70-W224NIA400SH-M400P [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
70-W224NIA400SH-M400P
型号: 70-W224NIA400SH-M400P
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总32页 (文件大小:2767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70ꢀW224NIA400SHꢀM400P  
datasheet  
VINcoNPC X4  
1500 V / 400 A  
Features  
VINco X4 housing  
1500 V NPCꢀtopology  
● High power screw interface  
● Low inductive interface for external DCcapacitors  
and paralleling on component level  
● Snubber diode for optional asymmetrical inductance  
● High speed buck IGBT´s  
● Temperature sensor  
Target Applications  
Schematic  
● UPS  
● Solar Inverters  
Types  
● 70W224NIA400SHM400P  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Switch  
V CE  
I C  
Collectorꢀemitter break down voltage  
DC collector current  
1200  
326  
V
A
T j = T jmax  
T s = 80 °C  
I CRM  
t p limited by T jmax  
V CE ≤ 1200 V, T j T op  
T j = T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
1200  
800  
A
A
max  
P tot  
V GE  
T s = 80 °C  
881  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
V CC  
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Buck Diode  
V RRM  
I F  
Peak Repetitive Reverse Voltage  
DC forward current  
1200  
270  
800  
565  
175  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
I FRM  
P tot  
T jmax  
t p = 10 ms, sin 180°  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
A
W
°C  
Maximum Junction Temperature  
copyright Vincotech  
1
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost Switch  
V CE  
I C  
Collectorꢀemitter break down voltage  
DC collector current  
1200  
348  
V
A
T j = T jmax  
T s = 80 °C  
I CRM  
t p limited by T jmax  
V CE ≤ 1200 V, T j T op  
T j = T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
1200  
800  
A
A
max  
P tot  
V GE  
T s = 80 °C  
826  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
V CC  
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Boost Inverse Diode  
Peak Repetitive Reverse Voltage  
DC forward current  
V RRM  
I F  
I FRM  
P tot  
1200  
242  
600  
423  
175  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Boost Diode  
V RRM  
I F  
Peak Repetitive Reverse Voltage  
DC forward current  
1200  
257  
600  
452  
175  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
I FRM  
P tot  
T jmax  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
A
W
°C  
Maximum Junction Temperature  
copyright Vincotech  
2
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Snubber Diode  
V RRM  
I FAV  
I FSM  
Repetitive peak reverse voltage  
Forward average current  
Surge forward current  
I 2tꢀvalue  
1200  
90  
V
A
A
T j = T jmax  
T s = 80 °C  
T j = 150 °C  
T s = 80 °C  
540  
730  
162  
175  
t p = 10 ms, sin 180°  
T j = T jmax  
I 2t  
A2s  
W
P tot  
Power dissipation  
T jmax  
Maximum Junction Temperature  
°C  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
Operation temperature under switching condition  
ꢀ40…+(T jmax ꢀ 25)  
Insulation Properties  
t p = 2 s  
DC Test Volage*  
AC Voltage  
4000  
2500  
V
V isol  
Insulation voltage  
t p = 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
>200  
mm  
mm  
Comparative Tracking Index  
*100 % tested in production  
CTI  
copyright Vincotech  
3
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V GE [V]  
I C [A]  
I F [A]  
I D [A]  
V CE [V]  
T j [°C]  
Min  
Max  
V GS [V]  
V DS [V]  
Buck Switch  
V GE(th) V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,0136  
400  
25  
5,2  
1,7  
5,8  
6,4  
V
V
25  
125  
2,14  
2,44  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
15  
0
1200  
0
25  
0,048  
960  
mA  
nA  
20  
25  
0,5  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
171  
172  
24  
Rise time  
