STV6886 [STMICROELECTRONICS]

LOW-COST I2C CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR; 低成本I2C可控弯曲处理器的MultiSync显示器
STV6886
型号: STV6886
厂家: ST    ST
描述:

LOW-COST I2C CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR
低成本I2C可控弯曲处理器的MultiSync显示器

显示器 消费电路 商用集成电路 偏转集成电路 光电二极管 监视器 信息通信管理
文件: 总43页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV6886  
2
LOW-COST I C CONTROLLED DEFLECTION PROCESSOR  
FOR MULTISYNC MONITOR  
FEATURES  
DESCRIPTION  
The STV6886 is a monolithic integrated circuit as-  
sembled in a 32-pin shrink dual-in-line plastic  
package. This IC controls all the functions related  
to horizontal and vertical deflection in multimode  
or multi-frequency computer display monitors.  
General  
SYNC PROCESSOR (separate or composite)  
12V SUPPLY VOLTAGE  
8V REFERENCE VOLTAGE  
HOR. LOCK/UNLOCK OUTPUT  
HOR. & VERT. LOCK/UNLOCK INDICATION  
The internal sync processor, combined with the  
powerful geometry correction block, makes the  
STV6886 suitable for very high performance mon-  
itors, using few external components.  
2
READ/WRITE I C INTERFACE  
HORIZONTAL AND VERTICAL MOIRE  
B+ REGULATOR  
Combined with other ST components dedicated  
for CRT monitors (microcontroller, video preampli-  
fier, video amplifier, OSD controller) the STV6886  
- Internal PWM generator for B+ current mode  
step-up converter  
2
allows fully I C bus-controlled computer display  
- Switchable to step-down converter  
2
monitors to be built with a reduced number of ex-  
ternal components.  
- I C-adjustable B+ reference voltage  
- Output pulses synchronized on horizontal  
frequency  
- Internal maximum current limitation.  
Horizontal  
Self-adaptative  
Dual PLL concept  
80kHz maximum frequency  
X-ray protection input  
SHRINK32 (Plastic Package)  
ORDER CODE: STV6886  
2
I C controls: Horizontal duty-cycle, H-position,  
PIN CONNECTIONS  
horizontal size amplitude  
Vertical  
H/HVIN  
VSYNCIN  
HMOIRE/HLOCK  
1
2
3
32  
31  
30  
5V  
SDA  
SCL  
Vertical ramp generator  
50 to 120 Hz agc loop  
Geometry tracking with VPOS & VAMP  
PLL2C  
C0  
R0  
PLL1F  
4
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
CC  
BOUT  
GND  
HOUT  
XRAY  
EWOUT  
VOUT  
VCAP  
2
5
I C controls:VAMP, VPOS, S-CORR, C-CORR  
6
Vertical breathing compensation  
7
2
I C Geometry Corrections  
HPOSITION  
HFOCUSCAP  
FOCUS-OUT  
HGND  
8
9
Vertical parabola generator (Pin Cushion - E/W,  
Keystone, Corner Correction)  
Horizontal dynamic phase  
10  
11  
12  
HFLY  
V
REF  
(Side Pin Balance & Parallelogram)  
HREF  
COMP  
REGIN  
13  
14  
15  
16  
20  
19  
18  
17  
VAGCCAP  
VGND  
VBREATH  
B + GND  
Horizontal and vertical dynamic focus  
(Horizontal Focus Amplitude, Horizontal Focus  
Symmetry, Vertical Focus Amplitude)  
I
SENSE  
Version 4.2  
April 2000  
1/43  
1
TABLE OF CONTENTS  
PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
QUICK REFERENCE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Supply and reference voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
I2C READ/WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SYNC PROCESSOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
HORIZONTAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VERTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DYNAMIC FOCUS SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
GEOMETRY CONTROL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MOIRE CANCELLATION SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
B+ SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TYPICAL OUTPUT WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
I2C BUS ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
OPERATING DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1 GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.1 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
1.2 I C Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.3 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.4 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.5 Sync Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.6 Sync Identification Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.7 IC status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
1.8 Sync Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
1.9 Sync Processor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2 HORIZONTAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.1 Internal Input Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.2 PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.3 PLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.4 Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.5 X-RAY Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.6 Horizontal and Vertical Dynamic Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.7 Horizontal Moiré Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3 VERTICAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.2 I2C Control Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.3 Vertical Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.4 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.5 Geometric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.6 E/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.7 Dynamic Horizontal Phase Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4 DC/DC CONVERTER PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.1 Step-up Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.2 Step-down Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.3 Step-up and Step-down Configuration Comparison . . . . . . . . . . . . . . . . . . . . . . . . 32  
2
INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2/43  
STV6886  
PIN CONNECTIONS  
Pin  
1
Name  
H/HVIN  
Function  
TTL-compatible Horizontal sync Input (separate or composite)  
TTL-compatible Vertical sync Input (for separated H&V)  
2
VSYNCIN  
3
HMOIRE/  
HLOCK  
Horizontal Moiré Output (to be connected to PLL2C through a resistor divider), HLock  
Output  
4
5
6
7
8
PLL2C  
C0  
Second PLL Loop Filter  
Horizontal Oscillator Capacitor  
Horizontal Oscillator Resistor  
R0  
PLL1F  
HPOSITION  
First PLL Loop Filter  
Horizontal Position Filter (capacitor to be connected to HGND)  
HFOCUS-  
CAP  
9
Horizontal Dynamic Focus Oscillator Capacitor  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
FOCUS OUT  
HGND  
Mixed Horizontal and Vertical Dynamic Focus Output  
Horizontal Section Ground  
HFLY  
Horizontal Flyback Input (positive polarity)  
HREF  
Horizontal Section Reference Voltage (to be filtered)  
B+ Error Amplifier Output for frequency compensation and gain setting  
Feedback Input of B+ control loop  
COMP  
REGIN  
I
Sensing of external B+ switching transistor current, or switch for step-down converter  
Ground (related to B+ reference)  
SENSE  
B+GND  
VBREATH  
VGND  
V Breathing Input Control (compensation of vertical amplitude against EHV variation)  
Vertical Section Ground  
VAGCCAP  
Memory Capacitor for Automatic Gain Control in Vertical Ramp Generator  
Vertical Section Reference Voltage (to be filtered to pin 19)  
Vertical Sawtooth Generator Capacitor  
V
REF  
VCAP  
VOUT  
Vertical Ramp Output (with frequency-independent amplitude and S or C Corrections  
if any). It includes vertical position and vertical moiré voltages.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EWOUT  
XRAY  
HOUT  
GND  
Pin Cushion (E/W) Correction Parabola Output  
X-RAY protection input (with internal latch)  
Horizontal Drive Output (NPN open collector)  
General Ground  
BOUT  
B+ PWM Regulator Output (NPN open collector)  
Supply Voltage(12V typ) (referenced to Pin 27)  
V
CC  
2
SCL  
SDA  
5V  
I C Clock Input  
2
I C Data Input  
5V Supply Voltage  
3/43  
STV6886  
QUICK REFERENCE DATA  
Parameter  
Value  
YES  
YES  
NO  
Unit  
Any polarity on H Sync & V Sync inputs  
TTL or composite Syncs  
Sync on Green  
