VNH3SP3013TR [STMICROELECTRONICS]

IC,MOTOR CONTROLLER,SOP,30PIN;
VNH3SP3013TR
型号: VNH3SP3013TR
厂家: ST    ST
描述:

IC,MOTOR CONTROLLER,SOP,30PIN

电动机控制 光电二极管
文件: 总26页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
VNH3SP30  
FULLY INTEGRATED H-BRIDGE MOTOR DRIVER  
TYPE  
VNH3SP30  
R
(*)  
I
V
CCmax  
DS(on)  
OUT  
34mΩ  
30 A  
40 V  
(*) Typical per leg at 25°C  
OUTPUT CURRENT:30 A  
5V LOGIC LEVEL COMPATIBLE INPUTS  
UNDERVOLTAGE AND OVERVOLTAGE  
SHUT-DOWN  
MultiPowerSO-30  
OVERVOLTAGE CLAMP  
THERMAL SHUT DOWN  
CROSS-CONDUCTION PROTECTION  
LINEAR CURRENT LIMITER  
VERY LOW STAND-BY POWER  
CONSUMPTION  
DESCRIPTION  
The VNH3SP30 is a full bridge motor driver  
intended for wide range of automotive  
applications. The device incorporates a dual  
monolithic HSD and two Low-Side switches. The  
HSD switch is designed using STMicroelectronics  
VIPower M0-3 technology that allows to efficiently  
integrate on the same die a true Power MOSFET  
with an intelligent signal/protection circuitry. The  
Low-Side switches are vertical MOSFETs  
a
PWM OPERATION UP TO 10 KHz  
PROTECTION AGAINST:  
LOSS OF GROUND AND LOSS OF V  
CC  
manufactured  
using  
STMicroelectronics  
proprietary EHD (“STripFET™”) process.  
BLOCK DIAGRAM  
V
CC  
O
V
+ U  
V
OVERTEMPERATURE A  
OVERTEMPERATURE B  
CLAMP A  
CLAMP B  
HS  
A
HS  
B
DRIVER  
HSA  
DRIVER  
HSB  
LOGIC  
CURRENT  
CURRENT  
LIMITATION A  
LIMITATION B  
OUT  
OUT  
B
A
DRIVER  
LSA  
DRIVER  
LSB  
LS  
LS  
B
A
DIAG /EN IN  
PWM IN DIAG /EN  
B B B  
GND  
GND  
B
A
A
A
A
April 2004  
1/26  
VNH3SP30  
The three dice are assembled in MultiPowerSO-30  
package on electrically isolated leadframes. This  
package, specifically designed for the harsh  
automotive environment offers improved thermal  
performance thanks to exposed die pads.  
Moreover, its fully symmetrical mechanical design  
allows superior manufacturability at board level.  
up resistor, enable one leg of the bridge. They also  
provide a feedback digital diagnostic signal. The  
normal condition operation is explained in the truth  
table on page 7. The PWM, up to 10KHz, lets us to  
control the speed of the motor in all possible  
conditions. In all cases, a low level state on the  
PWM pin will turn off both the LS and LS  
A
B
The input signals IN and IN can directly  
switches. When PWM rises to a high level, LS or  
A
B
A
interface to the microcontroller to select the motor  
direction and the brake condition. The DIAG /EN  
LS turn on again depending on the input pin  
state.  
B
A
A
or DIAG /EN , when connected to an external pull  
B
B
CONNECTION DIAGRAM (TOP VIEW)  
1
30  
OUTA  
OUTA  
Nc  
Vcc  
Nc  
Nc  
OUTA  
GNDA  
Heat Slug3  
GNDA  
INA  
ENA/DIAGA  
Nc  
GNDA  
OUTA  
Nc  
VCC  
PWM  
Vcc  
Heat Slug1  
Nc  
Nc  
OUTB  
ENB/DIAGB  
INB  
Nc  
GNDB  
GNDB  
OUTB  
Heat Slug2  
Vcc  
Nc  
GNDB  
Nc  
15  
16  
OUTB  
OUTB  
PIN DEFINITIONS AND FUNCTIONS  
PIN No  
SYMBOL  
FUNCTION  
OUT Heat  
Slug2  
A,  
1, 25, 30  
Source of High-Side Switch A / Drain of Low-Side Switch A  
Not connected  
2, 4,7,9,12,14,17, 22,  
24,29  
NC  
VCC, Heat  
Slug1  
3, 13, 23  
Drain of High-Side Switches and Power Supply Voltage  
5
6
8
9
IN  
Clockwise Input  
A
EN /DIAG  
Status of High-Side and Low-Side Switches A; Open Drain Output  
A
A
B
PWM  
NC  
PWM Input  
Not connected  
EN /DIAG  
B
10  
Status of High-Side and Low-Side Switches B; Open Drain Output  
11  
IN  
Counter Clockwise Input  
B
OUT Heat  
Slug3  
B,  
15, 16, 21  
Source of High-Side Switch B / Drain of Low-Side Switch B  
26, 27, 28  
18, 19, 20  
GND  
GND  
Source of Low-Side Switch A (*)  
Source of Low-Side Switch B (*)  
A
B
(*) Note: GND and GND must be externally connected together  
A
B
2/26  
VNH3SP30  
PIN FUNCTIONS DESCRIPTION  
NAME  
DESCRIPTION  
V
Battery connection.  