29  
ns  
238  
290  
21  
t d(off)  
Turnꢀoff delay time  
R goff = 1 ꢁ  
±15  
600  
398  
R gon = 1 ꢁ  
t f  
Fall time  
38  
9,03  
14,33  
13,20  
21,33  
E on  
E off  
C ies  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
pF  
125  
22160  
1520  
1280  
3040  
C oss  
C rss  
Q G  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
400  
400  
398  
nC  
phaseꢀchange  
R th(j-s) material  
Thermal resistance chip to heatsink  
0,105  
K/W  
λ = 3,4 W/mK  
Buck Diode  
25  
125  
2,34  
2,38  
V F  
I R  
Diode forward voltage  
V
µA  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
480  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
506  
624  
86  
I RRM  
t rr  
A
ns  
117  
34,86  
57,89  
14614  
15212  
15,14  
26,14  
Q rr  
R gon=1 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
µC  
( di rf/dt )max  
A/µs  
mWs  
E rec  
phaseꢀchange  
R th(j-s) material  
Thermal resistance chip to heatsink  
0,163  
K/W  
λ = 3,4 W/mK  
copyright Vincotech  
4
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V GE [V]  
I C [A]  
I F [A]  
I D [A]  
V CE [V]  
T j [°C]  
Min  
Max  
V GS [V]  
V DS [V]  
Boost Switch  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,0152  
400  
25  
5
5,80  
6,5  
V
V
25  
125  
25  
1,91  
2,14  
15  
0
1200  
0
0,052  
2400  
mA  
nA  
125  
20  
25  
1,875  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
233  
242  
44  
Rise time  
49  
ns  
334  
405  
43  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 1 ꢁ  
R gon = 1 ꢁ  
±15  
600  
398  
Fall time  
99  
15,2  
21,5  
24,2  
37,6  
E on  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
24600  
1620  
1380  
3200  
Output capacitance  
f = 1 MHz  
0
25  
398  
400  
25  
25  
Reverse transfer capacitance  
Gate charge  
±15  
960  
nC  
phaseꢀchange  
R th(j-s) material  
Thermal resistance chip to heatsink  
0,112  
K/W  
λ = 3,4 W/mK  
Boost Inverse Diode  
Diode forward voltage  
Reverse leakage current  
25  
125  
1,35  
1,90  
1,84  
V F  
I r  
300  
V
1200  
25  
56  
µA  
phaseꢀchange  
R th(j-s) material  
λ = 3,4 W/mK  
Thermal resistance chip to heatsink  
0,204  
K/W  
Boost Diode  
25  
125  
1,35  
1,90  
1,84  
V F  
I r  
Diode forward voltage  
300  
398  
V
ꢂA  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
56  
25  
125  
25  
125  
25  
125  
25  
125  
125  
125  
368  
403  
251  
341  
34  
I RRM  
t rr  
A
ns  
Q rr  
R gon = 1 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
µC  
59  
3292  
3343  
13,60  
24,53  
( di rf/dt )max  
A/µs  
mWs  
E rec  
phaseꢀchange  
R th(j-s) material  
Thermal resistance chip to heatsink  
0,204  
K/W  
λ = 3,4 W/mK  
copyright Vincotech  
5
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V GE [V]  
I C [A]  
I F [A]  
I D [A]  
V CE [V]  
T j [°C]  
Min  
Max  
V GS [V]  
V DS [V]  
Snubber Diode  
Forward voltage  
Reverse current  
25  
125  
1,91  
1,85  
V F  
I r  
100  
V
1200  
25  
0,12  
mA  
phaseꢀchange  
R th(j-s) material  
λ = 3,4 W/mK  
Thermal resistance chip to heatsink  
0,588  
22  
K/W  
Thermistor  
R
ΔR/R  
P
Rated resistance  
Deviation of R 100  
25  
100  
25  
25  
25  
25  
kꢁ  
%
R 100 = 1484 ꢁ  
5  
+5  
5
Power dissipation  
Power dissipation constant  
Bꢀvalue  
mW  
mW/K  
K
1,5  
B (25/50)  
Tol. ±1%  
Tol. ±1%  
3962  
4000  
B (25/100)  
Bꢀvalue  
K
I
Vincotech NTC Reference  
Module Properties  
Buck  
15  
28  
L sCE C-PCB  
Module inductance (from chips to PCB)  
nH  
nH  
Boost  
Module inductance (from PCB to PCB  
using Intercon board)  
L sCE PCB-PCB  
5
Resistance of Intercon boards  
(from PCB to PCB using Intercon board)  
R cc'1+EE'  
1,5  
mΩ  
g
G
Weight  
580  
copyright Vincotech  
6
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 1.  