Horizontal Frequency  
15 to 80  
1 to 3.5 f0  
NO  
kHz  
Horizontal Autosync Range (for given R0 and C0. Can be easily increased by application)  
Control of free-running frequency  
Frequency Generator for Burn-in  
NO  
2
Control of H-Position through I C  
YES  
30 to 65  
NO  
2
Control for H-Duty Cycle through I C  
%
PLL1 Inhibition Possibility  
Output for Horizontal Lock/Unlock  
Dual Polarity H-Drive Outputs  
YES  
NO  
Vertical Frequency  
35 to 150  
50 to 120  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
Hz  
Hz  
Vertical Autosync Range (for 150nF on Pin 22 and 470nF on Pin 20)  
2
Vertical S-Correction (adapted to normal or super flat tube), controlled through I C  
2
Vertical C-Correction, controlled through I C  
2
Control of Vertical Amplitude through I C  
2
Control of Vertical Position through I C  
Input for Vertical Amplitude compensation versus EHV  
E/W Correction Output (also known as Pin Cushion Output)  
2
Horizontal Size Adjustment through I C control of E/W Output DC level  
2
Control of E/W (Pincushion) Adjustment through I C  
2
Control of Keystone (Trapezoïd) Adjustment through I C  
2
Control of Corner Adjustment through I C  
Fully integrated Dynamic Horizontal Phase Control  
2
Control of Side Pin Balance through I C  
2
Control of Parallelogram through I C  
H/V composite Dynamic Focus Output  
2
Control of Horizontal Dynamic Focus Amplitude through I C  
2
Control of Horizontal Dynamic Focus Symmetry through I C  
2
Control of Vertical Dynamic Focus Amplitude through I C  
Tracking of Geometric Corrections and of Vertical focus with Vertical Amplitude and Position  
2
Control of Horizontal and Vertical Moiré cancellations through I C  
2
Optimisation of HMoiré frequency through I C  
2
B+ Regulation, adjustable through I C  
Stand-by function, disabling H and V scanning and B+  
X-Ray protection, disabling H scanning and B+  
Blanking Outputs  
2
Fast I C Read/Write  
400  
kHz  
2
I C indication of the presence of Syncs (biased from 5V alone)  
YES  
YES  
YES  
2
I C indication of the polarity and Type of Syncs  
2
I C indication of Lock/Unlock, for both Horizontal and Vertical sections  
4/43  
PLL1F  
7
POSITION R0 C0  
HFLY PLL2C  
HOUT  
26  
8
6
5
12  
4
11  
19  
17  
29  
25  
HGND  
VGND  
GND  
Phase/Frequency  
Comparator  
H-Phase(7bits)  
Phase  
Comparator  
Hout  
Buffer  
Phase  
Shifter  
H-Duty  
(7bits)  
VCO  
Lock/Unlock  
Identification  
VCC  
Safety  
Processor  
SyncInput  
Select  
SPinbal  
7bits  
Sync  
Processor  
1
2
H/HVIN  
XRAY  
V
SYNCIN  
(1bit)  
+OUT  
28  
2
x
16 ISENSE  
B+  
Controller  
VSYNC  
HFLY  
14  
15  
COMP  
REGIN  
x
HorizontalMoire  
Generator  
7 bits+ON/OFF  
+Frequency  
HMOIRE  
/HLOCK  
3
Key bal  
7bits  
5V  
Internal  
reference  
(7bits)  
VDFAMP  
7bits  
2
x
10 FOCUS  
Corner  
7bits  
Geometry  
Tracking  
Amp  
4
2
x
x
Symmetry  
2x7bits  
SDA 31  
E/Wpcc  
7bits  
HFOCUS-  
CAP  
9
7 bits  
7 bits  
30  
27  
SCL  
VAMP  
7bits  
2
x
2
I C Interface  
GND  
EWOUT  
Vertical  
24  
Keyst.  
7 bits  
S and C  
Correction  
5V 32  
Oscillator  
HSize  
DC  
x
RampGenerator  
7 bits  
VerticalMoire  
Cancel  
7bits+ON/OFF  
VPOS  
7bits  
13  
HREF  
H
ref  
V
VREF 21  
ref  
VSYNC  
STV6886  
22 20  
18 23  
V
V
VBREATHV  
OUT  
CAP AGCCAP  
STV6886  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
13.5  
5.7  
Unit  
V
V
V
Supply Voltage (Pin 29)  
Supply Voltage (Pin 32)  
CC  
DD  
V
4.0  
5.5  
6.4  
8.0  
V
V
V
V
V
V
Max Voltage on  
Pin 4  
Pin 9  
Pin 5  
VIN  
Pins 6, 7, 8, 14, 15, 16, 20, 22  
Pins 3, 10, 18, 23, 24, 25, 26, 28  
Pins 1, 2  
V
CC  
V
DD  
Pins 30, 31  
5
V
ESD susceptibility  
through 1.5kΩ  
Human Body Model, 100pF Discharge  
2
300  
kV  
V
VESD  
EIAJ Norm, 200pF Discharge through 0Ω  
Tstg  
Tj  
Storage Temperature  
Junction Temperature  
-40, +150  
+150  
°C  
°C  
°C  
Toper  
Operating Temperature  
0, +70  
THERMAL DATA  
Symbol  
Parameter  
Max. Junction-Ambient Thermal Resistance  
Value  
Unit  
Rth(j-a)  
65  
°C/W  
SUPPLY AND REFERENCE VOLTAGES  
Electrical Characteristics (V = 12V, T  
= 25°C unless otherwise indicated)  
CC  
Parameter  
Supply Voltage  
amb  
Symbol  
Test Conditions  
Pin 29  
Min.  
10.8  
4.5  
Typ.  
12  
5
Max. Units  
V
V
13.2  
5.5  
V
V
CC  
DD  
Supply Voltage  
Pin 32  
I
Supply Current  
Pin 29  
50  
5
mA  
mA  
V
CC  
I
Supply Current  
Pin 32  
DD  
V
V
Horizontal Reference Voltage  
Vertical Reference Voltage  
Pin 13, I = -2mA  
Pin 21, I = -2mA  
Pin 13  
7.6  
7.6  
8.2  
8.2  
8.8  
8.8  
5
REF-H  
REF-V  
REF-H  
REF-V  
V
I
I
Max. Sourced Current on V  
Max. Sourced Current on V  
mA  
mA  
REF-H  
REF-V  
Pin 21  
5
6/43  
STV6886  
2
I C READ/WRITE  
Electrical Characteristics (VDD = 5V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
2
(1)  
I C PROCESSOR  
Fscl  
Tlow  
Thigh  
Vinth  
Maximum Clock Frequency  
Low period of the SCL Clock  
Pin 30  
400  
kHz  
µs  
µs  
V
Pin 30  
1.3  
0.6  
High period of the SCL Clock  
SDA and SCL Input Threshold  
Pin 30  
Pins 30, 31  
2.2  
Acknowledged Output Voltage on SDA  
input with 3mA  
VACK  
Pin 31  
0.4  
20  
V
Leakage current into SDA and SCL with  
no logic supply  
V
= 0  
µA  
2
DD  
I C leak  
Pins 30, 31 = 5 V  
2
Note:  
1
See also I C Bus Address Table.  
SYNC PROCESSOR  
Operating Conditions (VDD = 5V, VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
HSVR  
Voltage on H/HVIN Input  
Pin 1  
0
5
V
Minimum Horizontal Input Pulses Dura-  
tion  
MinD  
Pin 1  
Pin 1  
0.7  
µs  
Maximum Horizontal Input Signal Duty  
Cycle  
Mduty  
25  
5
%
VSVR  
VSW  
Voltage on VSYNCIN  
Pin 2  
Pin 2  
0
5
V
µs  
%
Minimum Vertical Sync Pulse Width  
VSmD  
Maximum Vertical Sync Input Duty Cycle Pin 2  
15  
Maximum Vertical Sync Width on TTL H/  
Vcomposite  
VextM  
Pin 1  
750  
µs  
Electrical Characteristics (VDD = 5V, VCC = 12V, T  
= 25°C)  
amb  
Symbol  
VINTH  
RIN  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
Horizontal and Vertical Input Logic Level High Level  
(Pins 1, 2) Low Level  
2.2  
V
0.8  
V
Horizontal and Vertical Pull-Up Resistor Pins 1, 2  
Extracted Vsync Integration Time (% of  
250  
35  
kΩ  
VoutT  
C0 = 820pF  
26  
%
(2)  
T ) on H/VComposite  
H
Note:  
2
T
is the horizontal period.  
H
7/43  
STV6886  
HORIZONTAL SECTION  
Operating Conditions  
Symbol  
VCO  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
I
Max Current from Pin 6  
Pin 6  
1.5  
80  
mA  
0max  
F(max.)  
Maximum Oscillator Frequency  
kHz  
OUTPUT SECTION  
I12m  
Maximum Input Peak Current  
Pin 12  
5
mA  
mA  
Horizontal Drive Output Maximum Cur-  
rent  
HOI  
Pin 26, Sunk current  
30  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
1st PLL SECTION  
Delay Time for detecting polarity  
change  
HpoIT  
Pin 1  
0.75  
ms  
(3)  
V
= 8.2V  
REF-H  
Vvco  
VCO Control Voltage (Pin 7)  
VCO Gain (Pin 7)  
f
= f  
f (Max.)  
1.4  
4.9  
V
V
H
0
f
H= H  
R = 6.49k,  
C = 820pF  
0
Vcog  
Hph  
Tbd  
15.9  
Tbd kHz/V  
%
0
% of Horizontal  
Period  
(4)  
Horizontal Phase Adjustment  
±10  
(4)  
Horizontal Phase Setting Value (Pin 8)  
Minimum Value  
Typical Value  
Sub-Address 01  
Vbmi  
Vbtyp  
Vbmax  
Byte  
Byte  
Byte  
x1111111  
x1000000  
x0000000  
2.9  
3.5  
4.2  
V
V
V
Maximum Value  
IPII1U  
IPII1L  
PLL1 Unlocked  
PLL1 Locked  
±140  
±1  
µA  
mA  
PLL1 Filter Charge Current  
f
Free Running Frequency  
R = 6.49k, C = 820pF  
Tbd  
22.8  
Tbd  
kHz  
o
0
0
Not including external  
componant drift  
(5)  
dfo/dT  
CR  
Free Running Frequency Thermal Drift  
-150  
ppm/C  
fH(Min.)  
f +0.5  
kHz  
kHz  
o
PLL1 Capture Range  
(6)  
fH(Max.)  
3.5f  
o
Sub-address 02  
1xxx xxxx  
0000 0000  
DC level pin 3 when PLL1 is  
unlocked  
6
V
V
V
HUnlock  
(7)  
0.3  
2.75  
0111 1111  
3
8/43  
STV6886  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
2nd PLL SECTION AND HORIZONTAL OUTPUT SECTION  
FBth  
Hjit  
