SI7852DP-T1-E3

更新时间:2024-10-12 14:18:32
品牌:VISHAY
描述:TRANSISTOR 7.6 A, 80 V, 0.0165 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, POWERPAK, SOP-8, FET General Purpose Power

SI7852DP-T1-E3 概述

TRANSISTOR 7.6 A, 80 V, 0.0165 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, POWERPAK, SOP-8, FET General Purpose Power 功率场效应晶体管

SI7852DP-T1-E3 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:SOT
包装说明:SMALL OUTLINE, R-XDSO-C5针数:8
Reach Compliance Code:unknownECCN代码:EAR99
风险等级:5.24其他特性:FAST SWITCHING
外壳连接:DRAIN配置:SINGLE WITH BUILT-IN DIODE
最小漏源击穿电压:80 V最大漏极电流 (Abs) (ID):7.6 A
最大漏极电流 (ID):7.6 A最大漏源导通电阻:0.0165 Ω
FET 技术:METAL-OXIDE SEMICONDUCTORJESD-30 代码:R-XDSO-C5
JESD-609代码:e3湿度敏感等级:1
元件数量:1端子数量:5
工作模式:ENHANCEMENT MODE最高工作温度:150 °C
封装主体材料:UNSPECIFIED封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
极性/信道类型:N-CHANNEL最大功率耗散 (Abs):5.2 W
最大脉冲漏极电流 (IDM):50 A认证状态:Not Qualified
子类别:FET General Purpose Power表面贴装:YES
端子面层:Matte Tin (Sn)端子形式:C BEND
端子位置:DUAL处于峰值回流温度下的最长时间:40
晶体管应用:SWITCHING晶体管元件材料:SILICON
Base Number Matches:1

SI7852DP-T1-E3 数据手册

通过下载SI7852DP-T1-E3数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Si7852DP  
Vishay Siliconix  
www.vishay.com  
N-Channel 80 V (D-S) MOSFET  
FEATURES  
• TrenchFET® power MOSFETs  
• New low thermal resistance PowerPAK®  
package with low 1.07 mm profile  
PowerPAK® SO-8 Single  
D
D
7
8
D
6
D
5
• PWM optimized for fast switching  
• 100 % Rg tested  
Available  
• Material categorization: for definitions of  
1
S
compliance please see www.vishay.com/doc?99912  
2
3
S
S
APPLICATIONS  
4
G
1
• Primary side switch for DC/DC applications  
Top View  
Bottom View  
D
PRODUCT SUMMARY  
VDS (V)  
80  
R
DS(on) max. () at VGS = 10 V  
DS(on) max. () at VGS = 6 V  
0.0165  
0.0220  
34  
G
R
Qg typ. (nC)  
D (A)  
Configuration  
I
12.5  
S
Single  
N-Channel MOSFET  
ORDERING INFORMATION  
Package  
PowerPAK SO-8  
Si7852DP-T1-E3  
Si7852DP-T1-GE3  
Lead (Pb)-free  
Lead (Pb)-free and halogen-free  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted)  
PARAMETER  
SYMBOL  
10 s  
STEADY STATE  
UNIT  
Drain-source voltage  
Gate-source voltage  
VDS  
80  
80  
20  
V
VGS  
20  
TA = 25 °C  
TA = 70 °C  
12.5  
10  
7.6  
6.1  
50  
Continuous drain current (TJ = 150 °C) a  
ID  
Pulsed drain current  
IDM  
IAS  
IS  
50  
A
Avalanche current  
Continuous source current (diode conduction) a  
L = 0.1 mH  
40  
40  
4.7  
5.2  
3.3  
1.7  
1.9  
1.2  
TA = 25 °C  
TA = 70 °C  
Maximum power dissipation a  
PD  
W
Operating junction and storage temperature range  
Soldering recommendations (peak temperature) b, c  
TJ, Tstg  
-55 to +150  
260  
°C  
THERMAL RESISTANCE RATINGS  
PARAMETER  
SYMBOL  
RthJA  
TYPICAL  
MAXIMUM  
UNIT  
t 10 s  
19  
52  
24  
65  
Maximum junction-to-ambient a  
Steady state  
Steady state  
°C/W  
Maximum junction-to-case (drain)  
Notes  
a. Surface mounted on 1" x 1" FR4 board  
RthJC  
1.5  
1.8  
b. See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper  
(not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not  
required to ensure adequate bottom side solder interconnection  
c. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components  
S09-0268-Rev. E, 16-Feb-09  
Document Number: 71627  
1
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si7852DP  
Vishay Siliconix  
www.vishay.com  
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Static  
Gate threshold voltage  
Gate-body leakage  
VGS(th)  
IGSS  
VDS = VGS, ID = 250 μA  
2
-
-
-
V
VDS = 0 V, VGS  
=
20 V  
-
100  
nA  
VDS = 80 V, VGS = 0 V  
VDS = 80 V, VGS = 0 V, TJ = 55 °C  