CC  
GND  
A
Power grounds, must always be externally connected together.  
Power connections to the motor.  
GND  
B
OUT  
OUT  
A
B
Voltage controlled input pins with hysteresis, CMOS compatible. These two pins control the state of  
IN  
IN  
A
the bridge in normal operation according to the truth table (brake to V , Brake to GND, clockwise and  
CC  
B
counterclockwise).  
Voltage controlled input pin with hysteresis, CMOS compatible. Gates of Low-Side FETS get  
modulated by the PWM signal during their ON phase allowing speed control of the motor  
PWM  
Open drain bidirectional logic pins. These pins must be connected to an external pull up resistor.When  
externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a  
High-Side FET or excessive ON state voltage drop across a Low-Side FET), these pins are pulled low  
by the device (see truth table in fault condition).  
EN /DIAG  
A
A
EN /DIAG  
B
B
BLOCK DESCRIPTIONS  
(see Electrical Block Diagram page 4)  
NAME  
DESCRIPTION  
Allows the turn-on and the turn-off of the High Side and the Low Side  
switches according to the truth table.  
LOGIC CONTROL  
Shut-down the device outside the range [5.5V..36V] for the battery  
voltage.  
OVERVOLTAGE + UNDERVOLTAGE  
HIGH SIDE CLAMP VOLTAGE  
HIGH SIDE AND LOW SIDE DRIVER  
LINEAR CURRENT LIMITER  
Protect the High-Side switches from the high voltage on the battery  
line in all configuration for the motor.  
Drive the gate of the concerned switch to allow a good R  
leg of the bridge.  
for the  
DS(on)  
In case of short circuit for the High-Side switch, limits the motor current  
by reducing its electrical characteristics.  
In case of short-circuit with the increase of the junction’s temperature,  
shuts-down the concerned High-Side to prevent its degradation and to  
protect the die.  
OVERTEMPERATURE PROTECTION  
Signalize an abnormal behavior of the switches in the half-bridge A or  
B by pulling low the concerned ENx/DIAGx pin.  
FAULT DETECTION  
3/26  
VNH3SP30  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
-0.3.. 40  
30  
Unit  
V
V
Supply voltage  
CC  
I
Maximum output current (continuous)  
Reverse output current (continuous)  
A
max1  
I
-30  
A
R
I
Input current (IN and IN pins)  
+/- 10  
+/- 10  
+/- 10  
mA  
mA  
mA  
IN  
A
B
I
Enable input current (DIAG /EN and DIAG /EN pins)  
EN  
A
A
B
B
I
PWM input current  
pw  
Electrostatic discharge (R=1.5k, C=100pF)  
V
- Logic pins  
4
5
KV  
kV  
°C  
°C  
°C  
ESD  
- Output pins: OUT OUT  
V
B, CC  
A,  
T
Junction operating temperature  
Case operating temperature  
Storage temperature  
Internally Limited  
-40 to 150  
-55 to 150  
j
T
c
T
STG  
CURRENT AND VOLTAGE CONVENTIONS  
ICC  
VCC  
IINA  
VCC  
IOUTA  
INA  
OUTA  
OUTB  
IINB  
IOUTB  
INB  
VOUTA  
IENA  
DIAGA/ENA  
IENB  
VOUTB  
DIAGB/ENB  
PWM  
GNDA  
GNDB  
Ipw  
GND  
IGND  
VENB  
VINA VINB  
Vpw  
VENA  
4/26  
VNH3SP30  
THERMAL DATA  
See MultiPowerSO-30 Thermal Data section.  