Flyback Input Threshold Voltage (Pin 12)  
0.65  
0.75  
70  
V
(8)  
Horizontal Jitter  
At 31.4kHz  
ppm  
HDmin  
HDmax  
Horizontal Drive Output Duty-Cycle (Pin Sub-Address 00  
(9)  
26)  
Byte x1111111  
Byte x0000000  
30  
65  
%
%
(10)  
X-RAY Protection Input Threshold Volt-  
age,  
XRAYth  
Vphi2  
Pin 25, (see fig. 14)  
7.6  
8.2  
8.8  
0.4  
V
Internal Clamping Levels on 2nd PLL  
Loop Filter (Pin 4)  
Low Level  
High Level  
1.6  
4.2  
V
V
Inhibition threshold (The condition V  
<
CC  
VSCinh  
HDvd  
VSCinh will stop H-Out, V-Out, B-Out and Pin 29  
reset X-RAY)  
7.5  
V
V
Horizontal Drive Output (low level)  
Pin 26, I  
= 30mA  
OUT  
Note:  
3
4
5
6
7
This delay is necessary to avoid a wrong detection of polarity change in the case of a composite sync.  
See Figure 10 for explanation of reference phase.  
These parameters are not tested on each unit. They are measured during our internal qualification.  
A larger range may be obtained by application.  
When at 0xxx xxxx, (HMoiré/HLock not selected), Pin 3 is a DAC with 0.3...2.75V range. When at 1xxx xxxx  
(HMoiré/HLock selected) and PLL1 is locked, Pin 3 provides the waveform for HMoiré. See also Moiré  
section.  
6
8
9
Hjit = 10 x(Standard deviation/Horizontal period).  
Duty Cycle is the ratio between the output transistor OFF time and the period. The scanning transistor is  
controlled OFF when the output transistor is OFF.  
10 Initial Condition for Safe Start Up.  
9/43  
STV6886  
VERTICAL SECTION  
Operating Conditions  
Symbol  
Parameter  
Test Conditions  
Pin 20  
Min.  
Typ.  
Max. Units  
Minimum Load for less than 1% Vertical  
Amplitude Drift  
R
65  
MΩ  
LOAD  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
2.1  
Max. Units  
VRB  
Voltage at Ramp Bottom Point  
Pin 22  
V
V
VRT  
Voltage at Ramp Top Point (with Sync) Pin 22  
5.1  
Voltage at Ramp Top Point (without  
Sync)  
VRT-  
0.1  
VRTF  
Pin 22  
Pin 22, C = 150nF  
V
VSTD  
VFRF  
ASFR  
Vertical Sawtooth Discharge Time  
70  
µs  
22  
(12)  
Vertical Free Running Frequency  
Pin 22, C = 150nF  
100  
Hz  
22  
(13)  
AUTO-SYNC Frequency  
C
= 150nF ±5%  
50  
120  
Hz  
22  
Ramp Amplitude Drift Versus Frequency  
at Maximum Vertical Amplitude  
C
= 150nF  
ppm/  
Hz  
22  
RAFD  
Rlin  
200  
0.5  
(11)  
50Hz< f < 120Hz  
(12)  
Ramp Linearity on Pin 22  
2.5V < V < 4.5V  
%
27  
Sub Address 06  
Vertical Position Adjustment Voltage (Pin Byte 00000000  
3.2  
3.6  
4.0  
Tbd  
Tbd  
V
V
V
VPOS  
23 - VOUT mean value)  
Byte 01000000  
Byte 01111111  
Tbd  
Tbd  
Sub Address 05  
Byte 10000000  
Byte 11000000  
Byte 11111111  
Vertical Output Voltage  
(peak-to-peak on Pin 23)  
2.15  
3.0  
3.9  
V
V
V
VOR  
VOI  
Vertical Output Maximum Current  
(Pin 23)  
±5  
mA  
Max Vertical S-Correction Amplitude (TV Sub Address 07  
is the vertical period)  
(0xxxxxxx inhibits S-CORR  
11111111 gives max S-CORR)  
Byte 11111111  
V/V at TV/4  
dVS  
-3.5  
+3.5  
%
%
PP  
V/V at 3TV/4  
PP  
Sub Address 08  
V/V at TV/2  
PP  
Vertical C-Corr Amplitude  
(0xxxxxxx inhibits C-CORR)  
Ccorr  
Byte 10000000  
Byte 11000000  
Byte 11111111  
-3  
0
+3  
%
%
%
(14)  
BRRANG  
BRADj  
DC Breathing Control Range  
V
1
12  
V
18  
Vertical Output Variation versus DC  
Breathing Control (Pin 23)  
V
> V  
0
-2.5  
%/V  
%/V  
18  
REF-V  
1V<V < V  
18  
REF-V  
Note: 11 These parameters are not tested on each unit. They are measured during our internal qualification procedure.  
Note: 12 Set Register 07 at Byte 0xxxxxxx (S correction inhibited) and Register 08 at Byte 0xxxxxxx (C correction  
inhibited), to obtain a vertical sawtooth with linear shape.  
Note: 13 This is the frequency range for which the vertical oscillator will automatically synchronize, using a single  
capacitor value on Pin22 and Pin 20, and with a constant ramp amplitude.  
Note: 14 When not used, the DC breathing control pin must be connected to 12V.  
10/43  
STV6886  
DYNAMIC FOCUS SECTION  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
HORIZONTAL DYNAMIC FOCUS FUNCTION (seeFigure 15 on page 28)  
Horizontal Dynamic Focus Sawtooth  
Minimum Level  
Maximum Level  
Pin 9, capacitor on HFO-  
CUSCAP and  
HDFst  
HDFdis  
HDFstart  
2.2  
4.9  
V
V
C0 = 820pF, T = 20µs  
H
Horizontal Dynamic Focus Sawtooth  
Discharge Width  
Triggered by HDFstart  
400  
ns  
Internal Phase Advance versus HFLY  
middle  
1
µs  
(Independent of frequency)  
HDFDC  
TDFHD  
Bottom DC Output Level  
R
= 10k, Pin 10  
2.1  
V
LOAD  
(11)  
DC Output Voltage Thermal Drift  
200  
ppm/C  
Horizontal Dynamic Focus  
Amplitude  
Sub-Address 03,  
Pin 10, fH = 50kHz,  
Symmetric Wave Form  
x1111111  
x1000000  
x0000000  
HDFamp  
Max Byte  
Typ Byte  
Max Byte  
1
1.5  
3.5  
V
V
V
PP  
PP  
PP  
Horizontal Dynamic FocusSymmetry  
(For time reference, see Figure 15)  
Max Phase Advance  
Subaddress 04  
HDFKeyst  
x1111111 (decimal 127)  
x0000000 (decimal 0)  
16  
16  
%
%
Max Phase Delay  
VERTICAL DYNAMIC FOCUS FUNCTION (see Figure 1)  
Sub-Address 0F  
Vertical Dynamic Focus Parabola (added  
to horizontal) Amplitude with VAMP and  
VPOS Typical  
Min Byte x0000000  
Typ Byte x1000000  
Max Byte x1111111  
0
0.5  
1
V
V
V
PP  
PP  
PP  
AMPVDF  
VDFAMP  
Parabola Amplitude Function of VAMP  
(tracking between VAMP and VDF) with Byte  
Sub-Address 05  
x0000000  
x1000000  
x1111111  
0.6  
1
1.5  
V
V
V
PP  
PP  
PP  
VPOS Typ. (see Figure 1 on page 15,  
Byte  
Byte  
(15)  
and  
)
Parabola Asymmetry Function of VPOS Sub-Address 06  
Control (tracking between VPOS and  
VDF) with VAMP Max.  
VHDFKeyt  
B/A Ratio  
A/B Ratio  
Byte  
Byte  
x0000000  
x1111111  
0.52  
0.52  
Note: 15 S and C correction are inhibited to obtain a linear vertical sawtooth.  
11/43  
STV6886  
GEOMETRY CONTROL SECTION  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
SYMMETRIC CONTROL THROUGH E/W OUTPUT (see Figure 2 on page 15 and Figure 4 on page 15)  
VEWM  
VEWm  
Maximum E/W Output Voltage  
Minimum E/W Output Voltage  
Pin 24  
Pin 24  
6.5  
V
V
1.8  
For control of Horizontal size.  
DC Output Voltage with:  
-E/W Corner inhibited  
-Keystone inhibited  
Pin 24, see Figure 2  
Subaddress 11  
Byte x0000000  
Byte x1000000  
Byte x1111111  
EW  
2
3.25  
4.2  
V
V
V
DC  
(16)  
TDEW  
DC Output Voltage Thermal Drift  
See  
100  
ppm/C  
DC  
Parabola Amplitude with:  
-VAMP max,  
-VPOS typ.,  
Subaddress 0A  
Byte 11111111  
Byte 11000000  
Byte 10000000  
1.4  
0.7  
0
V
V
V
PP  
PP  
PP  
EWpara  
EWtrack  
-Keystone and Corner inhibited  
Parabola Amplitude Function of VAMP  
Control (tracking between VAMP & E/W):  
-VPOS typ.  
Subaddress 05  
Byte 10000000  
Byte 11000000  
Byte 11111111  
0.2  
0.4  
0.7  
V
V
V
PP  
PP  
PP  
-E/W Amplitude, Corner & Keystone in-  
(17)  
hibited  
Keystone Adjustment Capability with: -  
VPOS typ.  
-E/W inhibited,  
Subaddress 09  
Byte 10000000  
Byte 11111111  
KeyAdj  
0.4  
0.4  
V
V
PP  
PP  
-Corner inhibited  
-Vert. Amplitude max  
(17)  
(see  
and Figure 4)  
Corner Adjustment Capability with:  
-VPOS typ,  
-E/W inhibited  
-Keystone inhibited  
-Vertical Amplitude max.  
Subaddress 10  
Byte 11111111  
Byte 11000000  
Byte 10000000  
+1.25  
0
1.25  
V
V
V
PP  
PP  
PP  
EW Corner  
Intrinsic Keystone Function of VPOS  
Control (tracking between VPOS & E/W):  
- E/W Amplitude  
Subaddress 06  
KeyTrack  
-Vertical Amplitude max  
-Corner inhibited  
B/A Ratio  
A/B Ratio  
Byte 00000000  
Byte 01111111  
0.52  
0.52  
12/43  
STV6886  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
ASYMMETRIC CONTROL THROUGH INTERNAL DYNAMIC HORIZONTAL PHASE MODULATION (see Figure 3)  
Side Pin Balance Parabola Amplitude  
(Figure 3) with :  
Subaddress 0D  
SPBpara  
SPBtrack  
ParAdj  
-VAMP max.,  
-VPOS typ.  
-Parallelogram inhibited  
Byte 11111111  
Byte 10000000  
+2.8  
-2.8  
%T  
%T  
H
H
(17 & 18)  
Side Pin Balance Parabola Amplitude  