VDS 5 V, VGS = 10 V  
VGS = 10 V, ID = 10 A  
-
-
-
1
Zero gate voltage drain current  
On-state drain current a  
IDSS  
ID(on)  
μA  
A
-
5
50  
-
-
-
0.0135  
0.0175  
25  
0.0165  
0.0220  
-
Drain-source on-state resistance a  
RDS(on)  
VGS = 6 V, ID = 8 A  
-
Forward transconductance a  
Diode forward voltage a  
Dynamic b  
gfs  
VDS = 15 V, ID = 10 A  
-
S
V
VSD  
IS = 2.8 A, VGS = 0 V  
-
0.75  
1.1  
Total gate charge  
Gate-source charge  
Gate-drain charge  
Gate resistance  
Qg  
Qgs  
Qgd  
Rg  
-
-
34  
7.5  
11  
0.6  
17  
11  
40  
31  
45  
41  
-
V
DS = 40 V, VGS = 10 V, ID = 10 A  
nC  
-
-
0.1  
-
1
Turn-on delay time  
Rise time  
td(on)  
tr  
td(off)  
tf  
25  
17  
60  
45  
75  
-
VDD = 40 V, RL = 40   
ID 1 A, VGEN = 10 V, Rg = 6   
Turn-off delay time  
Fall time  
-
ns  
-
Source-drain reverse recovery time  
trr  
IF = 2.8 A, di/dt = 100 A/μs  
-
Notes  
a. Pulse test; pulse width 300 μs, duty cycle 2 %  
b. Guaranteed by design, not subject to production testing  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
S09-0268-Rev. E, 16-Feb-09  
Document Number: 71627  
2
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si7852DP  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
50  
20  
16  
12  
8
V = 40 V  
DS  
V
GS  
= 10 V thru 6 V  
I
D
= 10 A  
40  
30  
20  
10  
0
5 V  
4
3 V, 4 V  
0
0
2
4
6
8
10  
0
15  
30  
45  
60  
Q
- Total Gate Charge (nC)  
V
DS  
- Drain-to-Source Voltage (V)  
g
Output Characteristics  
Gate Charge  
50  
40  
30  
20  
10  
0
100  
10  
T
= 150 °C  
J
T
= 125 °C  
C
1
T
= 25 °C  
J
0.1  
25 °C  
-55 °C  
5
0.01  
0
1
2
3
4
6
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Transfer Characteristics  
Source-Drain Diode Forward Voltage  
0.04  
0.03  
0.02  
0.01  
0.00  
3000  
2500  
2000  
1500  
1000  
500  
C
iss  
V
GS  
= 6 V  
V
GS  
= 10 V  
C
rss  
C
oss  
0
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
I
D
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
On-Resistance vs. Drain Current  
Capacitance  
S09-0268-Rev. E, 16-Feb-09  
Document Number: 71627  
3
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si7852DP  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
1.0  
0.5  
2.5  
V
D
= 10 V  
GS  
= 10 A  
I
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
= 250 µA  
0.0  
-0.5  
-1.0  
-1.5  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
100 125 150  
T
- Temperature (°C)  
J
T
- Junction Temperature (°C)  
J
On-Resistance vs. Junction Temperature  
Threshold Voltage  
0.08  
0.06  
0.04  
0.02  
0.00  
100  
10  
I
= 10 A  
D
T = 25 °C  
T = 125 °C  
1
0.1  
10  
-5  
-4  
-3  
-2  
-1  
0
2
4
6
8
10  
10  
10  
10  
10  
1
10  
V
GS  
- Gate-to-Source Voltage (V)  
Time (s)  
On-Resistance vs. Gate-to-Source Voltage  
Avalanche Current vs. Time  
100  
80  
60  
40  
20  
0
0.1  
0.001  
0.01  
1
10  
Time (s)  
Single Pulse Power, Junction-to-Ambient  
S09-0268-Rev. E, 16-Feb-09  
Document Number: 71627  
4
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si7852DP  
Vishay Siliconix  
www.vishay.com  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
2
1
Duty cycle = 0.5  
0.2  
Notes:  
0.1  
0.1  
P
DM  
0.05  
t
1
t
2
t
t
1
2
1 .Duty cycle, D =  
0.02  
2. Per unit base = R  
= 52 °C/W  
thJA  
(t)  
3 . T - T = P  
JM  
Z
A
DM thJA  
Single pulse  
0.01  
4. Surface mounted  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
100  
600  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
2
1
Duty cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Case  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?71627.  