Typical output characteristics  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V CE (V)  
V CE (V)  
At  
At  
t p  
T j  
=
=
t p  
T j  
=
=
350  
25  
ꢂs  
350  
125  
ꢂs  
°C  
°C  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I C = f(V GE  
)
I F = f(V F  
)
350  
300  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
Tj = 125°C  
Tj = 125°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
2
4
6
8
10  
12  
1
2
3
4
V GE (V)  
V F (V)  
At  
At  
t p  
=
t p =  
350  
10  
ꢂs  
350  
ꢂs  
V CE  
=
V
copyright Vincotech  
7
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
Typical switching energy losses  
as a function of gate resistor  
E = f(I C  
)
E = f(R G)  
50  
140  
Eoff High T  
120  
100  
80  
Eon High T  
40  
30  
20  
10  
Eon Low T  
Eon High T  
Eoff Low T  
60  
Eon Low T  
40  
Eoff High T  
Eoff Low T  
20  
0
0
0
0
200  
400  
600  
800  
1000  
2
4
6
8
10  
I C(A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
°C  
V
V
J
°C  
V
25/125  
600  
±15  
1
25/125  
600  
V CE  
=
=
V CE  
V GE  
=
=
V GE  
R gon  
R goff  
±15  
V
=
I C =  
398  
A
=
1
J
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(I c  
)
E rec = f(R G)  
40  
40  
Erec High T  
32  
24  
16  
8
32  
24  
16  
8
Erec Low T  
Erec High T  
Erec Low T  
0
0
0
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
I C(A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
V CE  
V GE  
=
=
±15  
V
±15  
V
=
I C =  
1,0  
J
398  
A
copyright Vincotech  
8
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
Typical switching times as a  
function of gate resistor  
t = f(I C  
)
t = f(R G)  
1,00  
1,00  
tdoff  
tdon  
tdoff  
tdon  
tr  
0,10  
0,10  
tf  
tf  
tr  
0,01  
0,01  
0,00  
0
0,00  
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
R G ( )  
I C(A)  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
125  
600  
±15  
1
°C  
V
V
J
125  
600  
±15  
398  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
R gon  
R goff  
=
=
I C =  
A
1
J
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c  
)
t rr = f(R gon)  
0,2  
1,0  
trr High T  
0,8  
0,6  
0,4  
0,2  
0,2  
0,1  
0,1  
0,0  
trr High T  
trr Low T  
trr Low T  
0,0  
0
0,0  
0
2
4
6
8
10  
R gon( )  
200  
400  
600  
800  
1000  
I C(A)  
At  
At  
T j  
=
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
±15  
V
398  
A
R gon  
=
V GE =  
1,0  
J
±15  
V
copyright Vincotech  
9
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(I C  
)
Q rr = f(R gon)  
100  
100  
Qrr High T  
80  
60  
40  
20  
80  
60  
40  
20  
Qrr Low T  
Qrr High T  
Qrr Low T  
0
0
0
0
200  
400  
600  
800  
1000  
2
4
6
8
10  
I C(A)  
R gon( )  
At  
At  
T j  
=
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
±15  
V
398  
A
R gon  
=
V GE =  
1,0  
J
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(I C  
)
I RRM = f(R gon)  
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
200  
IRRM High T  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
I C(A)  
R gon( )  
At  
At  
T j  
=
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
±15  
V
398  
A
R gon  
=
V GE =  
1,0  
J
±15  
V
copyright Vincotech  
10  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(I c  
)
dI 0/dt ,dI rec/dt = f(R gon  
)
20000  
28000  
dIrec/dt T  
dI0/dt T  
dIo/dt T  
dIrec/dt T  
24000  
20000  
16000  
12000  
8000  
4000  
0
16000  
12000  
8000  
4000  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10  
I C(A)  
R gon( )  
At  
T j  
At  
T j  
=
=
=
2
5
/
1
2
5
°C  
V
2
5
/
1
2
5
°C  
V
V CE  
V GE  
=
=
V R  
600  
600  
398  
I F  
=
±15  
1,0  
V
A
R gon  
=
V GE  
=
J
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p  
)
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-1  
D = 0,5  
0,2  
D = 0,5  
10-2  
10-2  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-3  
10-5  
10-3  
10-5  
t p (s)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,105  
K/W  
0,163  
K/W  
IGBT thermal model values  
With thermal grease With phase change material  
(K/W) Tau (s) (K/W) Tau (s)  
FWD thermal model values  
With thermal grease With phase change material  
(K/W) Tau (s) (K/W) Tau (s)  
R
R
R
R
1,07Eꢀ02 5,24E+00  
3,45Eꢀ02 1,19E+00  
2,47Eꢀ02 2,95Eꢀ01  
2,81Eꢀ02 3,03Eꢀ02  
6,37Eꢀ03 7,56Eꢀ03  
3,43Eꢀ03 7,59Eꢀ04  
1,04Eꢀ02 5,24E+00  
3,34Eꢀ02 1,19E+00  
2,40Eꢀ02 2,95Eꢀ01  
2,73Eꢀ02 3,03Eꢀ02  
6,18Eꢀ03 7,56Eꢀ03  
3,33Eꢀ03 7,59Eꢀ04  
1,83Eꢀ02 7,43E+00  
3,13Eꢀ02 1,59E+00  
3,19Eꢀ02 2,90Eꢀ01  
4,29Eꢀ02 6,32Eꢀ02  
3,32Eꢀ02 2,05Eꢀ02  
1,04Eꢀ02 1,83Eꢀ03  
1,77Eꢀ02 7,43E+00  
3,03Eꢀ02 1,59E+00  
3,09Eꢀ02 2,90Eꢀ01  
4,17Eꢀ02 6,32Eꢀ02  
3,22Eꢀ02 2,05Eꢀ02  
1,01Eꢀ02 1,83Eꢀ03  
copyright Vincotech  
11  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Collector current as a  
function of heatsink temperature  
P tot = f(T s  
)
I C = f(T s)  
1800  
500  
400  
300  
200  
100  
1200  
600  
0
0
0
0
o C)  
T s (  
o C)  
50  
100  
150  
200  
50  
100  
150  
200  
T s  
(
At  
At  
T j  
=
T j  
=
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
function of heatsink temperature  
FWD  
figure 24.  