function of VAMP Control (tracking be-  
tween VAMP and SPB) with:  
-SPB max.,  
-VPOS typ.  
-Parallelogram inhibited  
Subaddress 05  
Byte 10000000  
Byte 11000000  
Byte 11111111  
1
1.8  
2.8  
%T  
%T  
%T  
H
H
H
(17 & 18)  
Parallelogram Adjustment Capability  
with:  
-VAMP max.,  
-VPOS typ.  
-SPB inhibited  
Subaddress 0E  
Byte 11111111  
Byte 11000000  
+2.8  
-2.8  
%T  
%T  
H
H
(17 & 18)  
Intrinsic Parallelogram Function of VPOS Subaddress 06  
Control (tracking between VPOS and  
DHPC) with :  
-VAMP max.,  
-SPB max.  
Partrack  
(17 & 18)  
-Parallelogram inhibited  
B/A Ratio  
A/B Ratio  
Byte x0000000  
Byte x1111111  
0.52  
0.52  
Note: 16 These parameters are not tested on each unit. They are measured during our internal qualification procedure.  
Note: 17 With Register 07 at Byte 0xxxxxxx (S correction inhibited) and Register 08 at Byte 0xxxxxxx (C correction  
inhibited), the sawtooth has a linear shape.  
MOIRE CANCELLATION SECTION  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
HORIZONTAL AND VERTICAL MOIRE  
R
Minimum Output Resistor to GND  
Pin 3  
4.7  
kΩ  
MOIRE  
R
= 4.7kΩ  
MOIRE  
sub-address 02  
Byte 00000000  
Byte 01000000  
Byte 01111111  
DC Voltage pin 3  
DAC configuration  
DacOut  
0.3  
1.1  
2.75  
V
V
V
3
R
= 4.7kΩ  
MOIRE  
Moiré pulse  
(See also Hunlock in 1st PLL section)  
H Frequency: Locked  
Sub-address 02  
Byte 10000000  
Byte 11000000  
Byte 11111111  
HMOIRE  
0
0.8  
2.2  
V
V
V
PP  
PP  
PP  
Sub-address II:  
0xxx xxxx  
1xxx xxxx  
T
Separate  
Combined  
HMOIRE  
Preferred Scanning/EHT structure  
Vertical Moiré  
(measured on VOUT: Pin 23)  
Sub-address 0C  
Byte 11111111  
VMOIRE  
3
mV  
Note: 18 T is the horizontal period.  
H
13/43  
STV6886  
B+ SECTION  
Operating Conditions  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Units  
Resistor between Pins 15  
and 14  
FeedRes  
Minimum Feedback Resistor  
5
kΩ  
Electrical Characteristics (VCC = 12V, T  
= 25°C)  
amb  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
85  
Max. Units  
(19)  
OLG  
Error Amplifier Open Loop Gain  
Unity Gain Bandwidth  
At low frequency  
dB  
(19)  
UGBW  
See  
6
MHz  
Current sourced by Pin 15  
(PNP base)  
IRI  
Feedback Input Bias Current  
0.2  
1.4  
µA  
Current sourced by Pin 14  
Current sunk by  
mA  
EAOI  
Error Amplifier Output Current  
(20)  
Pin 14  
2
mA  
CSG  
Current Sense Input Voltage Gain  
Pin 16  
3
Max Current Sense Input Threshold Volt-  
age  
MCEth  
Pin 16  
1.3  
V
Current sunk by Pin 16  
(PNP base)  
ISI  
Current Sense Input Bias Current  
1
µA  
Maximum ON Time of the external power % of horizontal period,  
Tonmax  
B+OSV  
100  
%
V
(21)  
transistor  
f = 27kHz)  
o
B+Output Saturation Voltage  
V
with I = 10mA  
0.25  
28  
28  
On error amp (+)  
input Subaddress OB:  
Byte 1000000  
IV  
Internal Reference Voltage  
5
V
REF  
Internal Reference Voltage Adjustment  
Range  
Byte 01111111  
Byte 00000000  
+20  
-20  
%
%
V
REFADJ  
Threshold for step-up/step-down selec-  
PWMSEL  
tion (step-up configuration if V < PWM- Pin 16  
6
V
16  
SEL)  
t
Fall Time  
Pin 28  
100  
ns  
FB+  
Note: 19 These parameters are not tested on each unit. They are measured during our internal qualification procedure  
which includes characterization on batches coming from corners of our process and also temperature  
characterization.  
Note: 20 To make soft start possible, 0.5mA are sunk when B+ is disabled.  
Note: 21 The external power transistor is OFF during 400ns of the HFOCUSCAP discharge  
14/43  
STV6886  
Figure 1. Vertical Dynamic Focus Function  
Figure 2. E/W Output  
Figure 3. Dynamic Horizontal Phase Control  
Figure 4. Keystone Effect on E/W Output (PCC Inhibited)  
15/43  
STV6886  
TYPICAL OUTPUT WAVEFORMS  
Sub  
Address  
Function  
Pin  
Byte  
Specification  
Effect on Screen  
V
OUTDC  
2.15V  
3.9V  
10000000  
Vertical Size  
05  
23  
V
OUTDC  
11111111  
00000000  
01000000  
01111111  
V
= 3.2V  
= 3.6V  
= 4.0V  
OUTDC  
OUTDC  
Vertical  
Position  
DC Control  
V
06  
23  
V
OUTDC  
0xxxxxxx:  
Inhibited  
Vertical  
S
07  
23  
Linearity  
V  
V  
V
11111111  
PP  
=
3.5%  
V
PP  
16/43  
STV6886  
Sub  
Address  
Function  
Pin  
Byte  
Specification  
Effect on Screen  
0xxxxxxx :  
Inhibited  
Vertical  
C
Linearity  
V  
08  
23  
10000000  
11111111  
V
PP  
DV  
=-3%  
V
PP  
V
PP  
DV  
=+3%  
V
PP  
x1111111  
x0000000  
4.2V  
2V  
Horizontal  
Size  
11  
24  
Horizontal  
Dynamic  
Focus with:  
03  
10  
X000 0000 —  
X111 1111 ---  
Amplitude  
Horizontal  
Dynamic  
Focus with:  
X000 0000 —  
X111 1111 ---  
04  
10  
Symmetry  
17/43  
STV6886  
Sub  
Address  
Function  
Pin  
Byte  
Specification  
Effect on Screen  
(E/W + Corner Inhibited)  
10000000  
11111111  
0.4V  
EW  
EW  
DC  
Keystone  
(Trapezoid)  
Control  
09  
24  
0.4V  
DC  
(Keystone + Corner Inhibited)  
10000000  
0V  
EW  
DC  
E/W  
(Pin  
Cushion)  
Control  
0A  
24  
1.4V  
11111111  
EW  
DC  
(Keystone+ E/W Inhibited)  
1.25V  
11111111  
EW  
DC  
Corner  
Control  
10  
24  
EW  
DC  
10000000  
1.25V  
(SPB  
Inhibited)  
Parallel-  
ogram  
Control  
2.8% T  
10000000  
11111111  
H
0E  
2.8% T  
H
18/43  
STV6886  
Sub  
Address  
Function  
Pin  
Byte  
Specification  
Effect on Screen  
(Parallelogram  
Inhibited)  
Side Pin  
Balance  
Control  
2.8% T  
2.8% T  
H
10000000  
11111111  
0D  
H
X111 1111  
2.1V  
T
V
Vertical  
Dynamic  
Focus with  
Horizontal  
0F  
10  
X000 0000  
0V  
2.1V  
T
V
19/43  
STV6886  
2
I C BUS ADDRESS TABLE  
Slave Address (8C): Write Mode  
Sub Address Definition  
D8 D7 D6 D5 D4 D3 D2 D1  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Horizontal Drive Selection/Horizontal Duty Cycle  
X-ray Reset/Horizontal Position  
Horizontal Moiré/H Lock  
Sync. Priority/Horizontal Focus Amplitude  
Refresh/Horizontal Focus Symmetry  
Vertical Ramp Amplitude  
Vertical Position Adjustment  
S Correction  
2
3
4
5
6
7
8
C Correction  
9
E/W Keystone  
A
B
C
D
E
F
E/W Amplitude  
B+ Reference Adjustment  
Vertical Moiré  
Side Pin Balance  
Parallelogram  
Vertical Dynamic Focus Amplitude  
E/W Corner  
10  
11  
H. Moiré Frequency/Horizontal Size Amplitude  
Slave Address (8D): Read Mode: No sub address needed.  
20/43  
STV6886  
2
I C BUS ADDRESS TABLE (continued)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
WRITE MODE  
HDrive  
0, off  
[1], on  
Horizontal Duty Cycle  
00  
01  
[0]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
Horizontal Phase Adjustment  
[0] [0] [0]  
Xray  
1, reset  
[0]  
Horizontal Moiré Amplitude  
[0] [0] [0]  
HMoiré/HLock  
1, on  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
[0]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[0]  
[1]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0], off  
Horizontal Focus Amplitude  
[0] [0] [0]  
Sync  
0, Comp  
[1], Sep  
Horizontal Focus Symmetry  
[0] [0] [0]  
Detect  
Refresh  
[0], off  
Vertical Ramp Amplitude Adjustment  
[0] [0] [0]  
Vramp  
0, off  
[1], on  
Vertical Position Adjustment  
Test V  
1, on  
[0], off  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
S Correction  
S Select  
1, on  
[0]  
[0]  
C Correction  
C Select  
1, on  
[0]  
[0]  
E/W Keystone  
E/W Key  
0, off  
[1]  
[0]  
E/W Amplitude  
E/W Sel  
0, off  
[1]  
[0]  
B + Reference Adjustment  
Test H  
1, on  
[0], off  
[0]  
[0]  
[0]  
Vertical Moiré Amplitude  
V. Moiré  
1, on  
[0]  
[0]  
[0]  
[0]  
Side Pin Balance  
SPB Sel  
0, off  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
Parallelogram  
Parallelo  
0, off  
[1]  
[0]  
21/43  
STV6886  
D8  
Eq. Pulse  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Vertical Dynamic Focus Amplitude  
0F 1, ignore T /2  
H
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0], accept all  
E/W Corner  
Corner Sel  
10  
11  
1, on  
[0], off  
[1]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