S09-0268-Rev. E, 16-Feb-09  
Document Number: 71627  
5
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
www.vishay.com  
Vishay Siliconix  
PowerPAK® SO-8, (Single/Dual)  
L
H
E2  
K
E4  
W
1
1
2
3
4
Z
2
3
4
D
L1  
E3  
A1  
Backside View of Single Pad  
L
H
K
E2  
E4  
2
E1  
E
Detail Z  
1
2
3
4
D1  
D2  
Notes  
1. Inch will govern.  
E3  
2
Dimensions exclusive of mold gate burrs.  
Backside View of Dual Pad  
3. Dimensions exclusive of mold flash and cutting burrs.  
MILLIMETERS  
INCHES  
NOM.  
0.041  
DIM.  
MIN.  
NOM.  
1.04  
MAX.  
1.12  
0.05  
0.51  
0.33  
5.26  
5.00  
3.91  
1.68  
MIN.  
0.038  
0
MAX.  
0.044  
0.002  
0.020  
0.013  
0.207  
0.197  
0.154  
0.066  
A
A1  
b
0.97  
-
-
0.33  
0.23  
5.05  
4.80  
3.56  
1.32  
0.41  
0.013  
0.009  
0.199  
0.189  
0.140  
0.052  
0.016  
c
0.28  
0.011  
D
5.15  
0.203  
D1  
D2  
D3  
D4  
D5  
E
4.90  
0.193  
3.76  
0.148  
1.50  
0.059  
0.57 typ.  
3.98 typ.  
6.15  
0.0225 typ.  
0.157 typ.  
0.242  
6.05  
5.79  
3.48  
3.68  
6.25  
5.99  
3.84  
3.91  
0.238  
0.228  
0.137  
0.145  
0.246  
0.236  
0.151  
0.154  
E1  
E2  
E3  
E4  
e
5.89  
0.232  
3.66  
0.144  
3.78  
0.149  
0.75 typ.  
1.27 BSC  
1.27 typ.  
-
0.030 typ.  
0.050 BSC  
0.050 typ.  
-
K
K1  
H
0.56  
0.51  
0.51  
0.06  
0°  
-
0.022  
0.020  
0.020  
0.002  
0°  
-
0.61  
0.71  
0.71  
0.20  
12°  
0.024  
0.028  
0.028  
0.008  
12°  
L
0.61  
0.024  
L1  
0.13  
0.005  
-
-
W
M
0.15  
0.25  
0.36  
0.006  
0.010  
0.014  
0.125 typ.  
0.005 typ.  
ECN: S17-0173-Rev. L, 13-Feb-17  
DWG: 5881  
Revison: 13-Feb-17  
Document Number: 71655  
1
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
VISHAY SILICONIX  
www.vishay.com  
Power MOSFETs  
Application Note AN821  
PowerPAK® SO-8 Mounting and Thermal Considerations  
by Wharton McDaniel  
PowerPAK SO-8 SINGLE MOUNTING  
MOSFETs for switching applications are now available with  
die on resistances around 1 mand with the capability to  
handle 85 A. While these die capabilities represent a major  
advance over what was available just a few years ago, it is  
important for power MOSFET packaging technology to keep  
pace. It should be obvious that degradation of a high  
performance die by the package is undesirable. PowerPAK  
is a new package technology that addresses these issues.  
In this application note, PowerPAK’s construction is  
described. Following this mounting information is presented  
including land patterns and soldering profiles for maximum  
reliability. Finally, thermal and electrical performance is  
discussed.  
The PowerPAK single is simple to use. The pin arrangement  
(drain, source, gate pins) and the pin dimensions are the  
same as standard SO-8 devices (see figure 2). Therefore, the  
PowerPAK connection pads match directly to those of the  
SO-8. The only difference is the extended drain connection  
area. To take immediate advantage of the PowerPAK SO-8  
single devices, they can be mounted to existing SO-8 land  
patterns.  
