TB6575FNG_06 [TOSHIBA]

PWM Sensorless Controller for 3-Phase Full-Wave BLDC Motors; PWM控制传感器用于3相全波无刷直流电动机
TB6575FNG_06
型号: TB6575FNG_06
厂家: TOSHIBA    TOSHIBA
描述:

PWM Sensorless Controller for 3-Phase Full-Wave BLDC Motors
PWM控制传感器用于3相全波无刷直流电动机

传感器
文件: 总14页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB6575FNG  
TOSHIBA CMOS Integrated Circuit Silicon Monolithic  
TB6575FNG  
PWM Sensorless Controller for 3-Phase Full-Wave BLDC Motors  
The TB6575FNG provides sensorless commutation and PWM  
current control for 3-phase full-wave BLDC motors. It controls  
rotation speed by changing a PWM duty cycle by analog voltage.  
Features  
3-phase full-wave sensorless drive  
PWM chopper drive  
PWM duty cycle control by analog input  
20-mA current sink capability on PWM output pins  
Overcurrent protection  
Weight: 0.14 g (typ.)  
Forward/reverse rotation  
Lead angle control (7.5° and 15°)  
Overlap commutation  
Rotation speed sensing signal  
DC excitation mode to improve startup characteristic  
DC excitation time and forced commutation time for startup operation can be changed.  
Forced commutation frequency can be selected. (f /(6 × 216), f /(6 × 217), f /(6 × 218) )  
XT  
XT  
XT  
Output polarity switching (P-channel + N-channel, N-channel + N-channel)  
The following conditions apply to solderability:  
*Solderability  
1. Use of Sn-37Pb solder bath  
*solder bath temperature = 230ºC  
*dipping time = 5 seconds  
*number of times = once  
*use of R-type flux  
2. Use of Sn-3.0Ag-0.5Cu solder bath  
*solder bath temperature = 245ºC  
*dipping time = 5 seconds  
*number of times = once  
*use of R-type flux  
1
2006-3-6  
TB6575FNG  
Block Diagram  
Duty  
19  
V
OS FG_OUT  
DD  
21  
3
7
Startup time  
setting  
6-bit AD  
PWM  
V
5
SP  
13 OUT_UP  
15 OUT_VP  
17 OUT_WP  
14 OUT_UN  
16 OUT_VN  
18 OUT_WN  
converter  
control  
SC 2  
START 8  
IP 9  
PWM  
generator  
DC excitation  
control circuit  
Forced  
commutation  
frequency setting  
F
24  
4
Timing  
control  
ST  
Maximum  
commutation  
frequency setting  
F
MAX  
Overcurrent  
protection  
22 OC  
Lead angle  
setting  
LA 12  
CW_CCW 6  
SEL_LAP 20  
Clock  
generation  
Position  
23 WAVE  
recognition  
10  
11  
1
X
X
GND  
Tout  
Tin  
Pin Assignment  
GND  
SC  
1
24  
F
ST  
2
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
WAVE  
OC  
OS  
3
F
MAX  
4
V
DD  
V
5
SEL_LAP  
Duty  
SP  
CW_CCW  
FG_OUT  
START  
IP  
6
7
OUT_WN  
OUT_WP  
OUT_VN  
OUT_VP  
OUT_UN  
OUT_UP  
8
9
X
10  
11  
12  
Tout  
X
Tin  
LA  
2
2006-3-6  
TB6575FNG  
Pin Description  
Pin No.  
Symbol  
I/O  
I
Description  
1
2
GND  
SC  
Ground pin  
Connection pin for a capacitor to set a startup commutation time and duty cycle ramp-up  
time  
Select the polarity of transistors.  
High or open: High-side transistor = P-channel (active low)  
Low-side transistor = N-channel (active low)  
: High-side transistor = N-channel (active low)  
Low-side transistor = N-channel (active low)  
3
OS  
I
Low  
The pin has a pull-up resistor.  
Set an upper limit of the maximum commutation frequency.  
<Fst=Low>  
F
F
=High or Open , Maximum commutation frequency  
f
= f / (6×211)  
MX XT  
MAX  
MAX  
=Low , Maximum commutation frequency f  
= f /(6 × 212)  
XT  
MX  
4
5
F
I
I
MAX  
<Fst=High or Middle>  
F
MAX  
F
MAX  
=High or Open , Maximum commutation frequency  
f
= f / (6×28)  
XT  
MX  
=Low , Maximum commutation frequency f  
= f /(6 × 29)  
MX  
XT  
The pin has a pull-up resistor.  
Duty cycle control input  
0 V V (L): Output off  
SP AD  
V
V
V
(L) V V (H): Set the PWM duty cycle according to the analog input.  
SP AD  
(H) V V : Duty cycle = 100% (31/32)  
SP DD  
SP  
AD  
AD  
The pin has a pull-down resistor.  
Rotation direction input  
High  
: Reverse rotation (U W V)  
6
7
CW_CCW  
FG_OUT  
I
Low or open : Forward rotation (U V W)  
The pin has a pull-down resistor.  
Rotation speed sensing output  
The pin is low at startup or upon a detection of a fault. This pin drives three pulses per  
rotation (3 ppr) based on the back-EMF (electromotive force) sensing. (In the case of 4  
pole motor, 6 pulse output per rotation.)  
O
8
9
START  
IP  
O
I
DC excitation time setting pins  
When V 1 V (typ.), the START pin goes low to start DC excitation.  
SP  
After the IP pin reaches V /2, the TB6575FNG moves from DC excitation to forced  