H. Moiré  
suited to  
1 Combined  
[0] Separate  
scanning/EHT  
Horizontal Size Amplitude  
[0] [0] [0]  
READ MODE  
Polarity Detection  
H/V pol V pol  
[1], negative [1], negative [0], no det  
Sync Detection  
Hlock  
0, on  
[1], no  
Vlock  
0, on  
[1], no  
Xray  
1, on  
[0], off  
Vext det  
H/V det  
V det  
[0], no det  
[0], no det  
[x] at Power-on Reset value  
Data is transferred with vertical sawtooth retrace.  
We recommend setting the unspecified bits to [0] in order to ensure compatibility with future devices.  
22/43  
STV6886  
OPERATING DESCRIPTION  
1 GENERAL CONSIDERATIONS  
1.1 Power Supply  
dition is detected, the circuit increments automati-  
cally by one the momentary subaddress in the  
subaddress counter (auto-increment mode). So it  
is possible to transmit immediately the following  
data bytes without sending the IC address or sub-  
address. This can be useful to reinitialize all the  
controls very quickly (flash manner). This proce-  
dure can be finished by a stop condition.  
The typical values of the power supply voltages  
V
and V are 12 V and 5 V respectively. Opti-  
CC  
DD  
mum operation is obtained for V between 10.8  
CC  
and 13.2 V and V between 4.5 and 5.5 V.  
DD  
In order to avoid erratic operation of the circuit dur-  
ing the transient phase of VCC switching on, or off,  
the value of V is monitored: if V is less than  
CC  
CC  
The circuit has 18 adjustment capabilities: 3 for the  
horizontal part, 4 for the vertical, 3 for the E/W cor-  
rection, 2 for the dynamic horizontal phase control,  
2 for the vertical and horizontal Moiré options, 3 for  
the horizontal and the vertical dynamic focus and 1  
for the B+ reference adjustment.  
7.5 V typ., the outputs of the circuit are inhibited.  
Similarly, before V reaches 4 V, all the I2C reg-  
DD  
ister are reset to their default value (see I2C Bus  
Address Table).  
In order to have very good power supply rejection,  
the circuit is internally supplied by several voltage  
references (typ. value: 8.2 V). Two of these volt-  
age references are externally accessible, one for  
the vertical and one for the horizontal part. They  
18 bits are also dedicated to several controls (ON/  
OFF, Horizontal Forced Frequency, Sync Priority,  
Detection Refresh and XRAY reset).  
1.4 Read Mode  
can be used to bias external circuitry (if I  
is  
LOAD  
less than 5 mA). It is necessary to filter the voltage  
references by external capacitors connected to the  
respective grounds, in order to minimize the noise  
and consequently the “jitter” on vertical and hori-  
zontal output signals.  
During the read mode the second byte transmits  
the reply information.  
The reply byte contains the horizontal and vertical  
lock/unlock status, the XRAY activation status,  
and the horizontal and vertical polarity detection. It  
also contains the sync detection status which is  
used by the MCU to assign the sync priority. A  
stop condition always stops all the activities of the  
bus decoder and switches to high impedance both  
the data and clock line (SDA and SCL).  
1.2 I2C Control  
2
STV6886 belongs to the I C-controlled device  
family. Instead of being controlled by DC voltages  
on dedicated control pins, each adjustment can be  
done via the I2C Interface.  
2
2
See I C Bus Address Table.  
The I C bus is a serial bus with a clock and a data  
input. The general function and the bus protocol  
are specified in the Philips-bus data sheets.  
1.5 Sync Processor  
The internal sync processor allows the STV6886  
to accept:  
The inputs (Data and Clock) are comparators with  
a 2.2 V threshold at 5 V supply. Spikes of up to 50  
ns are filtered by an integrator and the maximum  
clock speed is limited to 400 kHz.  
– separated horizontal & vertical TTL-compatible  
sync signal  
– composite horizontal & vertical TTL-compatible  
sync signal  
The data line (SDA) can receive or transmit data.  
In read-mode the IC sends reply information  
(1 byte) to the micro-processor.  
1.6 Sync Identification Status  
The MCU can read (address read mode: 8D) the  
status register via the I C bus, and then select the  
sync priority depending on this status.  
The bus protocol prescribes a full-byte transmis-  
sion in all cases. The first byte after the start con-  
dition is used to transmit the IC-address (hexa 8C  
for write, 8D for read).  
2
Among other data this register indicates the pres-  
ence of sync pulses on H/HVIN, VSYNCIN and  
(when 12 V is supplied) whether a Vext has been  
extracted from H/HVIN. Both horizontal and verti-  
cal sync are detected even if only 5 V is supplied.  
1.3 Write Mode  
In write mode the second byte is the subaddress of  
the selected function to adjust (or controls to af-  
fect) and the third byte the corresponding data  
byte. It is possible to send more than one data byte  
to the IC. If after the third byte no stop or start con-  
23/43  
STV6886  
In order to choose the right sync priority the MCU  
may proceed as follows (see I C Bus Address Ta-  
ble):  
ing horizontal sync. Its level goes to low when  
locked. This information is also available on pin 3 if  
sub-address 02 D8 is equal to 1. When PLL1 is un-  
locked, pin 3 output voltage becomes higher than  
6V. When it is locked, the HMoiré waveform is  
available on pin 3 (max voltage: 3V).  
2
– refresh the status register,  
– wait at least for 20ms (Max. vertical period),  
– read the status register.  
Sync priority choice should be :  
2 HORIZONTAL PART  
Sync  
Vextd H/V  
V
det  
priority  
Subaddress  
03 (D8)  
Comment  
Sync type  
2.1 Internal Input Conditions  
et  
det  
A digital signal (horizontal sync pulse or TTL com-  
posite) is sent by the sync processor to the hori-  
zontal input. It may be positive or negative (see  
Figure 5).  
No  
Yes  
Yes  
Yes  
No  
1
Separated H&V  
Composite TTL  
H&V  
Yes  
0
Using internal integration, both signals are recog-  
nized if Z/T < 25%. Synchronization takes place on  
the leading edge of the internal sync signal.  
Of course, when the choice is made, we can re-  
fresh the sync detections and verify that the ex-  
tracted Vsync is present and that no sync type  
change has occurred. The sync processor also  
gives sync polarity information.  
The minimum value of Z is 0.7 µs.  
Another integration is able to extract the vertical  
pulse from composite sync if the duty cycle is high-  
er than 25% (typically d = 35%),  
1.7 IC status  
The IC can inform the MCU about the 1st horizon-  
tal PLL and vertical section status (locked or not)  
and about the XRAY protection (activated or  
not).Resetting the XRAY internal latch can be  
(see Figure 6).  
Figure 5.  
done either by decreasing the V supply or di-  
CC  
2
rectly resetting it via the I C interface.  
1.8 Sync Inputs  
Both H/HVIN and VSYNCIN inputs are TTL com-  
patible triggers with hysteresis to avoid erratic de-  
tection. Both inputs include a pull up resistor con-  
nected to V  
.
DD  
1.9 Sync Processor Output  
The sync processor indicates on bit D8 of the sta-  
tus register whether 1st PLL is locked to an incom-  
Figure 6.  
CSync  
Integ.  
d
VSyn  
The last feature performed is the removal of these  
equalization pulses which fall in the middle of a  
line, to avoid parasitic pulses on the phase compa-  
rator (which would be disturbed by missing or ex-  
traneous pulses). This last feature is switched on/  
off by sub-address 0F D8. By default [0], equaliza-  
tion pulses will not be removed.  
24/43  
STV6886  
2.2 PLL1  
Figure 7.  
The PLL1 consists of a phase comparator, an ex-  
ternal filter and a voltage-controlled oscillator  
(VCO).The phase comparator is a “phase/frequen-  
cy” type designed in CMOS technology. This kind  
of phase detector avoids locking on wrong fre-  
quencies. It is followed by a “charge pump”, com-  
posed of two current sources : sunk and sourced  