Forward current as a  
function of heatsink temperature  
FWD  
P tot = f(T s  
)
I F = f(T s)  
1200  
500  
1000  
800  
600  
400  
200  
400  
300  
200  
100  
0
0
0
0
o C)  
T s (  
o C)  
50  
100  
150  
200  
50  
100  
150  
200  
T s  
(
At  
At  
T j  
=
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
12  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 25.  
IGBT  
figure 26.  
Gate voltage vs Gate charge  
IGBT  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
V GE = f(Q g)  
17,5  
15  
12,5  
10  
103  
10uS  
240 V  
102  
100uS  
960 V  
1mS  
101  
7,5  
5
10mS  
100  
100mS  
DC  
2,5  
10-1  
0
0
400  
800  
1200  
1600  
2000  
102  
103  
Q g (nC)  
101  
100  
V CE(V)  
At  
At  
D =  
I C  
=
400  
A
single pulse  
T s  
V GE  
T j  
=
80  
±15  
T jmax  
ºC  
V
=
=
figure 27.  
Reverse bias safe operating area  
IGBT  
I C = f(V CE  
)
1000  
IC MAX  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
V CE(V)  
At  
U ccminus  
= U ccplus  
Switching mode :  
3 level switching  
copyright Vincotech  
13  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V CE (V)  
V CE (V)  
At  
At  
t p  
T j  
=
=
t p  
T j  
=
=
350  
25  
ꢂs  
°C  
350  
125  
ꢂs  
°C  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I C = f(V GE  
)
I F = f(V F  
)
400  
350  
300  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
Tj = 125°C  
Tj = 25°C  
Tj = 125°C  
Tj = 25°C  
0
0
0
0
2
4
6
8
10  
12  
1
2
3
4
V GE (V)  
V F (V)  
At  
At  
t p  
=
t p =  
350  
10  
ꢂs  
350  
ꢂs  
V CE  
=
V
copyright Vincotech  
14  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
Typical switching energy losses  
as a function of gate resistor  
E = f(I C  
)
E = f(R G)  
100  
100  
Eon High T  
80  
60  
40  
20  
80  
60  
40  
20  
Eon Low T  
Eoff High T  
Eoff Low T  
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
0
0
0
0
2
4
6
8
10  
R G ( )  
I C(A)  
200  
400  
600  
800  
1000  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
600  
°C  
V
V
J
25/125  
600  
°C  
V
V CE  
=
=
V CE  
V GE  
=
=
V GE  
R gon  
R goff  
±15  
1,0  
±15  
V
=
I C =  
398  
A
=
1,0  
J
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(I c  
)
E rec = f(R G)  
40  
40  
Erec High T  
30  
20  
10  
30  
20  
10  
Erec Low T  
Erec High T  
Erec Low T  
0
0
0
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
R G  
(
)
I C (A)  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
V CE  
V GE  
=
=
±15  
V
±15  
V
=
I C =  
1,0  
J
398  
A
copyright Vincotech  
15  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
Typical switching times as a  
function of gate resistor  
t = f(I C  
)
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tf  
tr  
tr  
tf  
0,1  
0,1  
0,01  
0,01  
0,001  
0,001  
0
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
I C(A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
125  
600  
±15  
1,0  
°C  
V
V
J
125  
600  
±15  
398  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
R gon  
R goff  
=
=
I C =  
A
1,0  
J
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c  
)
t rr = f(R gon)  
0,8  
0,8  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
0,6  
0,4  
0,2  
0,0  
0,6  
0,4  
0,2  
0
trr High T  
trr Low T  
trr Low T  
0
2
4
6
8
10  
0
200  
400  
600  
800  
1000  
I C(A)  
R gon( )  
At  
T j  
At  
T j  
=
=
=
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
V R  
I F  
=
±15  
V
398  
A
R gon  
=
V GE =  
1,0  
J
±15  
V
copyright Vincotech  