ELECTRICAL CHARACTERISTICS (V =9V up to 18V; -40°C<T <150°C; unless otherwise specified)  
CC  
j
POWER  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
36  
30  
Unit  
V
V
Operating supply voltage  
5.5  
CC  
R
On state high side resistance  
On state low side resistance  
On state leg resistance  
I
I
I
=12A; T =25°C  
23  
11  
mΩ  
mΩ  
mΩ  
mA  
µA  
ONHS  
LOAD  
LOAD  
LOAD  
j
R
=12A; T =25°C  
15  
ONLS  
j
R
=12A  
90  
ON  
ON state; V =V =5V  
15  
INA  
INB  
I
Supply current  
s
OFF state  
40  
High Side Free-wheeling  
Diode Forward Voltage  
V
I =12A  
0.8  
1.1  
3
V
f
f
T =25°C; V  
=EN =0V;  
X
j
=13VOUTX  
µA  
V
High Side Off State Output  
Current (per channel)  
CC  
T =125°C; V  
I
L(off)  
=EN =0V;  
j
OUTX  
X
5
µA  
V
=13V  
CC  
SWITCHING (V =13V, R  
=1.1)  
CC  
LOAD  
Parameter  
PWM frequency  
Symbol  
Test Conditions  
Min  
Typ  
Max  
10  
Unit  
kHz  
µs  
f
0
t
t
Turn-on delay time  
Input rise time < 1µs (see fig. 3)  
Input rise time < 1µs (see fig. 3)  
(see fig. 2)  
100  
85  
1.5  
2
300  
255  
3
D(on)  
Turn-off delay time  
µs  
D(off)  
t
Output voltage rise time  
Output voltage fall time  
µs  
r
t
(see fig. 2)  
5
µs  
f
Delay time during change of  
operation mode  
t
(see fig. 1)  
600  
1800  
µs  
DEL  
PROTECTION AND DIAGNOSTIC  
Symbol  
Parameter  
Undervoltage shut-down  
Overvoltage shut-down  
Current limitation  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
5.5  
USD  
V
36  
30  
43  
45  
V
OV  
I
A
LIM  
Thermal shut-down  
temperature  
T
V
= 3.25 V  
150  
170  
200  
°C  
TSD  
IN  
T
Thermal Reset Temperature  
Thermal Hysteresis  
135  
7
°C  
°C  
TR  
T
15  
HYST  
5/26  
1
VNH3SP30  
PWM  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
PWM low level voltage  
Low level PWM pin current  
PWM high level voltage  
High level PWM pin current  
PWM hysteresis voltage  
1.5  
pwl  
pwl  
I
V
V
=1.5V  
1
µA  
V
pw  
V
3.25  
pwh  
pwh  
I
=3.25V  
10  
µA  
V
pw  
V
0.5  
pwhhyst  
I
I
= 1 mA  
V
+0.3  
V
+0.7  
V +1.0  
CC  
V
pw  
CC  
CC  
V
PWM clamp voltage  
pwcl  
= -1 mA  
-5.0  
-3.5  
-2.0  
-500  
-2.0  
V
pw  
V
Test mode PWM pin voltage  
-3.5  
-0.5  
V
pwtest  
I
Test mode PWM pin current V  
= -2.0V  
-2000  
µA  
pwtest  
pwtest  
LOGIC INPUT (IN /IN )  
A
B
Symbol  
Parameter  
Test Conditions  
V =1.5V  
Min  
Typ  
Max  
Unit  
V
V
Input low level voltage  
Input current  
1.5  
IL  
I
1
µA  
V
INL  
IN  
V
Input high level voltage  
Input current  
3.25  
IH  
I
V =3.25V  
10  
µA  
V
INH  
IN  
V
Input hysteresis voltage  
0.5  
6.0  
IHYST  
I =1mA  
6.8  
8.0  
V
IN  
V
Input clamp voltage  
ICL  
I =-1mA  
-1.0  
-0.7  
-0.3  
V
IN  
ENABLE (LOGIC I/O PIN)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
Normal operation  
V
Enable low level voltage  
1.5  
(DIAG /EN pin acts as an  
ENL  
X
X
input pin)  
I
Low level Enable pin current V = 1.5V  
1
µA  
V
ENL  
EN  
Normal operation  
V
Enable high level voltage  
3.25  
(DIAG /EN pin acts as an  
ENH  
X
X
input pin)  
High level Enable pin  
current  
I
V
= 3.25V  
10  
µA  
ENH  
EN  
Normal operation  
V
Enable hysteresis voltage  
Enable clamp voltage  
0.5  
V
(DIAG /EN pin acts as an  
input pin)  
EHYST  
X
X
I
I
=1mA  
6.0  
6.8  
8.0  
V
V
EN  
V
ENCL  
=-1mA  
-1.0  
-0.7  
-0.3  
EN  
Fault operation  
Enable output low level  
voltage  
(DIAG /EN pin acts as an  
input pin)  
X
X
V
0.4  
V
DIAG  
I
=1 mA  
EN  
6/26  
2
VNH3SP30  
WAVEFORMS AND TRUTH TABLE  
TRUTH TABLE IN NORMAL OPERATING CONDITIONS  
In normal operating conditions the DIAG /EN pin is considered as an input pin by the device. This pin must be externally  
X
X
pulled high.  