(typically I =1 mA when locked and I = 140 µA  
when unlocked). This difference between lock/un-  
lock allows smooth catching of the horizontal fre-  
quency by PLL1. This effect is reinforced by an in-  
ternal original slow down system when PLL1 is  
locked, avoiding the horizontal frequency chang-  
ing too quickly. The dynamic behavior of PLL1 is  
fixed by an external filter which integrates the cur-  
rent of the charge pump. A “CRC” filter is generally  
used (see Figure 7 on page 25).  
PLL1F  
7
1.8kΩ  
10nF  
The PLL1 is internally inhibited during extracted  
vertical sync (if any) to avoid taking in account  
missing pulses or wrong pulses on phase compa-  
rator. Inhibition is obtained by stopping high and  
low signals at the input of the charge pump block  
(see Figure 8 on page 25).  
Figure 8.  
Lock/Unlock  
Status  
Extracted  
VSync  
PLL1F R0 C0  
7
6
5
LOCKDET  
PLL  
INHIBITION  
High  
INPUT  
INTERFACE  
CHARGE  
PUMP  
1
VCO  
OSC  
COMP1  
H/HVIN  
Low  
HPOSITION  
Extracted  
VSync  
2
I C  
HPOS  
Adj.  
PHASE  
ADJUST  
Figure 9.  
I
0
I
2
0
6.4V  
1.6V  
RS  
FLIP FLOP  
PLL1F  
7
(Loop Filter)  
4 I  
6
0
(1.4V<V <4.9V)  
7
6.4V  
1.6V  
5
R0  
C0  
0
0.875 T  
H
25/43  
STV6886  
The VCO uses an external RC network. It delivers  
a linear sawtooth obtained by the charge and the  
discharge of the capacitor, with a current propor-  
tional to the current in the resistor. The typical  
thresholds of the sawtooth are 1.6 V and 6.4 V.  
Figure 11. PLL2 Timing Diagram  
HOsc  
7/8T  
1/8 T  
H
Sawtooth  
H
The control voltage of the VCO is between 1.4 V  
and 4.9 V (see Figure 9). The theoretical frequen-  
cy range of this VCO is in the ratio of 1 to 3.5. The  
effective frequency range has to be smaller due to  
clamp intervention on the filter lowest value.  
6.4V  
4.0V  
The sync frequency must always be higher than  
the freerunning frequency. For example, when us-  
ing a sync range between 25 kHz and 80 kHz, the  
suggested free running frequency is 22 kHz.  
1.6V  
Flyback  
PLL1 ensures the coincidence between the lead-  
ing edge of the sync signal and a phase reference  
REF1 obtained by comparison between the saw-  
tooth of the VCO and an internal DC voltage Vb.  
Vb is I C adjustable between 2.9 V and 4.2 V (cor-  
responding to ±10 %) (see Figure 10).  
Internally  
shaped Flyback  
2
HDrive  
Ts  
Duty Cycle  
The STV6886 also includes a Lock/Unlock identifi-  
cation block which senses in real time whether  
PLL1 is locked or not on the incoming horizontal  
sync signal. This information is available through  
I2C, and also on pin 3 if HLock/Unlock option has  
been set through Subaddress 02,D8.  
The phase comparator of PLL2 is followed by a  
charge pump (typical output current: 0.5 mA).  
Figure 10. PLL1 Timing Diagram  
The flyback input consists of an NPN transistor.  
The input current must be limited to less than 5 mA  
(see Figure 12).  
H O  
SC  
Sawtooth  
7/8 TH  
1/8 TH  
Figure 12. Flyback Input Electrical Diagram  
6.4V  
Ref. for H Position  
Vb  
(2.9V<Vb<4.2V)  
1.6V  
500Ω  
Q1  
12  
HFLY  
REF1  
20kΩ  
HSync  
Phase REF1 is obtained by comparison between  
the sawtooth and a DC voltage adjustable between  
2.9 V and 4.2 V.  
GND 0V  
2
The PLL1 ensures the exact coincidence between the  
The duty cycle is adjustable through I C from 30 %  
to 65 %. For a safe start-up operation, the initial  
duty cycle (after power-on reset) is 65% in order to  
avoid having too long a conduction period of the  
horizontal scanning transistor.  
signal phase REF and HSYNC. A ±10% T phase  
H
adjustment is possible around the 3.5V point.  
2.3 PLL2  
The maximum storage time (Ts Max.) is (0.44T -  
H
PLL2 ensures a constant position of the shaped  
flyback signal in comparison with the sawtooth of  
the VCO, taking into account the saturation time  
Ts (see Figure 11 on page 26)  
T
/2). Typically, T /T is around 20 %, at  
maximum frequency, which means that Ts max is  
around 34 % of T .  
FLY  
FLY  
H
H
26/43  
STV6886  
2.4 Output Section  
Obviously the power scanning transistor cannot be  
directly driven by the integrated circuit. An inter-  
face has to be added between the circuit and the  
power transistor either of bipolar or MOS type.  
The H-drive signal is sent to the output through a  
shaping stage which also controls the H-drive duty  
2
cycle (I C adjustable) (see Figure 11). In order to  
secure the scanning power part operation, the out-  
put is inhibited in the following cases:  
2.5 X-RAY Protection  
The X-Ray protection is activated by application of  
a high level on the X-Ray input (more than 8.2V on  
Pin 25). It inhibits the H-Drive and B+ outputs.  
– when V or V are too low  
CC  
DD  
– when the XRAY protection is activated  
– during the Horizontal flyback  
This activation is internally delayed by 2 lines to  
avoid erratic detection when short parasitics are  
present .  
2
– when the HDrive I C bit control is off.  
The output stage consists of a NPN bipolar tran-  
sistor. Only the collector is accessible (see  
Figure 13).  
This protection is latched; it may be reset either by  
CC  
page 28).  
2
V
switch-off or by I C (see Figure 14 on  
Figure 13.  
2.6 Horizontal and Vertical Dynamic Focus  
For dynamic focus adjustment, the STV6886 deliv-  
ers the sum of two signals on pin 10:  
– a parabolic waveform at horizontal frequency,  
– a parabolic waveform at vertical frequency.  
The horizontal parabola comes from a sawtooth in  
phase advance with flyback pulse middle. The  
phase advance versus horizontal flyback middle is  
kept constant versus frequency (about 1µs). Sym-  
2
metry and amplitude are I C adjustable (see  
Figure 15 on page 28).  
The vertical parabola is tracked with VPOS and  
VAMP. Its amplitude can be adjusted. It is also af-  
fected by S and C corrections.  
This output stage is intended for “reverse” base  
control, where setting the output NPN in off-state  
will control the power scanning transistor in off-  
state.  
This positive signal once amplified is to be sent to  
the CRT focusing grids.  
Because the DC/DC converter is triggered by the  
HFocus sawtooth, it is recommended to connect a  
capacitor to pin 9, even if HFocus is not needed.  
The capacitor value is critical only if Focus is used.  
The maximum output current is 30mA, and the  
corresponding voltage drop of the output V  
0.4V Max.  
is  
CEsat  
27/43  
STV6886  
Figure 14. Safety Functions Block Diagram  
Figure 15. Phase of HFocus Parabola  
Flyback pulse  
1 µs  
0.4 µs  
H Focus sawtooth  
0.6 µs  
0.6 µs  
127  
64  
2
I C Code  
(decimal)  
H Focus parabola  
45  
0
0.475T  
H
0.16T  
H
0.16T  
H
28/43  
STV6886  
2.7 Horizontal Moiré Output  
If a synchronization pulse is applied, the internal  
oscillator is synchronized immediately but with  
wrong amplitude. An internal correction then ad-  
justs it in less than half a second. The top value of  
the ramp (Pin 22) is sampled on the AGC capaci-  
tor (Pin 20) at each clock pulse and a transcon-  
ductance amplifier modifies the charge current of  
the capacitor so as to adjust the amplitude to the  
right value.  
The Horizontal Moiré output is intended to correct  
a beat between the horizontal video pixel period  
and the CRT pixel width.  
The Moiré signal is a combination of the horizontal  
and vertical frequency signals.  
To achieve a Moiré cancellation, the Moiré output  
has to be connected so as to modulate the hori-  
zontal position. We recommend introducing this  
“Horizontal Controlled Jitter” on the ground side of  
PLL2 capacitor where this “controlled jitter” will di-  
rectly affect the horizontal position.  
The Read Status register provides the vertical  
Lock-Unlock and the vertical sync polarity informa-  
tion.  
We recommend to use an AGC capacitor with low  
leakage current. A value lower than 100nA is man-  
datory.  
2
