transistor, Dual NPN, Matched
ONSEMI

NSVT489AMT1G

High Current Surface Mount NPN Silicon Low VCE(sat) Switching Transistor for Load Management in Portable Applications
ONSEMI

NSVT5401MR6T1G

PNP General-Purpose Amplifier
ONSEMI

NSVT5551DW1T1G

NPN Multi-Chip
ONSEMI

NSVT5551MR6T1G

NPN General-Purpose Amplifier
ONSEMI

NSVT65010MW6T1G

双匹配 PNP XSTR 65V
ONSEMI

NSVT65011MW6T1G

双匹配 NPN XSTR 65V
ONSEMI