DD  
commutation mode.  
10  
11  
X
T
Connection pins for a crystal oscillator  
These pins have a feedback resistor.  
X
Tin  
Lead angle control input  
LA = Low or open : Lead angle of 7.5°  
12  
LA  
I
LA = high  
: Lead angle of 15°  
The pin has a pull-down resistor.  
PWM output signal for the high-side (positive-side) transistor driving motor phase U  
The PWM polarity can be specified by pin 3.  
13  
14  
15  
16  
17  
18  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
O
O
O
O
O
O
PWM output signal for the low-side (negative-side) transistor driving motor phase U  
This signal is active high.  
PWM output signal for the high-side (positive-side) transistor driving motor phase V  
The PWM polarity can be specified by pin 3.  
PWM output signal for the low-side (negative-side) transistor driving motor phase V  
This signal is active high.  
PWM output signal for the high-side (positive-side) transistor driving motor phase W  
The PWM polarity can be specified by pin 3.  
PWM output signal for the low-side (negative-side) transistor driving motor phase W  
This signal is active high.  
PWM output monitor pin  
19  
20  
Duty  
O
I
This pin drives PWM output whose duty cycle corresponds to the V input. It also  
SP  
reflects the information at the OC pin.  
Overlap commutation select pin  
SEL_LAP  
Low: Overlap commutation  
High: 120° commutation  
The pin has a pull-up resistor.  
3
2006-3-6  
TB6575FNG  
Pin No.  
21  
Symbol  
I/O  
Description  
V
5-V power supply pin  
DD  
Overcurrent detection input  
22  
23  
OC  
I
I
The all PWM output signals are stopped when OC 0.5 (V).  
The pin has a pull-up resistor.  
Position sensing input  
WAVE  
3-phase voltage is applied to this pin.  
The pin has a pull-up resistor.  
Forced commutation frequency select pin  
High or open: Forced commutation frequency f = f /(6 × 216)  
ST  
XT  
24  
F
ST  
I
Middle  
: Forced commutation frequency f = f /(6 × 217)  
ST XT  
Low  
: Forced commutation frequency f = f /(6 × 218)  
ST XT  
The pin has a pull-up resistor.  
Functional Description  
1. Sensorless drive  
On receiving an analog voltage command input, the rotor is aligned to a known position in DC excitation  
mode, and then the rotation is started in forced commutation mode by applying a PWM signal to the motor.  
As the rotor moves, back-EMF is acquired.  
When a signal indicating the polarity of each of the phase voltages including back-EMF is applied to the  
position signal input pin, automatic switching occurs from the forced commutation PWM signal to the  
natural commutation PWM signal (which is generated based on the back-EMF sensing) to drive a BLDC  
motor in sensorless mode.  
2. Startup operation  
When the motor is stationary, there is no back-EMF and the motor position is unknown. For this reason,  
the rotor is aligned to a known position in DC excitation mode and then the rotation is started in forced  
commutation mode. An external capacitor sets the times that the TB6575FNG stays in DC excitation and  
forced commutation modes. Those times vary depending on the motor type and motor loading. Thus, they  
must be adjusted experimentally.  
V
1.0 (V)  
SP  
V
(5 pin)  
SP  
V
SP  
V
T
AD (L)  
SC (2 pin)  
UP  
T
UP  
(typ.) = C1 × V /3.8 µA (s)  
SP  
START_SP (8 pin)  
V
DD  
IP (9 pin)  
V
DD  
2
(a) (b)  
GND  
V
5
2
SP  
TB6575FNG  
(a): DC excitation period : T  
(b): Forced commutation period  
(typ.) = 0.69 × C1 × R1 (s)  
FIX  
C
1
9
8
R
1
C
2
4
2006-3-6  
TB6575FNG  
The rotor is aligned to a known position in DC excitation mode for period (a), during which the IP pin voltage  
decreases to half V level. The time constant for the period is determined by C and R . After that, switching  
DD  
1
occurs to forced commutation mode represented by (b). The duty cycles for DC excitation and forced commutation  
modes are determined according to the SC pin voltage. When the number of turn of a motor is time more than  
forced commutation frequency, the motor switches to sensorless mode. The duty cycle for sensorless mode is  
determined by the V value.  
SP  
3. Forced commutation frequency  
The forced commutation frequency for startup operation is set as follows.  
The optimal frequency varies depending on the motor type and motor loading. Thus, It must be adjusted  