The amplitude of the signal is I C adjustable. The  
H-Moiré frequency can be chosen via the I C.  
2
If H Scanning and EHT are separated, bit D8 in  
subaddress 11 should be set to 0. If H Scanning  
and EHT are combined, setting this bit to 1 will pro-  
vide a better screen aspect.  
A good stability of the internal closed loop is  
reached with a 470nF ± 5% capacitor value on Pin  
20 (VAGC).  
2
3.2 I C Control Adjustments  
The H-Moiré output is combined with the PLL1  
horizontal unlock output.  
S and C correction shapes can then be added to  
this ramp. These frequency-independent S and C  
corrections are generated internally. Their ampli-  
If HMoiré/HLock is selected (bit 02D8 to 1):  
2
tudes are adjustable by their respective I C regis-  
– when PLL1 is unlocked, pin 3 output voltage  
goes above 6V.  
ters. They can also be inhibited by their select bits.  
Finally, the amplitude of this S and C corrected  
ramp can be adjusted by the vertical ramp ampli-  
tude control register.  
– when PLL1 is locked, the HMoiré signal (up to  
2.2V peak) is present on pin 3.  
If HMoiré/HLock is not selected, pin 3 can be used  
as a 0....2.5V DAC.  
The adjusted ramp is available on Pin 23 (V  
drive an external power stage.  
) to  
OUT  
The gain of this stage can be adjusted (± 25%) de-  
pending on its register value.  
3 VERTICAL PART  
The mean value of this ramp is driven by its own  
3.1 Function  
2
I C register (vertical position). Its value is  
When the synchronization pulse is not present, an  
internal current source sets the free-running fre-  
quency. For an external capacitor C  
.
VPOS = 7/16 V  
± 400mV.  
REF-V  
Usually V  
is sent through a resistive divider to  
= 150nF,  
OUT  
OSC  
the inverting input of the booster. Since VPOS de-  
rives from V , the bias voltage sent to the non-  
the typical free running frequency is 100Hz.  
REF-V  
The typical free running frequency can be calculat-  
inverting input of the booster should also derive  
from V to optimize the accuracy (see Appli-  
ed by:  
1
REF-V  
.
-5 .  
fo(Hz) = 1.5 10  
cation Diagram).  
C
OSC  
3.3 Vertical Moiré  
A negative or positive TTL level pulse applied on  
Pin 2 (VSYNC) as well as a TTL composite sync  
on Pin 1 can synchronize the ramp in the range  
[fmin, fmax] (See Figure 16 on page 30). This fre-  
quency range depends on the external capacitor  
connected on Pin 22. A 150nF (± 5%) capacitor is  
recommended for 50Hz to 120Hz applications.  
By using the vertical Moiré, VPOS can be modulat-  
ed from frame to frame. This function is intended  
to cancel the fringes which appear when the line to  
line interval is very close to the CRT vertical pitch.  
The amplitude of the modulation is controlled by  
register VMOIRE on sub-address 0C and can be  
switched-off via the control bit D8.  
29/43  
STV6886  
Figure 16. AGC Loop Block Diagram  
3.4 Basic Equations  
3.5 Geometric Corrections  
In first approximation, the amplitude of the ramp  
The principle is represented in Figure 17 on  
page 31.  
on Pin 23 (VOUT) is:  
.
V
- VPOS = (V  
- V  
) (1 + 0.3 (V  
))  
Starting from the vertical ramp, a parabola-shaped  
current is generated for E/W correction (also  
known as Pin Cushion correction), dynamic hori-  
zontal phase control correction, and vertical dy-  
namic focus correction.  
OUT  
OSC  
DCMID  
AMP  
where:  
V
= 7/16 V  
(middle value of the ramp  
REF  
DCMID  
on Pin 22, typically 3.6V)  
V
V
= V (ramp with fixed amplitude)  
OSC  
22  
The parabola generator is made by an analog mul-  
tiplier, the output current of which is equal to:  
= -1 for minimum vertical amplitude regis-  
AMP  
.
2
ter value and +1 for maximum  
DI = k (V  
- V  
)
OUT  
DCMID  
VPOS is calculated by:  
where V  
is the vertical output ramp (typically  
is 3.6V  
OUT  
between 2 and 5V) and V  
VPOS = V  
+ 0.4 V  
P
DCMID  
DCMID  
(for V  
= 8.2V). The VOUT sawtooth is typical-  
REF-V  
where V = -1 for minimum vertical position reg-  
P
ly centered on 3.6V. By changing the vertical posi-  
ister value and +1 for maximum.  
tion, the sawtooth shifts by ±0.4V.  
The current available on Pin 22 is:  
To provide good screen geometry for any end-  
user adjustment, the STV6886 has the “geometry  
tracking” feature which automatically adapts the  
parabola shape, depending on the vertical position  
and size.  
3
8
.
I
=
V
x C  
x f  
OSC  
REF  
OSC  
where C  
f = synchronization frequency.  
= capacitor connected on Pin 22 and  
OSC  
30/43  
STV6886  
Due to the large output stage voltage range (E/W  
Pin Cushion, Keystone, E/W Corner), the combi-  
nation of the tracking function, maximum vertical  
amplitude, maximum or minimum vertical position  
and maximum gain on the DAC control may lead  
to output stage saturation. This must be avoided  
Each of the three E/W components or the two dy-  
namic horizontal phase control components may  
2
be inhibited by their own I C select bit.  
The E/W parabola is available on Pin 24 via an  
emitter follower output stage which has to be bi-  
ased by an external resistor (10kto ground). Be-  
ing stable in temperature, the device can be DC  
coupled with external circuitry (mandatory to ob-  
tain H Size control).  
2
by limiting the output voltage with appropriate I C  
register values.  
For the E/W part and the dynamic horizontal  
phase control part, a sawtooth-shaped differential  
current in the following form is generated:  
.
The vertical dynamic focus is combined with the  
horizontal focus on Pin 10.  
I’ = k’ (V  
- V  
)
OUT  
DCMID  
The dynamic horizontal phase control drives inter-  
nally the H-position, moving the HFLY position on  
Then I and I’ are added and converted into volt-  
age for the E/W part.  
the horizontal sawtooth in the range of ± 2.8 %T  
both for side pin balance and parallelogram.  
H
Figure 17. Geometric Corrections Principle  
2
3.6 E/W  
EWOUT = EW + K1 (V  
K1 is adjustable by the keystone I C register.  
2
- V ) +  
DCMID  
K2 is adjustable by the E/W amplitude I C register.  
DC  
OUT  
2
4
K2 (V  
- V  
) + K3 (V  
- V )  
2
OUT  
DCMID  
OUT  
DCMID  
K3 is adjustable by the E/W corner I C register.  
31/43  
STV6886  
3.7 Dynamic Horizontal Phase Control  
4.2 Step-down Configuration  
2
I
= K4 (V  
- V  
) + K5 (V  
- V  
2
)
In step-down configuration, the I  
information  
OUT  
OUT  
DCMID  
OUT  
DCMID  
SENSE  
is not used any more and therefore not sent to the  
Pin16. This configuration is selected by connect-  
ing this Pin16 to a DC voltage higher than 6V (for  
K4 is adjustable by the parallelogram I C register.  
2
K5 is adjustable by the side pin balance I C regis-  
ter.  
example V  
).  
REF-V  
Instead of I  
waveform the H-Focus Saw-  
SENSE  
tooth is used for comparison with the amplified er-  
ror voltage. For that reason, the Step-down config-  
uration can operate only if the H-Focus capacitor  
is connected.  
4 DC/DC CONVERTER PART  
This unit controls the switch-mode DC/DC con-  
verter. It converts a DC constant voltage into the  
B+ voltage (roughly proportional to the horizontal  
frequency) necessary for the horizontal scanning.  
Operating Description  
– The power MOS is switched ON as for the step-  
up configuration.  
This DC/DC converter can be configured either in  
step-up or step-down mode. In both cases it oper-  
ates very similarly to the well known UC3842.  
– Thefeedback to the error amplifier is done as for  
the step-up configuration.  
4.1 Step-up Configuration  
– The power MOS is switched OFF when the HFO-  
CUSCAP voltage gets higher than the error am-  
plifier output voltage.  
Operating Description  
– The power MOS is switched ON during the fly-  
back (at the beginning of the positive slope of the  
horizontal focus sawtooth).  
Main Features  
– Switching synchronized on the horizontal fre-  
quency,  
– The power MOS is switched OFF when its cur-  
rent reaches a predetermined value. For this pur-  