16  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(I C  
)
Q rr = f(R gon)  
100  
100  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Qrr High T  
Qrr Low T  
Qrr Low T  
0
2
4
6
8
10  
0
200  
400  
600  
800  
1000  
I C(A)  
R gon( )  
At  
T j  
At  
T j  
=
=
=
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
V R  
=
I F  
=
±15  
V
398  
A
=
V GE  
=
1,0  
J
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(I C  
)
I RRM = f(R gon)  
500  
500  
IRRM High T  
IRRM Low T  
400  
300  
200  
100  
400  
300  
200  
100  
IRRM High T  
IRRM Low T  
0
0
0
0
2
4
6
8
10  
200  
400  
600  
800  
1000  
I C(A)  
R gon( )  
At  
At  
T j  
=
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
±15  
V
398  
A
R gon  
=
V GE =  
1,0  
J
±15  
V
copyright Vincotech  
17  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(I c  
)
dI 0/dt ,dI rec/dt = f(R gon  
)
15000  
15000  
dI0/dt T  
dIrec/dt T  
di0/dt T  
dIrec/dt T  
12000  
12000  
9000  
6000  
3000  
0
9000  
6000  
3000  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10  
I C(A)  
R gon( )  
At  
T j  
At  
T j  
=
=
=
2
5
/
1
2
5
°C  
V
2
5
/
1
2
5
°C  
V
V CE  
V GE  
=
=
V R  
600  
600  
398  
I F  
=
±15  
1,0  
V
A
R gon  
=
V GE  
=
J
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p  
)
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-1  
D = 0,5  
D = 0,5  
0,2  
0,2  
0,1  
10-2  
10-2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-3  
10-5  
10-3  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
t p (s)  
t p (s)  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,112  
K/W  
0,074  
0,204  
K/W  
0,135  
IGBT thermal model values  
With thermal grease With phase change material  
(K/W) Tau (s) (K/W) Tau (s)  
FWD thermal model values  
With thermal grease With phase change material  
(K/W) Tau (s) (K/W) Tau (s)  
R
R
R
R
1,19Eꢀ02 6,35E+00  
4,76Eꢀ02 1,77E+00  
2,06Eꢀ02 3,94Eꢀ01  
1,32Eꢀ02 8,72Eꢀ02  
2,00Eꢀ02 1,94Eꢀ02  
1,78Eꢀ03 2,24Eꢀ03  
1,16Eꢀ02 6,35E+00  
4,61Eꢀ02 1,77E+00  
2,00Eꢀ02 3,94Eꢀ01  
1,28Eꢀ02 8,72Eꢀ02  
1,94Eꢀ02 1,94Eꢀ02  
1,72Eꢀ03 2,24Eꢀ03  
2,09Eꢀ02 5,24E+00  
6,72Eꢀ02 1,19E+00  
4,82Eꢀ02 2,95Eꢀ01  
5,49Eꢀ02 3,03Eꢀ02  
1,24Eꢀ02 7,56Eꢀ03  
6,70Eꢀ03 7,59Eꢀ04  
2,03Eꢀ02 5,24E+00  
6,52Eꢀ02 1,19E+00  
4,67Eꢀ02 2,95Eꢀ01  
5,32Eꢀ02 3,03Eꢀ02  
1,20Eꢀ02 7,56Eꢀ03  
6,49Eꢀ03 7,59Eꢀ04  
copyright Vincotech  
18  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Collector current as a  
function of heatsink temperature  
P tot = f(T s  
)
I C = f(T s)  
1800  
500  
1500  
1200  
900  
400  
300  
200  
100  
600  
300  
0
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
T s  
(
o C)  
T s(  
o C)  
At  
At  
T j  
=
T j  
=
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
function of heatsink temperature  
FWD  
figure 24.  
Forward current as a  
function of heatsink temperature  
FWD  
P tot = f(T s  
)
I F = f(T s)  
1200  
500  
1050  
900  
750  
600  
450  
300  
150  
400  
300  
200  
100  
0
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j  
=
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
19  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost  
Boost IGBT  
figure 25.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
1000  
IC MAX  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
V CE (V)  
At  
U ccminus  
L s  
=
U ccplus  
=
12  
nH  
3 level switching  
Switching mode :  
copyright Vincotech  
20  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Boost Inverse Diode  
figure 25.  
Boost Inverse Diode  
figure 26.  