IN  
IN  
DIAG /EN  
DIAG /EN  
OUT  
OUT  
B
Comment  
Brake to V  
A
B
A
A
B
B
A
1
1
1
1
1
1
1
1
1
1
H
H
L
H
L
CC  
1
0
0
0
1
0
Clockwise  
H
L
Counter cw  
L
Brake to GND  
PWM pin usage:  
In all cases, a “0” on the PWM pin will turn-off both LSA and LSB switches. When PWM rises back to “1”, LS or LS  
A
B
turn on again depending on the input pin state.  
NB: in no cases external pins (except for GND and GND ) are allowed to be connected with ground.  
B
A
TYPICAL APPLICATION CIRCUIT FOR DC TO 10KHz PWM OPERATION  
V
CC  
Reg 5V  
+5V  
+5V  
3.3K  
3.3K  
V
CC  
1K  
1K  
DIAG /EN  
B
DIAG /EN  
B
A
A
1K  
1K  
HSA  
HSB  
OUT  
OUT  
A
PWM  
B
µC  
1K  
IN  
A
IN  
B
CW  
LSA  
LSB  
(*)  
10K  
M
GND  
A
CCW  
GND  
B
S
G
b) N MOSFET  
D
(*) Open load detection in off mode  
7/26  
VNH3SP30  
REVERSE BATTERY PROTECTION  
Three possible solutions can be thought of:  
a) a Schottky diode  
b) a N-channel MOSFET connected to the GND pin (see Typical Application Circuit on page 7)  
c) a P-channel MOSFET connected to the V pin  
D
connected to V  
pin  
CC  
CC  
The device sustains no more than -30A in reverse battery conditions because of the two Body diodes of  
the Power MOSFETs. Additionally, in reverse battery condition the I/Os of VNH2SP30 will be pulled down  
to the V  
line (approximately -1.5V). Series resistor must be inserted to limit the current sunk from the  
CC  
microcontroller I/Os. If I  
is the maximum target reverse current through µC I/Os, series resistor is:  
Rmax  
V
V  
IOs  
I
CC  
R = ------------------------------  
Rmax  
OPEN LOAD DETECTION IN OFF-MODE  
It is possible for the microcontroller to detect an open load condition by adding a simply resistor (for  
example 10k) between one of the outputs of the bridge (for example OUT ) and one microcontroller  
B
input. A possible sequence of inputs and enable signals is the following: IN =1, IN =X, EN = 1, EN =0.  
A
B
A
B
-
-
normal condition: OUT =H and OUT =H  
A B  
open load condition: OUT =H and OUT =L: in this case the OUT pin is internally pulled down to  
A
B
B
GND. This condition is detected on OUT pin by the microcontroller as an open load fault.  
B
SHORT CIRCUIT PROTECTION  
In case of a fault condition the DIAG /EN pin is considered as an output pin by the device.  
X
X
The fault conditions are:  
- overtemperature on one or both high sides;  
- short to battery condition on the output (saturation detection on the Low-Side Power MOSFET).  
Possible origins of fault conditions may be:  
OUT is shorted to ground ---> overtemperature detection on high side A.  
A
(1)  
OUT is shorted to V ---> Low-Side Power MOSFET saturation detection.  
A
CC  
When a fault condition is detected, the user can know which power element is in fault by monitoring the  
IN , IN , DIAG /EN and DIAG /EN pins.  
A
B
A
A
B
B
In any case, when a fault is detected, the faulty half bridge is latched off. To turn-on the respective output  
(OUT ) again, the input signal must rise from low to high level.  
X
(1) An internal operational amplifier compares the Drain-Source MOSFET voltage with the internal reference (2.7V Typ.).  