pose, a sense resistor is inserted in its source.  
The voltage on this resistor is sent to Pin16  
– B+ voltage always lower than the DC source,  
– No current limitation.  
(I  
).  
SENSE  
4.3 Step-up and Step-down Configuration  
Comparison  
– The feedback (coming either from the EHV or  
from the flyback) is divided to a voltage close to  
5.0V and compared to the internal 5.0V refer-  
In step-down configuration the control signal is in-  
verted compared with the step-up mode.This, for  
the following reason:  
ence (I  
). The difference is amplified by an  
VREF  
error amplifier, the output of which controls the  
power MOS switch-off current.  
– In step-up mode, the switch is a N-channel MOS  
referenced to ground and made conductive by a  
high level on its gate.  
Main Features  
– Switching synchronized on the horizontal fre-  
quency,  
– In step-down, a high-side switch is necessary. It  
can be either a P- or a N-channel MOS.  
– B+ voltage always higher than the DC source,  
– Current limited on a pulse-by-pulse basis.  
The DC/DC converter is disabled:  
For a P-channel MOS, the gate is controlled  
directly from Pin 28 through a capacitor (this  
allows to spare a Transformer). In this case,  
a negative-going pulse is needed to make  
the MOS conductive. Therefore it is  
necessary to invert the control signal.  
– when V or V are too low,  
CC  
DD  
– when X-Ray protection is latched,  
2
For a N-channel MOS, a transformer is  
needed to control the gate. The polarity of  
the transformer can be easily adapted to the  
negative-going control pulse.  
– directly through I C bus.  
When disabled, BOUT is driven to GND by a  
0.5mA current source. This feature allows to im-  
plement externally a soft start circuit.  
32/43  
STV6886  
Figure 18. DC/DC Converter (represented: Step-Up configuration)  
DAC  
7bits  
HDF Discharge  
400ns  
12V  
Horizontal Dynamic  
Focus Sawtooth  
+
± I  
adjust  
A
BOUT  
28  
8.2V  
C1  
-
down  
up  
+
5V ±20%  
85 dB  
+
-
1/3  
down  
up  
S
R
-
C2  
Q
B
1.3V  
+
+
C3  
Inhibit.  
1.3V  
-
+
Command step-up/down  
6V  
C4  
-
I
SENSE  
REGIN  
COMP  
STV6886  
15  
14  
16  
1MΩ  
L
22kΩ  
EHV  
Feedback  
10nF  
V
B+  
33/43  
STV6886  
INTERNAL SCHEMATICS  
Figure 19.  
Figure 22.  
12V  
HREF  
13  
5V  
CO  
Pins 1-2  
H/HVIN  
5
200Ω  
VSYNCIN  
Figure 20.  
Figure 23.  
HREF  
13  
HREF  
13  
12V  
12V  
6
R0  
3
HMOIRE/HLOCK  
Figure 21.  
Figure 24.  
12V  
HREF  
13  
7
PLL1F  
PLL2  
4
34/43  
STV6886  
Figure 25.  
Figure 28.  
HREF  
13  
HREF  
12V  
12V  
8
HPOSITION  
12  
HFLY  
Figure 26.  
Figure 29.  
HREF  
13  
12V  
HFOCUS  
CAP  
9
14  
COMP  
Figure 27.  
Figure 30.  
12V  
12V  
12V  
15  
REGIN  
10  
HFOCUS  
35/43  
STV6886  
Figure 31.  
Figure 34.  
12V  
12V  
22  
VCAP  
I
16  
SENSE  
Figure 32.  
Figure 35.  
12V  
12V  
BREATH 18  
VOUT 23  
Figure 33.  
Figure 36.  
12V  
12V  
EWOUT 24  
20  
VAGCCAP  
36/43  
STV6886  
Figure 37.  
12V  
XRAY 25  
Figure 38.  
V12  
HOUT-BOUT  
Pins 26-28  
Figure 39.  
Pins 30-31  
SDA-SCL  
37/43  
STV6886  
Figure 40. Demonstration Board  
J16 J15  
J14  
1
2
3
4
C39  
22pF  
+5V  
+5V  
IC4  
STV6886  
L1  
22µH  
+12V  
R39  
4.7kΩ  
R29  
4.7k100Ω  
R42  
TP1  
J11  
TP13  
C40  
CC2  
10µF  
32  
H/HVIN  
R41  
100Ω  
22pF  
1
2
3
4
5
6
+5V  
PC1  
47kΩ  
C32  
100nF  
C30  
100µF  
TP16  
SCL  
SDA  
TP17  
J12  
CC3  
C45  
10µF  
VSYNCIN SDA  
R49  
22kΩ  
31  
47pF  
13 14 15 16 17 18 19 20 21 22 23 24  
-12V  
TP10  
CC1  
100nF  
16 15 14 13 12 11 10  
9
HMOIRE/  
HLOCK  
SCL 30  
+5V  
C7 22nF  
PLL2C  
C0  
29  
+12V  
VCC  
C6  
100nF  
C5  
100µF  
12 11 10  
X1  
9
8
7
6
5
4
3
2
1
C28  
820pF 5%  
1
2
3
4
5
6
7
8
TILT  
J13  
R43  
10kΩ  
CC4  
47pF  
B+OUT28  
+12V  
R23  
6.49k  
8MHz  
+12V  
R56  
560kΩ  
C42  
1µF  
R30  
10kΩ  
1%  
C37  
33pF  
C43 +5V  
47µF  
PC2  
47kΩ  
C38  
33pF  
R10  
10kΩ  
C25  
33pF  
27  
GND  
R0  
R53  
1kΩ  
D2  
1N4148  
R35  
10kΩ  
C13 10nF  
C48  
10µF  
+12V  
HOUT  
PLL1F  
7
8
9
HOUT 26  
E/W POWER STAGE  
C31 4.7µF R36 1.8kΩ  
C49  
100nF  
HOUT  
+12V  
R37  
27kΩ  
R34  
C36  
1µF  
R15  
1kΩ  
R17  
43kΩ  
R7 10kΩ  
C22  
33pF  
R8  
10kΩ  
H
25  
24  
XRAY  
R38  
R19  
J8  
C17 1µF  
POSITION  
2.2Ω  
J1  
270kΩ  
1kΩ  
3W  
R45 33kΩ  
Q1  
Q2  
HFOCUS-  
EWOUT  
BC557 BC557  
HFLY  
J9  
CAP  
C11 220pF  
C34  
820pF 5%  
R25  
1kΩ  
E/W  
FOCUS  
OUT  
10  
VOUT 23  
VCAP 22  
VREF 21  
Q3  
TIP122  
R9  
470Ω  
R33  
4.7kΩ  
R18  
10kΩ  
+12V  
DYN  
FOCUS  
L
R24  
10kΩ  
C12  
47µH  
R52  
3.9kΩ  
11 HGND  
12 HFLY  
150nF  
C16 (*)  
J19  
C14  
C9  
J2  
C3  
47µF  
470µF  
100nF  
+12V  
-12V  
TP3 J3  
D1  
1n400 1  
C27  
47µF  
C33 HREF  
100nF  
1
2
C4  
100nF  
C15  
TP6  
TP7  
C2  
100nF  
HREF  
13  
VAGCCAP20  
VGND19  
TP4  
C10  
100µF  
35V  
R2  
5.6Ω  
470nF  
3
4
JP1  
C51  
100nF  
J6  
14 COMP  
15 REGIN  
CON4  
C46  
1nF  
R40  
36kΩ  
R50  
1
IC1  
TDA817 2  
C1  
R3  
1MΩ  
R11  
220Ω  
0.5W  
2
3
VYOKE  
220nF 1.5Ω  
R1  
12kΩ  
REGIN  
18  
BREATH  
R57  
82kΩ  
C10  
470µF  
C8  
100nF R5  
5.6Ω  
R51  
1kΩ  
J18  
-12V  
C41  
470pF  
R4  
1Ω  
ISENSE  
GND  
16 ISENSE  
B+GND17  
C47  
100pF  
0.5W  
VERTIC AL DEFLECTION STAGE  
Q4  
BC557  
R58  
10Ω  
J17  
B+OUT  
+12V  
HOUT  
Q5  
BC547  
R73  
R75 1MΩ  
10kΩ  
L3  
22µH  
R74  
10kΩ  
TP8  
EHT  
COMP  
C50  
10µF  
R76  
47kΩ  
P1  
10kΩ  
R77  
15kΩ  
C60  
100nF  
38/43  
STV6886  
Figure 41.  
39/43  
STV6886  
Figure 42.  
40/43  
STV6886  
PACKAGE MECHANICAL DATA  
41/43  
STV6886  
PACKAGE MECHANICAL DATA  
32 PINS - PLASTIC SHRINK  
E
E1  
C
Stand-off  
e
B
B1  
eA  
eB  
D
32  
1
17  
16  
Millimeters  
Dimensions  
Inches  
Typ.  
Min.  
3.556  
0.508  
3.048  
0.356  
0.762  
.203  
Typ.  
Max.  
Min.  
0.140  
0.020  
0.120  
0.014  
0.030  
0.008  
1.080  
0.390  
0.300  
Max.  
A
A1  
A2  
B
3.759  
5.080  
0.148  
0.200  
3.556  
0.457  
1.016  
0.254  
27.94  
10.41  
8.890  
1.778  
10.16  
4.572  
0.584  
1.397  
0.356  
28.45  
11.05  
9.398  
0.140  
0.018  
0.040  
0.010  
1.100  
0.410  
0.350  
0.070  
0.400  
0.180  
0.023  
0.055  
0.014  
1.120  
0.435  
0.370  
B1  
C
D
27.43  
9.906  
7.620  
E
E1  
e
eA  
eB  
L
12.70  
3.810  
0.500  
0.150  
2.540  
3.048  
0.100  
0.120  
42/43  
STV6886  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no  
responsibility for the consequences of use of such information nor for any infringement of patents or other  
rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change  
without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics.  
2000 STMicroelectronics - All Rights Reserved  
2
2
Purchase of I C Components of STMicroelectronics, conveys a license under the Philips I C Patent.  
2
2
Rights to use these components in a I C system, is granted provided that the system conforms to the I C  
Standard Specifications as defined by Philips.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - FInland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The  
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www .st.com  
43/43  

相关型号:

STV6888

LOW-COST I2C CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR
STMICROELECTR

STV6889

HIGH-END IC CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR
STMICROELECTR

STV7610

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7610A

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7610WAF

DC PLASMA DISPLAY DRIVER, UUC126, DIE-126
STMICROELECTR

STV7612

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7612/WAF

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7617

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7617D

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7617U

PLASMA DISPLAY PANEL SCAN DRIVER
STMICROELECTR

STV7618

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR

STV7618/WAF

PLASMA DISPLAY PANEL DATA DRIVER
STMICROELECTR