Boost Inverse Diode  
Typical FWD forward current as  
a function of forward voltage  
FWD transient thermal impedance  
as a function of pulse width  
I F = f(V F  
)
Z th(j-s) = f(t p)  
100  
1000  
800  
600  
400  
200  
10-1  
D = 0,5  
0,2  
10-2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
10-3  
10-5  
1
2
3
4
V F (V)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
102  
100  
101  
At  
At  
t p  
=
t p / T  
250  
ꢂs  
D =  
R th(j-s)  
=
0,204  
K/W  
figure 27.  
Power dissipation as a  
function of heatsink temperature  
Boost Inverse Diode  
figure 28.  
Forward current as a  
function of heatsink temperature  
Boost Inverse Diode  
P tot = f(T s  
)
I F = f(T s)  
2000  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1600  
1200  
800  
400  
0
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j  
=
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
21  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Snubber Diode  
figure 1.  
Snubber Diode  
figure 2.  
Snubber Diode  
Typical diode forward current as  
a function of forward voltage  
Diode transient thermal impedance  
as a function of pulse width  
I F = f(V F  
)
Z th(j-s) = f(t p)  
100  
600  
500  
400  
300  
200  
100  
10-1  
Tj = 25°C  
D = 0,5  
0,2  
Tj = Tjmax-25°C  
10-2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0
0
10-3  
10-5  
1
2
3
4
5
10-4  
10-3  
10-2  
10-1  
100  
101  
V F (V)  
t p (s)  
102  
At  
At  
t p  
=
t p / T  
250  
ꢂs  
D =  
R th(j-s)  
=
0,588  
K/W  
figure 3.  
Power dissipation as a  
function of heatsink temperature  
Snubber Diode  
figure 4.  
Forward current as a  
function of heatsink temperature  
Snubber Diode  
P tot = f(T s  
)
I F = f(T s)  
300  
150  
250  
200  
150  
100  
50  
120  
90  
60  
30  
0
0
0
0
50  
100  
150  
200  
o C)  
T s (  
o C)  
50  
100  
150  
200  
T s  
(
At  
At  
T j  
=
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
22  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R
= f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
23  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Buck  
General conditions  
T j  
=
=
=
125 °C  
1 ꢁ  
1 ꢁ  
R gon  
R goff  
Test setup inductance: 9 nH  
IGBT figure 2.  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff Turnꢀon Switching Waveforms & definition of t don, t Eon  
figure 1.  
IGBT  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
300  
%
VCE  
125  
250  
200  
150  
tdoff  
IC  
100  
VGE 90%  
VCE 90%  
75  
VGE  
IC  
50  
VCE  
VGE  
tEoff  
100  
25  
0
tdon  
50  
IC 1%  
VCE 3%  
VGE 10%  
IC 10%  
tEon  
0
-25  
-50  
-50  
3,8  
3,95  
4,1  
4,25  
4,4  
4,55  
-0,3  
-0,15  
0
0,15  
0,3  
0,45  
0,6  
time (µs)  
time(µs)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
600  
402  
0,29  
0,45  
V
600  
402  
0,17  
0,30  
V
A
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
%
300  
%
Ic  
125  
250  
VCE  
fitted  
IC  
200  
100  
75  
50  
25  
0
IC 90%  
150  
IC 60%  
VCE  
100  
IC 90%  
tr  
IC 40%  
50  
IC 10%  
IC 10%  
0
tf  
-50  
-25  
4,1  
4,15  
4,2  
4,25  
4,3  
4,35  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
time(µs)  
time(µs)  
V C (100%) =  
I C (100%) =  
600  
402  
0,04  
V
V C (100%) =  
I C (100%) =  
600  
402  
0,03  
V
A
A
t f  
=
ꢂs  
t r  
=
ꢂs  
copyright Vincotech  
24  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Buck  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
Poff  
%
Eoff  
Eon  
100  
75  
100  
75  
Pon  
50  
50  
25  
25  
IC  
1%  
VGE 10%  
VGE90%  
VCE 3%  
0
0
tEon  
tEoff  
-25  
-25  
3,95  
4,05  
4,15  
4,25  
4,35  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
time (µs)  
time(µs)  
P off (100%) =  
E off (100%) =  
241,06  
21,33  
0,45  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
241,06  
14,33  
0,30  
kW  
mJ  
ꢂs  
t E off  
=
t E on =  
figure 7.  
FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
0
I
10%  
RRM  
-50  
-100  
-150  
-200  
IRRM 90%  
IRRM 100%  
fitted  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time(µs)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
V
402  
A
ꢀ624  
0,12  
A
t rr  
=
ꢂs  
copyright Vincotech  
25  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Buck  
figure 8.  