The relevant Lowside PowerMOS is switched off when its Drain-Source voltage exceeds the reference voltage.  
TRUTH TABLE IN FAULT CONDITIONS (detected on OUT )  
A
IN  
IN  
DIAG /EN  
DIAG /EN  
OUT  
OUT  
H
A
B
A
A
B
B
A
B
1
1
0
0
X
X
X
1
0
1
0
X
1
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
L
H
L
OPEN  
H
OPEN  
Fault Information  
Protection Action  
8/26  
VNH3SP30  
TEST MODE  
The PWM pin allows to test the load connection between two half-bridges. In the test mode (V  
=-2V)  
pwm  
the internal Power Mos gate drivers are disabled. The IN or IN inputs allow to turn-on the High Side A  
A
B
or B, respectively, in order to connect one side of the load at V voltage. The check of the voltage on  
CC  
the other side of the load allow to verify the continuity of the load connection. In case of load  
disconnection the DIAD /EN pin corresponding to the faulty output is pulled down.  
X
X
ELECTRICAL TRANSIENT REQUIREMENTS  
ISO T/R  
Test Level  
I
Test Level  
II  
Test Level  
III  
Test Level  
IV  
Test Levels  
7637/1  
Delays and Impedance  
Test Pulse  
1
2
-25V  
+25V  
-25V  
-50V  
+50V  
-50V  
-75V  
+75V  
-100V  
+75V  
-6V  
-100V  
+100V  
-150V  
+100V  
-7V  
2ms, 10Ω  
0.2ms, 10Ω  
0.1µs, 50Ω  
0.1µs, 50Ω  
100ms, 0.01Ω  
400ms, 2Ω  
3a  
3b  
4
+25V  
-4V  
+50V  
-5V  
5
+26.5V  
+46.5V  
+66.5V  
+86.5V  
ISO T/R  
Test Levels Result  
I
Test Levels Result  
II  
Test Levels Result  
III  
Test Levels Result  
IV  
7637/1  
Test Pulse  
1
2
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
E
C
C
C
C
C
E
3a  
3b  
4
5
Class  
C
Contents  
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device are not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
E
9/26  
1
VNH3SP30  
HALF-BRIDGE CONFIGURATION  
The VNH3SP30 can be used as a high power half-bridge driver achieving an on resistance  
per leg of 22.5m. Suggested configuration is the following:  
V
CC  
IN  
IN  
IN  
A
B
A
A
B
IN  
DIAG /EN  
DIAG /EN  
A
A
A
B
DIAG /EN  
DIAG /EN  
B
B
B
PWM  
PWM  
OUT  
A
OUT  
OUT  
OUT  
M
B
B
A
GND  
GND  
B
GND  
GND  
B
A
A
MULTI-MOTORS CONFIGURATION  
The VNH3SP30 can easily be designed in multi-motors driving applications such as seat  
positioning systems where only one motor must be driven at a time. DIAG /EN pins allow  
X
X
to put unused half-bridges in high impedance. Suggested configuration is the following:  
V
CC  
IN  
IN  
IN  
IN  
A
B
A
B
DIAG /EN  
DIAG /EN  
A
A
A
A
DIAG /EN  
DIAG /EN  
PWM  
B
B
B
B
PWM  
OUT  
A
OUT  
OUT  
OUT  
B
M
2
B
A
GND  
GND  
B
GND  
GND  
B
A
A
M
M
1
3
10/26  
VNH3SP30  
Figure 1: Definition of the delay times measurement (example of clockwise operation)  
V
INA,  
t
V
INB  
t
PWM  
t
I
LOAD  
t
DEL  
t
DEL  
t
Figure 2: Definition of the Low Side Switching times  
PWM  
t
V
OUTA, B  
90%  
80%  
t
f
t
r
t
10%  
20%  
11/26  
VNH3SP30  
Figure 3: Definition of the High side Switching times  
V
INA,  
t
t
D(off)  
D(on)  
t
V
OUTA  
90%  
10%  
t
12/26  
VNH3SP30  
Waveforms  
NORMAL OPERATION (DIAG /EN =1, DIAG /EN =1)  
A
A
B
B
DIAG /EN  
A
A
B
DIAG /EN  
B
IN  
IN  
A
B
PWM  
OUT  
A
OUT  
B
(int. pin) GATE  
(int. pin) GATE  
A
B
NORMAL OPERATION (DIAG /EN =1, DIAG /EN =0 and DIAG /EN =0, DIAG /EN =1)  
A
A
B
B
A
A
B
B
DIAG /EN  
A
A
B
DIAG /EN  
B
IN  
IN  
A
B
PWM  
OUT  
A
OUT  
B
(int. pin) GATE  
(int. pin) GATE  
A
B