THE PowerPAK PACKAGE  
The PowerPAK package was developed around the SO-8  
package (figure 1). The PowerPAK SO-8 utilizes the same  
footprint and the same pin-outs as the standard SO-8. This  
allows PowerPAK to be substituted directly for a standard  
SO-8 package. Being a leadless package, PowerPAK SO-8  
utilizes the entire SO-8 footprint, freeing space normally  
occupied by the leads, and thus allowing it to hold a larger  
die than a standard SO-8. In fact, this larger die is slightly  
larger than a full sized DPAK die. The bottom of the die  
attach pad is exposed for the purpose of providing a direct,  
low resistance thermal path to the substrate the device is  
mounted on. Finally, the package height is lower than the  
standard SO-8, making it an excellent choice for  
applications with space constraints.  
Standard SO-8  
PowerPAK SO-8  
Fig. 2  
The minimum land pattern recommended to take full  
advantage of the PowerPAK thermal performance see  
Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs. Click on the PowerPAK SO-8 single in the index  
of this document.  
In this figure, the drain land pattern is given to make full  
contact to the drain pad on the PowerPAK package.  
This land pattern can be extended to the left, right, and top  
of the drawn pattern. This extension will serve to increase  
the heat dissipation by decreasing the thermal resistance  
from the foot of the PowerPAK to the PC board and  
therefore to the ambient. Note that increasing the drain land  
area beyond a certain point will yield little decrease  
in foot-to-board and foot-to-ambient thermal resistance.  
Under specific conditions of board configuration, copper  
weight and layer stack, experiments have found that  
more than about 0.25 in2 to 0.5 in2 of additional copper  
(in addition to the drain land) will yield little improvement in  
thermal performance.  
Fig. 1 PowerPAK 1212 Devices  
Revision: 16-Mai-13  
Document Number: 71622  
1
For technical questions, contact: powermosfettechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Application Note AN821  
www.vishay.com  
Vishay Siliconix  
PowerPAK® SO-8 Mounting and Thermal Considerations  
For  
the  
lead  
(Pb)-free  
solder  
profile,  
see  
PowerPAK SO-8 DUAL  
www.vishay.com/doc?73257.  
The pin arrangement (drain, source, gate pins) and the pin  
dimensions of the PowerPAK SO-8 dual are the same as  
standard SO-8 dual devices. Therefore, the PowerPAK  
device connection pads match directly to those of the SO-8.  
As in the single-channel package, the only exception is the  
extended drain connection area. Manufacturers can likewise  
take immediate advantage of the PowerPAK SO-8 dual  
devices by mounting them to existing SO-8 dual land  
patterns.  
To take the advantage of the dual PowerPAK SO-8’s  
thermal performance, the minimum recommended land  
pattern can be found in Application Note 826,  
Recommended Minimum Pad Patterns With Outline  
Drawing Access for Vishay Siliconix MOSFETs. Click on the  
PowerPAK 1212-8 dual in the index of this document.  
The gap between the two drain pads is 24 mils. This  
matches the spacing of the two drain pads on the  
PowerPAK SO-8 dual package.  
Fig. 3 Solder Reflow Temperature Profile  
Ramp-Up Rate  
+ 3 °C /s max.  
120 s max.  
REFLOW SOLDERING  
Temperature at 150 - 200 °C  
Temperature Above 217 °C  
Maximum Temperature  
Vishay Siliconix surface-mount packages meet solder reflow  
reliability requirements. Devices are subjected to solder  
60 - 150 s  
255 + 5/- 0 °C  
reflow as  
a
test preconditioning and are then  
reliability-tested using temperature cycle, bias humidity,  
HAST, or pressure pot. The solder reflow temperature profile  
used, and the temperatures and time duration, are shown in  
figures 3 and 4.  
Time at Maximum  
Temperature  
30 s  
Ramp-Down Rate  
+ 6 °C/s max.  
30 s  
260 °C  
3 °C(max)  
6 °C/s (max.)  
217 °C  
150 - 200 °C  
150 s (max.)  
60 s (min.)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240 °C is allowed.  
Fig. 4 Solder Reflow Temperatures and Time Durations  
Revision: 16-Mai-13  
Document Number: 71622  
2
For technical questions, contact: powermosfettechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Application Note AN821  
www.vishay.com  
Vishay Siliconix  
PowerPAK® SO-8 Mounting and Thermal Considerations  
THERMAL PERFORMANCE  
Introduction  
Because of the presence of the trough, this result suggests  
a minimum performance improvement of 10 °C/W by using  
a PowerPAK SO-8 in a standard SO-8 PC board mount.  