experimentally.  
F
ST  
F
ST  
F
ST  
= High or Open: Forced commutation frequency f = f /(6 × 216)  
ST XT  
= Middle  
= Low  
: Forced commutation frequency f = f /(6 × 217)  
ST XT  
: Forced commutation frequency f = f /(6 × 218)  
ST  
XT  
T
FIX  
* f : Crystal oscillator frequency  
XT  
4. PWM frequency  
The PWM frequency is determined by an external oscillator.  
PWM frequency (f ) = f /256  
PWM  
XT  
* f : Crystal oscillator frequency  
XT  
The PWM frequency must be sufficiently high, compared with the electrical frequency of the motor and  
within the switching performance of the transistors.  
OS = High or Open  
PWM signal driving  
high-side transistors  
PWM signal driving  
low-side transistors  
Motor pin voltage  
5. Speed control V pin  
SP  
An analog voltage applied to the V pin is converted by the 6-bit AD converter to control the duty cycle  
SP  
Duty cycle  
of the PWM.  
100%  
0 V  
V  
(L)  
DUTY  
AD  
Duty cycle = 0%  
(L) V V (H)  
AD  
V
AD  
DUTY  
Figure at the right (1/64 to 63/64)  
(H) V V  
V
AD  
DUTY  
DD  
Duty cycle = 100% (63/64)  
0%  
V
SP  
V
(L)  
V
(H)  
AD  
AD  
1 V (typ.)  
4 V (typ.)  
5
2006-3-6  
TB6575FNG  
6. Fault protection  
When a signal indicating the following faults is applied to the WAVE pin, the output transistors are  
disabled. After about one second, the motor is restarted. This operation is repeated as long as a fault is  
detected.  
The maximum commutation frequency is exceeded.  
The rotation speed falls below the forced commutation frequency.  
V
SP  
= 1 V or higher  
V
SP  
(Pin5)  
When the SC pin capacitor = 0.47 µF  
and V = 4 V  
Output pin  
ON  
OFF  
ON  
SP  
= CSC ×(VSP 1)  
(a): T  
OFF  
i
START (Pin8)  
0.47 µF×(4 1)  
1.5µA  
=
= 940 ms (typ.)  
IP (Pin9)  
(a)  
SC (Pin9)  
V
SP  
1 V  
Fault detected  
7. Motor position detection error  
A position detection is synchronized with the PWM signal generated in the IC. Thus, a position detection  
error relative to the PWM signal frequency may occur. Keep this in mind especially when the TB6575FNG  
is used for a high-speed motor.  
A detection is performed on the falling edge of the PWM signal. An error is recognized when the pin  
voltage exceeds the reference voltage.  
Detection error time < 1/f  
f : PWM frequency = f /256  
f
: Crystal oscillator frequency  
XT  
p
p
XT  
Output ON  
Internal PWM signal  
Pin voltage  
Pin voltage  
Reference voltage  
Position sensing input  
Ideal detection timing  
Actual detection timing  
6
2006-3-6  
TB6575FNG  
8. Lead angle control  
The motor runs with a lead angle of 0° in forced commutation mode at startup. After switching to natural  
commutation, the lead angle automatically changes to the value set by the LA pin.  
U
V
W
Back-EMF  
PWM signal  
30°  
22.5°  
15°  
(1) Lead angle of 0°  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
(2) Lead angle of 7.5°  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
(3) Lead angle of 15°  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
*OS = High  
9. Overlap commutation  
When SEL_LAP = high, the TB6575FNG is configured to allow for 120° commutation. When SEL_LAP =  
low, it is configured to allow for overlap commutation. In overlap commutation, there is an overlap period  
during which both the outgoing transistor and incoming transistor are conducting (as shown in the shaded  
areas). This period varies according to the lead angle.  
U
V
W
Back-EMF  
PWM signal  
(1) Lead angle of 7.5°  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
(2) Lead angle of 15°  
OUT_UP  
OUT_UN  
OUT_VP  
OUT_VN  
OUT_WP  
OUT_WN  
*OS = High  
7
2006-3-6  
TB6575FNG  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Power supply voltage  
Symbol  
Rating  
5.5  
Unit  
V
V
V
DD  
Input voltage  
V
0.3~V  
+ 0.3  
in  
DD  
Turn-on signal output current  
Power dissipation  
I
20  
mA  
mW  
°C  
OUT  
P
780 (Note)  
30~105  
D
Operating temperature  
Storage temperature  
T
opr  
T
55~150  
°C  
stg  
Note: Without a PCB, stand-alone operation  
Recommended Operating Conditions (Ta = −30 to 105°C)  
Characteristics  
Power supply voltage  
Input voltage  
Symbol  
Test Condition  
Min  
4.5  
Typ.  
5.0  
Max  
5.5  
Unit  
V
V
DD  
V
DD  
V
0.3  
2.0  
V
in  
+ 0.3  
Oscillation frequency  
f
4.0  
8.0  
MHz  
XT  
8
2006-3-6  