FWD  
figure 10.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
200  
Prec  
Qrr  
%
Id  
%
100  
150  
100  
tQrr  
50  
0
Erec  
tErec  
-50  
50  
0
-100  
-150  
-200  
-50  
4
4,2  
4,4  
4,6  
4,8  
5
5,2  
5,4  
time(µs)  
4
4,2  
4,4  
4,6  
4,8  
5
5,2  
time(µs)  
5,4  
I d (100%) =  
Q rr (100%) =  
402  
A
P rec (100%) =  
E rec (100%) =  
241,06  
kW  
mJ  
ꢂs  
57,89  
1,00  
ꢂC  
ꢂs  
26,14  
1,00  
t Q rr  
=
t E rec =  
copyright Vincotech  
26  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Boost  
General conditions  
T j  
=
=
=
125 °C  
1 ꢁ  
1 ꢁ  
R gon  
R goff  
Test setup inductance: 9 nH  
Boost IGBT figure 2.  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
figure 1.  
Boost IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
200  
IC  
%
%
125  
tdoff  
150  
100  
VCE  
90%  
VGE 90%  
VCE  
100  
75  
VGE  
IC  
tdon  
50  
50  
tEoff  
25  
VCE 3%  
IC 10%  
VGE 10%  
IC  
1%  
VCE  
0
tEon  
0
VGE  
0,6  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,8  
1
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
time (µs)  
time(µs)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
600  
398  
0,40  
0,76  
V
600  
398  
0,24  
0,48  
V
A
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
Boost IGBT  
figure 4.  
Boost IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
125  
200  
Ic  
fitted  
%
%
VCE  
IC  
100  
150  
Ic  
90%  
75  
VCE  
100  
Ic  
60%  
IC  
90%  
50  
25  
0
tr  
Ic  
40%  
50  
Ic 10%  
IC 10%  
0
tf  
-25  
-50  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (µs)  
0,7  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(µs)  
V C (100%) =  
I C (100%) =  
600  
V
V C (100%) =  
I C (100%) =  
600  
398  
V
398  
A
A
t f  
=
0,099  
ꢂs  
t r  
=
0,049  
ꢂs  
copyright Vincotech  
27  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Boost  
figure 5.  
Boost IGBT  
figure 6.  
Boost IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
%
IC  
1%  
Eon  
Poff  
Eoff  
100  
100  
75  
50  
25  
0
Pon  
75  
50  
25  
Uce 3%  
Uge 90%  
Uge 10%  
0
tEoff  
tEon  
-25  
-25  
2,9  
3,05  
3,2  
3,35  
3,5  
3,65  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
1
time(µs)  
time (µs)  
P off (100%) =  
E off (100%) =  
238,67  
37,62  
0,76  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
238,672 kW  
13,39  
0,48  
mJ  
t E off  
=
t E on  
=
ꢂs  
figure 7.  
Boost FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
fitted  
0
IRRM 10%  
-50  
IRRM 90%  
IRRM 100%  
-100  
-150  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
time(µs)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
V
398  
A
ꢀ403  
0,34  
A
t rr  
=
ꢂs  
copyright Vincotech  
28  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Switching Definitions Boost  
figure 8.  
Boost FWD  
figure 9.  