A basic measure of a device’s thermal performance  
is the junction-to-case thermal resistance, RthJC, or the  
junction-to-foot thermal resistance, RthJF This parameter is  
measured for the device mounted to an infinite heat sink and  
is therefore a characterization of the device only, in other  
words, independent of the properties of the object to which  
the device is mounted. Table 1 shows a comparison of  
the DPAK, PowerPAK SO-8, and standard SO-8. The  
PowerPAK has thermal performance equivalent to the  
DPAK, while having an order of magnitude better thermal  
performance over the SO-8.  
The only concern when mounting a PowerPAK on a  
standard SO-8 pad pattern is that there should be no traces  
running between the body of the MOSFET. Where the  
standard SO-8 body is spaced away from the pc board,  
allowing traces to run underneath, the PowerPAK sits  
directly on the pc board.  
Thermal Performance - Spreading Copper  
Designers may add additional copper, spreading copper, to  
the drain pad to aid in conducting heat from a device. It is  
helpful to have some information about the thermal  
performance for a given area of spreading copper.  
TABLE 1 - DPAK AND POWERPAK SO-8  
EQUIVALENT STEADY STATE  
PERFORMANCE  
Figure 6 shows the thermal resistance of a PowerPAK SO-8  
device mounted on a 2-in. 2-in., four-layer FR-4 PC board.  
The two internal layers and the backside layer are solid  
copper. The internal layers were chosen as solid copper to  
model the large power and ground planes common in many  
applications. The top layer was cut back to a smaller area  
and at each step junction-to-ambient thermal resistance  
measurements were taken. The results indicate that an area  
above 0.3 to 0.4 square inches of spreading copper gives no  
PowerPAK  
SO-8  
Standard  
SO-8  
DPAK  
Thermal  
Resistance RthJC  
1.2 °C/W  
1 °C/W  
16 °C/W  
Thermal Performance on Standard SO-8 Pad Pattern  
Because of the common footprint, a PowerPAK SO-8  
can be mounted on an existing standard SO-8 pad pattern.  
The question then arises as to the thermal performance  
of the PowerPAK device under these conditions. A  
characterization was made comparing a standard SO-8 and  
a PowerPAK device on a board with a trough cut out  
underneath the PowerPAK drain pad. This configuration  
restricted the heat flow to the SO-8 land pads. The results  
are shown in figure 5.  
additional  
thermal  
performance  
improvement.  
A
subsequent experiment was run where the copper on the  
back-side was reduced, first to 50 % in stripes to mimic  
circuit traces, and then totally removed. No significant effect  
was observed.  
R
th  
vs. Spreading Copper  
(0 %, 50 %, 100 % Back Copper)  
56  
51  
46  
41  
36  
Si4874DY vs. Si7446DP PPAK on a 4-Layer Board  
SO-8 Pattern, Trough Under Drain  
60  
50  
40  
Si4874DY  
30  
100 %  
Si7446DP  
0 %  
20  
50 %  
10  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
Spreading Copper (sq in)  
0
Fig. 6 Spreading Copper Junction-to-Ambient Performance  
0.0001  
0.01  
1
10000  
100  
Pulse Duration (sec)  
Fig. 5 PowerPAK SO-8 and Standard SO-0 Land Pad Thermal  
Path  
Revision: 16-Mai-13  
Document Number: 71622  
3
For technical questions, contact: powermosfettechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Application Note AN821  
www.vishay.com  
Vishay Siliconix  
PowerPAK® SO-8 Mounting and Thermal Considerations  
Suppose each device is dissipating 2.7 W. Using the  
SYSTEM AND ELECTRICAL IMPACT OF  
PowerPAK SO-8  
junction-to-foot thermal resistance characteristics of the  
PowerPAK SO-8 and the standard SO-8, the die  
temperature is determined to be 107 °C for the PowerPAK  
(and for DPAK) and 148 °C for the standard SO-8. This is a  
2 °C rise above the board temperature for the PowerPAK  
and a 43 °C rise for the standard SO-8. Referring to figure 7,  
a 2 °C difference has minimal effect on RDS(on) whereas a  
In any design, one must take into account the change in  
MOSFET RDS(on) with temperature (figure 7).  