TB6575FNG  
Electrical Characteristics (Ta = 25°C, V = 5 V)  
DD  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
= 0 V, X = H  
Min  
Typ.  
0.7  
2
Max  
Unit  
mA  
mA  
Static power supply current  
Dynamic power supply current  
I
V
V
DD  
DD (opr)  
SP  
SP  
Tin  
= 2.5 V, X = 4 MHz,  
Tin  
Output open  
I
6
V
F
= 5 V, OC, WAVE, SEL_LAP  
, F , OS  
MAX ST  
IN  
I
(H)  
(L)  
0
1
IN-1  
V
F
= 0 V, OC, WAVE, SEL_LAP,  
, F , OS  
MAX ST  
IN  
I
75  
50  
IN-1  
Input current  
µA  
I
(H)  
(L)  
V
V
= 5 V, CW_CCW, LA, V  
= 0 V, CW_CCW, LA, V  
50  
0
75  
IN-2  
IN  
SP  
I
1  
IN-2  
IN  
SP  
OC, SEL_LAP, CW_CCW  
WAVE, LA, F , OS  
V
(H)  
(L)  
3.5  
5
IN-1  
MAX  
OC, SEL_LAP, CW_CCW  
V
GND  
1.5  
IN-1  
WAVE, LA, F , OS  
MAX  
Input voltage  
V
V
V
(H)  
(M)  
(L)  
F
F
F
4
2
5
3
1
IN-2  
ST  
ST  
ST  
V
IN-2  
V
GND  
IN-2  
Input hysteresis voltage  
V
0.45  
H
WAVE, IP  
= −2 mA  
I
OH  
OUT_UP, OUT_VP, OUT_WP  
V
(H)  
(L)  
(H)  
(L)  
(H)  
(L)  
4.5  
V
DD  
O-1  
I
= 20 mA  
OL  
OUT_UP, OUT_VP, OUT_WP  
V
GND  
4.5  
0.5  
O-1  
O-2  
I
= −20 mA  
OH  
OUT_UN, OUT_VN, OUT_WN  
V
V
DD  
Output voltage  
V
I
= 2 mA  
OL  
OUT_UN, OUT_VN, OUT_WN  
V
GND  
4.5  
0.5  
O-2  
O-3  
I
= −0.5 mA  
OH  
FG_OUT  
V
V
DD  
I
= 0.5 mA  
OL  
FG_ OUT  
V
GND  
0.5  
O-3  
V
= 5.5 V, V = 0 V  
OUT  
DD  
OUT_UP, OUT_VP, OUT_WP,  
OUT_UN, OUT_VN, OUT_WN,  
FG_OUT  
I
(H)  
0
0
10  
10  
L
Output leak current  
PWM input voltage  
µA  
V
= 5.5 V, V = 5.5 V  
OUT  
DD  
OUT_UP, OUT_VP, OUT_WP  
OUT_UN, OUT_VN, OUT_WN,  
FG_OUT  
I
(L)  
L
V
AD  
(L)  
0.8  
3.8  
2.6  
1.0  
4.0  
3.8  
940  
0.5  
1.2  
4.2  
5.0  
V
SP  
V
V
AD  
(H)  
C
SC  
charge current  
I
SC  
µA  
ms  
V
SC  
Fault retry time  
T
V
= 4 V, SC pin = 0.47 µF  
OFF  
SP  
Overcurrent detection voltage  
V
OC  
0.46  
0.54  
OC  
9
2006-3-6  
TB6575FNG  
Input Equivalent Circuit  
1. V pin  
SP  
2. SEL_LAP, F , F , WAVE and OS pins  
MAX ST  
V
DD  
V
V
DD DD  
1 kΩ  
Startup time  
setting block  
Input pin  
Input pin  
Internal logic  
1 kΩ  
Hysteresis width  
WAVE : 450 mV (typ.)  
3. LA and CW_CCW pins  
4. OUT_UP, OUT_UN, OUT_VP, OUT_VN, OUT_WP,  
OUT_WN and FG_OUT pins  
V
DD  
V
DD  
1 kΩ  
Input pin  
Internal logic  
Internal logic  
Output pin  
5. X  
and X  
pins  
6. OC pin  
Tin  
Tout  
V
DD  
V
DD  
V
V
DD DD  
1MΩ  
150 Ω  
150 Ω  
X
pin  
X
Tout  
pin  
Tin  
OC pin  
Internal logic  
200 kΩ  
10  
2006-3-6  
TB6575FNG  
MCU  
7
Application Circuit Example  
5 V  
Duty  
19  
V
M
21  
V
24  
OS  
FG_OUT  
DD  
Speed command  
(analog voltage)  
V
5
SP  
OUT_UP  
Startup time  
setting  
6-bit AD  
PWM  
13  
15  
17  
14  
16  
18  
converter  
control  
M
OUT_VP  
OUT_WP  
OUT_UN  
OUT_VN  
OUT_WN  
SC  
2
START  
PWM  
generator  
8
IP  
9
1-phase excitation  
control circuit  
V
DD  
2
F
24  
ST  
Startup commutation  
frequency setting  
Timing  
setting  
F
4
MAX  
Maximum commutation  
frequency setting  
OC  
Overcurrent  
protection  
V
DD  
22  
LA  
12  
CW_CCW  
(*1)  
Lead angle setting  
1 kΩ  
6
SEL_LAP  
20  
TA75393P  
WAVE  
Clock  
generation  
Position  
recognition  
23  
X
Tout  
X
Tin  
GND  
10  
11  
1
4-MHz crystal oscillator  
Note 1: Utmost care is necessary in the design of the output, V , V , and GND lines since the IC may be destroyed by short-circuiting between outputs, air contamination faults,  
CC  
M
or faults due to improper grounding, or by short-circuiting between contiguous pins.  
Note 2: The above application circuit including component values is reference only. Because the values may vary depending on the motor type, the optimal values must be  
determined experimentally.  
*1: Connect a resistor, if necessary, to prevent malfunction due to noise.  
11  
2006-3-6  
TB6575FNG  
Package Dimensions  
Weight: 0.14 g (typ.)  
12  
2006-3-6  
TB6575FNG  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified  
for explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for  
explanatory purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only. Thorough  
evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on handling of ICs  
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
[2] Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation  
or incorrectly even just one time.  
13  
2006-3-6  
TB6575FNG  
14  
2006-3-6  