Boost FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
125  
%
Erec  
Id  
Qrr  
100  
75  
50  
25  
0
100  
tErec  
tQint  
50  
0
-50  
Prec  
-25  
-100  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(µs)  
time(µs)  
I d (100%) =  
Q rr (100%) =  
398  
A
P rec (100%) =  
E rec (100%) =  
238,67  
24,53  
0,69  
kW  
mJ  
ꢂs  
58,83  
0,69  
ꢂC  
ꢂs  
t Qint  
=
t E rec =  
copyright Vincotech  
29  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without thermal paste  
with thermal paste  
70ꢀW224NIA400SHꢀM400P  
70ꢀW224NIA400SHꢀM400P-/3/  
Name  
NNꢀNNNNNNNNNNNNNNꢀNNNNNNNN  
Date code  
UL & Vinco  
Lot  
Serial  
Name  
Text  
Date code  
Lot  
Serial  
WWYY  
UL VIN  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTꢀTTT  
LLLLL  
SSSS  
WWYY  
Vincotech  
UL  
Outline  
Pin table [mm]  
Pin  
X
Y
Function  
Group  
1.1  
1.2  
ꢀ2,15  
ꢀ2,15  
46,15  
46,15  
19,45  
24,55  
ꢀ7,65  
ꢀ7,65  
51,65  
51,65  
16,75  
27,25  
ꢀ2,55  
ꢀ5,45  
46,55  
49,45  
ꢀ4,8  
84,85  
81,95  
84,85  
81,95  
93,05  
93,05  
70,05  
67,15  
70,05  
67,15  
75,35  
75,35  
28  
G1ꢀ1  
E1ꢀ1  
G1ꢀ2  
E1ꢀ2  
T1  
T1  
T1  
T1  
T1  
T1  
T2  
T2  
T2  
T2  
D5  
D5  
T3  
T3  
T3  
T3  
T4  
T4  
T4  
T4  
1.3  
1.4  
1.5  
DC+ desat  
1.6  
DC+ desat  
G2ꢀ1  
1.7  
1.8  
E2ꢀ1  
1.9  
G2ꢀ2  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
E2ꢀ2  
GND desat  
GND desat  
G3ꢀ1  
28  
E3ꢀ1  
28  
G3ꢀ2  
28  
E3ꢀ2  
50,85  
49,05  
50,85  
49,05  
89,8  
G4ꢀ1  
ꢀ1,6  
E4ꢀ1  
48,8  
G4ꢀ2  
45,6  
E4ꢀ2  
67,65  
67,65  
NTC1  
86,7  
NTC2  
Low current connections  
M4 screw  
X3  
Y3  
Function  
3.1  
3.2  
ꢀ39,1  
ꢀ39,1  
ꢀ39,1  
83,1  
83,1  
83,1  
ꢀ39,1  
ꢀ39,1  
ꢀ39,1  
83,1  
83,1  
83,1  
89,8  
89,8  
89,8  
89,8  
89,8  
89,8  
65,2  
65,2  
65,2  
65,2  
65,2  
65,2  
TR+  
GND  
DC+  
TR+  
3.3  
3.4  
3.5  
GND  
DC+  
T2C  
3.6  
3.7  
3.8  
GND  
Phase  
T2C  
3.9  
3.10  
3.11  
3.12  
GND  
Phase  
Power connections  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.20  
ꢀ39,1  
ꢀ39,1  
ꢀ39,1  
83,1  
45,2  
45,2  
45,2  
45,2  
45,2  
45,2  
20,6  
20,6  
Phase  
GND  
DK  
Function  
M6 screw  
X2  
Y2  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
0
0
0
Phase  
Phase  
Phase  
DC+  
Phase  
GND  
DK  
22  
44  
0
83,1  
0
83,1  
110,4  
110,4  
110,4  
ꢀ39,1  
ꢀ39,1  
DCꢀ  
22  
44  
GND  
GND  
DCꢀ  
3.21  
3.22  
3.23  
3.24  
ꢀ39,1  
83,1  
83,1  
83,1  
20,6  
20,6  
20,6  
20,6  
TRꢀ  
DCꢀ  
GND  
TRꢀ  
copyright Vincotech  
30  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T11, T12  
D11, D12  
T13, T14  
D15, D16  
D13, D14  
D61, D62  
Rt  
IGBT  
FWD  
IGBT  
FWD  
FWD  
FWD  
NTC  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
400 A  
400 A  
400 A  
300 A  
300 A  
50 A  
Buck Switch  
Buck Diode  
Boost Switch  
Boost Inverse Diode  
Boost Diode  
Snubber Diode  
Thermistor  
copyright Vincotech  
31  
10 Jul. 2019 / Revision 7  
70ꢀW224NIA400SHꢀM400P  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
8
>SPQ  
Standard  
<SPQ  
Sample  
Handling instructions for VINco X4 packages see vincotech.com website.  
Package data  
Package data for VINco X4 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
1
Marketing application voltage modified  
10 Jul. 2019  
70ꢀW224NIA400SHꢀM400PꢀD7-14  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good  
faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur.  
Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation,  
guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same  
will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give  
desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant  
injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the  
life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
32  
10 Jul. 2019 / Revision 7  

相关型号:

70-W424NIA1K2M702-LD07FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800M7-M800F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800SH-M800F

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W612M3A1K8SC02-L300FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W612NMA1K8M702-LC09FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624N3A1K2SC-L400FP

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W624N3A1K2SC01-L400FP1

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W624NIA1K2M702-L400FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624NIA1K8M701-LD00FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70.0000MHZMP2410/50/-10+60/8PF

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.0000MHZMP430/10/-10+60/SR

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.000MHZ49USMX/30/30/-10+60/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELDED, SMD, 2 PIN
EUROQUARTZ