On-Resistance vs. Junction Temperature  
1.8  
43 °C difference has a significant effect on RDS(on)  
.
V
= 10 V  
= 23 A  
GS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
D
Minimizing the thermal rise above the board temperature by  
using PowerPAK has not only eased the thermal design but  
it has allowed the device to run cooler, keep rDS(on) low, and  
permits the device to handle more current than the same  
MOSFET die in the standard SO-8 package.  
CONCLUSIONS  
PowerPAK SO-8 has been shown to have the same thermal  
performance as the DPAK package while having the same  
footprint as the standard SO-8 package. The PowerPAK  
SO-8 can hold larger die approximately equal in size to the  
maximum that the DPAK can accommodate implying no  
sacrifice in performance because of package limitations.  
-50  
-25  
0
25  
50  
75  
100 125 150  
T
J
- Junction Temperature (°C)  
Recommended PowerPAK SO-8 land patterns are provided  
to aid in PC board layout for designs using this new  
package.  
Fig. 7 MOSFET RDS(on) vs. Temperature  
A MOSFET generates internal heat due to the current  
passing through the channel. This self-heating raises the  
junction temperature of the device above that of the PC  
board to which it is mounted, causing increased power  
dissipation in the device. A major source of this problem lies  
in the large values of the junction-to-foot thermal resistance  
of the SO-8 package.  
Thermal considerations have indicated that significant  
advantages can be gained by using PowerPAK SO-8  
devices in designs where the PC board was laid out for  
the standard SO-8. Applications experimental data gave  
thermal performance data showing minimum and  
typical thermal performance in a SO-8 environment, plus  
information on the optimum thermal performance  
obtainable including spreading copper. This further  
emphasized the DPAK equivalency.  
PowerPAK SO-8 minimizes the junction-to-board thermal  
resistance to where the MOSFET die temperature is very  
close to the temperature of the PC board. Consider two  
devices mounted on a PC board heated to 105 °C by other  
components on the board (figure 8).  
PowerPAK SO-8 therefore has the desired small size  
characteristics of the SO-8 combined with the attractive  
thermal characteristics of the DPAK package.  
PowerPAK SO-8  
Standard SO-8  
107 °C  
148 °C  
0.8 °C/W  
PC Board at 105 °C  
16 C/W  
Fig. 8 Temperature of Devices on a PC Board  
Revision: 16-Mai-13  
Document Number: 71622  
4
For technical questions, contact: powermosfettechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single  
0.260  
(6.61)  
0.150  
(3.81)  
0.024  
(0.61)  
0.026  
(0.66)  
0.050  
(1.27)  
0.032  
(0.82)  
0.040  
(1.02)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
Document Number: 72599  
Revision: 21-Jan-08  
www.vishay.com  
15  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

SI7852DP-T1-E3 相关器件

型号 制造商 描述 价格 文档
SI7852DP-T1-GE3 VISHAY N-Channel 80-V (D-S) MOSFET 获取价格
SI7856ADP-T1 VISHAY Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET, 获取价格
SI7856ADP-T1-E3 VISHAY TRANSISTOR 15 A, 30 V, 0.0037 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power 获取价格
SI7856ADP-T1-GE3 VISHAY TRANSISTOR 15 A, 30 V, 0.0037 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power 获取价格
SI7856DP VISHAY N-Channel 30-V (D-S) MOSFET 获取价格
SI7856DP-E3 VISHAY Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET 获取价格
SI7856DP-T1 VISHAY Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET 获取价格
Si7858ADP VISHAY N-Channel 12-V (D-S) MOSFET 获取价格
SI7858ADP-T1-E3 VISHAY TRANSISTOR 20 A, 12 V, 0.0026 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power 获取价格
SI7858ADP-T1-GE3 VISHAY TRANSISTOR 20 A, 12 V, 0.0026 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power 获取价格

SI7852DP-T1-E3 相关文章

  • 英伟达市值飙升,直逼苹果,达23.8万亿新高度
    2024-10-15
    9
  • 特斯拉震撼发布:全自动驾驶Robotaxi Cybercab,搭载AI5超算硬件,算力飙升10倍!
    2024-10-15
    9
  • 日本政府计划实物出资入股Rapidus先进芯片制造商,旨在吸引民间资本投资
    2024-10-15
    10
  • 英伟达宣布:应美国芯片政策要求,暂停接受中国大陆客户订单
    2024-10-15
    8