相关型号:

TB6581H

3-Phase Full-Wave Sine-Wave PWM Brushless Motor Controller
TOSHIBA

TB6581HG

3-Phase Full-Wave Sine-Wave PWM Brushless Motor Controller
TOSHIBA

TB6581H_06

3-Phase Full-Wave Sine-Wave PWM Brushless Motor Controller
TOSHIBA

TB6584AFNG

IC MOTOR CONTROLLER PAR 30SSOP
TOSHIBA

TB6585FG

TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic
TOSHIBA

TB6585FTG

TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic
TOSHIBA

TB6586

TB6586
TOSHIBA

TB6586AFG

IC BRUSHLESS DC MOTOR CONTROLLER, 0.001 A, PDSO24, 0.300 INCH, 1 MM PITCH, PLASTIC, SSOP-24, Motion Control Electronics
TOSHIBA

TB6586FG

IC BRUSHLESS DC MOTOR CONTROLLER, 0.001 A, PDSO24, 0.300 INCH, 1 MM PITCH, PLASTIC, SSOP-24, Motion Control Electronics
TOSHIBA

TB6588FG

3-Phase Full-Wave PWM Driver for Sensorless DC Motors
TOSHIBA

TB6590FTG

IC BRUSH DC MOTOR CONTROLLER, 0.5 A, PQCC16, 3 X 3 MM, 0.50 MM PITCH, LEAD FREE, PLASTIC, VQON-16, Motion Control Electronics
TOSHIBA

TB6591FL

Micro Peripheral IC
MARKTECH