CURRENT LIMITATION/THERMAL SHUTDOWN or OUT SHORTED TO GROUND  
A
IN  
IN  
A
B
I
LIM  
I
OUTA  
T
TSD  
T
j
DIAG /EN  
A
A
B
DIAG /EN  
B
(int. pin) GATE  
(int. pin) GATE  
A
B
normal operation  
normal operation  
OUT shorted to ground  
A
13/26  
VNH3SP30  
Waveforms (Continued)  
OUT shorted to V and undervoltage shutdown  
A
CC  
IN  
IN  
A
B
OUT  
A
OUT  
B
(int. pin) GATE  
A
B
(int. pin) GATE  
DIAG /EN  
B
B
A
DIAG /EN  
A
V
CC  
normal operation  
OUT shorted to V  
normal operation  
undervoltage shutdown  
A
CC  
Load disconnection test (IN =1, PWM=-2V)  
A
IN  
IN  
A
B
PWM  
(test mode)  
OUT  
A
OUT  
B
(int. pin)GATE  
A
(int. pin) GATE  
B
DIAG /EN  
A
A
DIAG /EN  
B
B
load connected  
load connected back  
load disconnected  
14/26  
VNH3SP30  
Off State Supply Current  
On State Supply Current  
Is (uA)  
Is (mA)  
50  
8
45  
7
Vcc=18V  
Vcc=18V  
INA or INB=5V  
40  
6
35  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
High Level Input Current  
Input Clamp Voltage  
Iinh (µA)  
Vicl (V)  
8
8
7
7.75  
Vin=3.25V  
Iin=1mA  
6
7.5  
5
4
3
2
1
0
7.25  
7
6.75  
6.5  
6.25  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
Tc (ºC)  
Tc (ºC)  
Input High Level Voltage  
Input Low Level Voltage  
Vih (V)  
Vil (V)  
3.6  
2.8  
2.6  
2.4  
2.2  
2
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
15/26  
VNH3SP30  
Input Hysteresis Voltage  
High Level Enable Pin Current  
Ienh (µA)  
Vihyst (V)  
8
2
1.8  
7
Vcc=13V  
Ven=3.25V  
1.6  
6
1.4  
1.2  
1
5
4
3
2
1
0
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
High Level Enable Voltage  
Low Level Enable Voltage  
Venl (V)  
Venh (V)  
2.8  
4
3.8  
2.6  
Vcc=9V  
Vcc=9V  
3.6  
2.4  
3.4  
3.2  
3
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
2.8  
2.6  
2.4  
2.2  
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Enable Clamp Voltage  
Enable Output Low Level Voltage  
Vdiag (V)  
Vencl (V)  
0.6  
8
0.525  
7.75  
Ien=1mA  
Ien=1mA  
0.45  
7.5  
0.375  
0.3  
7.25  
7
0.225  
0.15  
0.075  
0
6.75  
6.5  
6.25  
6
-50  
-25  
0
25  
50  
75  
100 125 150 175  
-50  
-25  
0
25  
50  
75  
100  
125 150  
175  
Tc (ºC)  
Tc (ºC)  
16/26  
VNH3SP30  
PWM High Level Voltage  
PWM Low Level Voltage  
Vpwl (V)  
Vpwh (V)  
2.8  
5
4.5  
2.6  
Vcc=9V  
Vcc=9V  
2.4  
4
3.5  
3
2.2  
2
2.5  
2
1.8  
1.6  
1.4  
1.2  
1
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Overvoltage Shutdown  
PWM High Level Current  
Vov (V)  
Ipwh (µA)  
54  
8
52  
50  
48  
46  
44  
42  
40  
38  
36  
34  
7
Vcc=9V  
Vpw=3.25V  
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Current Limitation  
Undervoltage Shutdown  
Ilim (A)  
Vusd (V)  
80  
7
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
6.5  
6
5.5  
5
4.5  
4
3.5  
3
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
17/26  
VNH3SP30  
On State High Side Resistance Vs. T  
On State High Side Resistance Vs. V  
case  
CC  
Ronhs (mOhm)  
Ronhs (mOhm)  
80  
80  
70  
70  
Iload=12A  
Iload=12A  
Vcc=9V; 13V; 18V  
60  
60  
50  
40  
30  
20  
10  
0
50  
Tc= 150ºC  
40  
30  
20  
10  
0
Tc= 25ºC  
Tc= -40ºC  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
8
9
10 11 12 13 14 15 16 17 18 19 20  
Vcc (V)  
Tc (ºC)  
On State Low Side Resistance Vs. T  
On State Low Side Resistance Vs. V  
case  
CC  
Ronls (mOhm)  
Ronls (mOhm)  
40  
40  
35  
35  
Iload=12A  
Iload=12A  
Vcc=9V; 13V; 18V  
30  
30  
25  
20  
15  
10  
5
25  
Tc= 150ºC  
20  
15  
10  
5
Tc= 25ºC  
Tc= -40ºC  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
8
9
10 11 12 13 14 15 16 17 18 19 20  
Vcc (V)  
Tc (ºC)  
Delay Time during change of operation mode  
On State Leg Resistance  
tdel (µs)  
Ron (mOhm)  
1000  
90  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100 125 150 175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
18/26  
VNH3SP30  
Turn-on Delay Time  
Turn-off Delay Time  
td(off) (µs)  
td(on) (µs)  
150  
100  
140  
130  
120  
110  
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Output Voltage Rise Time  
Output Voltage Fall Time  
tf (µs)  
tr (µs)  
5
1
4.5  
4
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
19/26  
VNH3SP30  
MultiPowerSO-30 THERMAL DATA  
MultiPowerSO-30 PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 16cm ).  
CHIPSET CONFIGURATION  
HIGH SIDE  
CHIP  
HSAB  
LOW SIDE  
CHIP B  
LOW SIDE  
CHIP A  
LSB  
LSA  
Auto and mutual R  
definitions)  
Vs PCB copper area in open box free air condition (according to page 20  
thj-amb  
°C/W  
45  
40  
35  
30  
25  
20  
15  
10  
5
RthA  
RthB = RthC  
RthAB = RthAC  
RthBC  
0
0
5
10  
15  
20  
cm2 of Cu Area (refer to PCB layout)  
20/26  
VNH3SP30  
THERMAL CALCULATION IN CLOCKWISE AND ANTI-CLOCKWISE OPERATION IN STEADY-  
STATE MODE  
HS  
HS  
LS  
LS  
T
T
T
jLSB  
A
B
A
B
jHSAB  
jLSA  
P
R
dHSA x R  
+ PdLSB x  
amb  
P
R
dHSA x R  
+ PdLSB x  
P
R
dHSA x R  
+ PdLSB x  
+ PdLSA x  
thHS  
thHSLS  
thHSLS  
ON  
OFF  
ON  
OFF  
ON  
ON  
+ T  
+ T  
+ T  
thHSLS  
thLSLS  
amb  
thLS  
amb  
PdHSB x R  
+ PdLSA x  
amb  
PdHSB x R  
+ PdLSA x PdHSB x R  
thHS  
thHSLS  
amb  
thHSLS  
OFF  
OFF  
R
+ T  
R
+ T  
R
+ T  
thLSLS amb  
thHSLS  
thLS  
Thermal resistances definition (values according to the PCB heatsink area)  
R
= R  
= R  
= High Side Chip Thermal Resistance Junction to Ambient (HS or HS in ON  
thHSB A B  
thHS  
thHSA  
state)  
R
R
= R  
= R  
= Low Side Chip Thermal Resistance Junction to Ambient  
thLSB  
thLS  
thHSLS  
thLSA  
= R  
= R  
= Mutual Thermal Resistance Junction to Ambient between High Side  
thHSBLSA  
thHSALSB  
and Low Side Chips  
= R  
R
= Mutual Thermal Resistance Junction to Ambient between Low Side Chips  
thLSALSB  
thLSLS  
THERMAL CALCULATION IN TRANSIENT MODE (*)  
T
T
= Z  
x P  
+ Z  
x (P  
+ P  
) + T  
jHSAB  
thHS  
dHSAB  
thHSLS  
dLSA  
dLSB amb  
= Z  
x P  
+ Z  
+ Z  
x P  
+ Z  
x P  
x P  
+ T  
jLSA  
jLSB  
thHSLS  
thHSLS  
dHSAB  
dHSAB  
thLS  
dLSA  
thLSLS  
dLSB  
dLSB  
amb  
amb  
T
= Z  
x P  
x P  
+ Z  
+ T  
thLSLS  
dLSA  
thLS  
Single pulse thermal impedance definition (values according to the PCB heatsink area)  
Z
Z
Z
= High Side Chip Thermal Impedance Junction to Ambient  
thHS  
thLS  
= Z  
= Z  
= Low Side Chip Thermal Impedance Junction to Ambient  
thLSB  
thLSA  
= Z  
= Z  
= Mutual Thermal Impedance Junction to Ambient between High Side  
thHSLS  
thHSABLSA  
thHSABLSB  
and Low Side Chips  
= Z  
Z
= Mutual Thermal Impedance Junction to Ambient between Low Side Chips  
thLSALSB  
thLSLS  
Pulse calculation formula  
= R (1 δ)  
Z
δ + Z  
THδ  
TH  
δ = t T  
THtp  
where  
p
(*) Calculation is valid in any dynamic operating condition. P values set by user.  
d
21/26  
VNH3SP30  
MultiPowerSO-30 HSD Thermal Impedance Junction Ambient Single Pulse  
10 0  
Footprint  
2
4 cm  
2
8 cm  
2
16 cm  
Z
thHS  
Footprint  
2
1 0  
4 cm  
2
8 cm  
2
16 cm  
Z
thHSLS  
W
°C/  
1
0 .1  
0 .0 0 1  
0 .0 1  
0 .1  
ti m e (se c)  
1
1 0  
1 0 0  
10 0 0  
MultiPowerSO-30 LSD Thermal Impedance Junction Ambient Single Pulse  
1 0 0  
Footprint  
2
4 cm  
2
8 cm  
Z
thLS  
2
16 cm  
Footprint  
2
1 0  
4 cm  
2
8 cm  
Z
thLSLS  
2
16 cm  
W
/
°C  
1
0 .1  
0 .0 0 1  
t i m e ( se c )  
0 .0 1  
0 .1  
1
1 0  
1 0 0  
1 0 0 0  
22/26  
VNH3SP30  
Thermal fitting model of an H-Bridge in MultiPowerSO-30  
Thermal Parameter (*)  
2
Area/island (cm )  
Footprint  
0.05  
0.3  
4
8
16  
R1=R7 (°C/W)  
R2=R8 (°C/W)  
R3 (°C/W)  
0.5  
R4 (°C/W)  
1.3  
R5 (°C/W)  
1.4  
R6 (°C/W)  
44.7  
0.6  
39.1  
36.1  
31.6  
30.4  
23.7  
20.8  
R9=R10=R15=R16 (°C/W)  
R11=R17 (°C/W)  
R12=R18 (°C/W)  
R13=R19 (°C/W)  
R14=R20 (°C/W)  
R21=R22=R23 (°C/W)  
C1=C7 (W.s/°C)  
C2=C8 (W.s/°C)  
C3 (W.s/°C)  
0.8  
1.5  
20  
46.9  
115  
0.001  
0.005  
0.02  
0.3  
C4=C13=C19 (W.s/°C)  
C5 (W.s/°C)  
0.6  
C6 (W.s/°C)  
5
7
9
11  
C9=C15 (W.s/°C)  
C10=C11=C16=C17 (W.s/°C)  
C12=C18 (W.s/°C)  
C14=C20 (W.s/°C)  
0.001  
0.003  
0.075  
2.5  
3.5  
4.5  
5.5  
(*) The blank space means that the value is the same as the previous one.  
23/26  
VNH3SP30  
MultiPowerSO-30 MECHANICAL DATA  
mm.  
DIM.  
MIN.  
TYP  
MAX.  
2.35  
2.25  
0.1  
A
A2  
A3  
B
1.85  
0
0.42  
0.23  
17.1  
18.85  
15.9  
0.58  
0.32  
17.3  
19.15  
16.1  
C
D
17.2  
E
E1  
e
16  
1
F1  
F2  
F3  
L
5.55  
4.6  
6.05  
5.1  
9.6  
10.1  
1.15  
10deg  
7deg  
0.8  
N
S
0deg  
24/26  
2
VNH3SP30  
MultiPowerSO-30 SUGGESTED PAD LAY-OUT  
25/26  
VNH3SP30  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
26/26  

相关型号:

VNH3SP30TR-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH5019A-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH5050A-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH5050ATR-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH50N04

FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNH5180A-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH7013XP-E

Automotive integrated H-bridge
STMICROELECTR

VNH70N07

TRANSISTOR | MOSFET | N-CHANNEL | 70V V(BR)DSS | 70A I(D) | TO-218
ETC

VNH7100AS

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH7100ASTR

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNI4140K

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K-32

Quad high side smart power solid state relay
STMICROELECTR