IRGI4056DPBF [INFINEON]

Insulated Gate Bipolar Transistor, 18A I(C), 600V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO- 220, FULL PACK-3;
IRGI4056DPBF
型号: IRGI4056DPBF
厂家: Infineon    Infineon
描述:

Insulated Gate Bipolar Transistor, 18A I(C), 600V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO- 220, FULL PACK-3

局域网 栅 功率控制 晶体管
文件: 总10页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97153  
IRGI4060DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
C
ULTRAFAST SOFT RECOVERY DIODE  
VCES = 600V  
Features  
IC = 7.5A, TC = 100°C  
tsc > 5µs, Tjmax = 150°C  
VCE(on) typ. = 1.50V  
Low VCE (on) Trench IGBT Technology  
Low Switching Losses  
5μs SCSOA  
G
Square RBSOA  
100% of The Parts Tested for ILM  
Positive VCE (on) Temperature Coefficient.  
Ultra Fast Soft Recovery Co-pak Diode  
Tighter Distribution of Parameters  
Lead-Free Package  
E

n-channel  
C
Benefits  
High Efficiency in a Wide Range of Applications  
Suitable for a Wide Range of Switching Frequencies due  
to Low VCE (ON) and Low Switching Losses  
Rugged Transient Performance for Increased Reliability  
Excellent Current Sharing in Parallel Operation  
Low EMI  
E
C
G
TO-220AB  
Full-Pak  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Units  
V
Max.  
600  
14  
VCES  
Collector-to-Emitter Breakdown Voltage  
IC@ TC = 25°C  
IC@ TC = 100°C  
ICM  
Continuous Collector Current  
7.5  
Continuous Collector Current  
Pulse Collector Current, VGE=15V  
Clamped Inductive Load Current, VGE=20V  
Diode Continuous Forward Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
23  
30  
ILM  
A
IF@TC=25°C  
IF@TC=100°C  
IFM  
14  
7.5  
30  
± 20  
± 30  
37  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
V
W
°C  
VGE  
PD @ TC =25°C  
PD @ TC =100°C  
15  
TJ  
-55 to + 150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Mounting Torque, 6-32 or M3 Screw  
Thermal Resistance  
Parameter  
Junction-to-Case - IGBT  
Junction-to-Case - Diode  
Min.  
Typ.  
Max.  
3.40  
6.10  
Units  
°C/W  
g
RθJC  
Rθ  
JC  
RθCS  
Case-to-Sink, flat, greased surface  
0.5  
Junction-to-Ambient, typical socket mount  
Rθ  
65  
JA  
Wt  
Weight  
2.0  
1
www.irf.com  
4/17/09  
IRGI4060DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V,Ic =100 μA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
V
VGE = 0V, Ic = 250 μA ( -55 -150 oC )  
ΔV(BR)CES/ΔTJ  
Temperature Coeff. of Breakdown Voltage  
0.66  
1.50  
1.75  
1.72  
V/°C  
IC = 7.5A, VGE = 15V, TJ = 25°C  
VCE(on)  
I
C = 7.5A, VGE = 15V, TJ = 125°C  
IC = 7.5A, VGE = 15V, TJ = 150°C  
CE = VGE, IC = 250 μA  
Collector-to-Emitter Saturation Voltage  
V
1.81  
VGE(th)  
V
Gate Threshold Voltage  
4.0  
6.5  
V
VCE = VGE, IC = 1.0mA ( -55 -150 oC )  
-12  
ΔVGE(th)/ΔTJ  
Threshold Voltage temp. coefficient  
Forward Transconductance  
25  
mV/°C  
S
μ
gfe  
5
VCE = 50V, IC = 7.5A, PW =80 s  
ICES  
VGE = 0V,VCE = 600V  
1.0  
μA  
Collector-to-Emitter Leakage Current  
VGE = 0v, VCE = 600V, TJ =150°C  
IF = 7.5A  
400  
2.18  
μA  
VFM  
3.00  
V
Diode Forward Voltage Drop  
1.60  
IF = 7.5A, TJ = 150°C  
IGES  
VGE = ± 20 V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 7.5A  
19  
4.3  
8.3  
47  
29  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
V
CC = 400V  
GE = 15V  
6
nC  
μJ  
ns  
V
12  
89  
248  
337  
38  
25  
112  
37  
I
C = 7.5A, VCC = 400V, VGE = 15V  
Ω
G = 47 , L=1mH, LS= 150nH, TJ = 25°C  
R
141  
188  
29  
Energy losses include tail and diode reverse recovery  
I
C = 7.5A, VCC = 400V  
Ω
G = 47 , L=1mH, LS= 150nH  
16  
R
td(off)  
tf  
101  
28  
TJ = 25°C  
Turn-Off delay time  
Fall time  
Eon  
Eoff  
Etotal  
td(on)  
tr  
I
C = 7.5A, VCC = 400V, VGE = 15V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
107  
196  
304  
28  
Ω
G = 47 , L=1mH, LS= 150nH, TJ = 150°C  
R
μJ  
Energy losses include tail and diode reverse recovery  
I
C = 7.5A, VCC = 400V  
Ω
G = 47 , L=1mH, LS= 150nH  
17  
R
ns  
td(off)  
tf  
118  
53  
TJ = 150°C  
Turn-Off delay time  
Fall time  
Cies  
Coes  
Cres  
VGE = 0V  
Input Capacitance  
537  
47  
pF  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
16  
f = 1Mhz  
TJ = 150°C, IC = 30A  
VCC = 480V, Vp =600V  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
Ω
Rg = 47 , VGE = +20V to 0V  
V
CC = 400V, Vp =600V  
SCSOA  
Erec  
Short Circuit Safe Operating Area  
5
μs  
Ω
R
G = 47 , VGE = +15V to 0V  
Reverse recovery energy of the diode  
Diode Reverse recovery time  
102  
73  
μJ  
ns  
A
TJ = 150oC  
VCC = 400V, IF = 7.5A  
trr  
Irr  
Ω
VGE = 15V, Rg = 47 , L=1mH, LS=150nH  
Peak Reverse Recovery Current  
11  
Notes:  
VCC = 80% (VCES), VGE = 20V, L = 28 μH, RG = 47 Ω  
‚ Pulse width limited by max. junction temperature.  
ƒRθ is measured at TJ approximately 90°C  
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely  
2
www.irf.com  
IRGI4060DPbF  
16  
14  
12  
10  
8
40  
30  
20  
10  
0
6
4
2
0
0
20 40 60 80 100 120 140 160  
(°C)  
0
20 40 60 80 100 120 140 160  
(°C)  
T
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
10  
1
100  
10  
1
10 μs  
100 μs  
1ms  
DC  
0.1  
0.01  
0
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
CE  
V
CE  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VCE = 15V  
Fig. 3 - Forward SOA,  
TC = 25°C; TJ 150°C  
28  
24  
20  
16  
12  
8
28  
24  
20  
16  
12  
8
V
V
V
V
V
= 18V  
V
V
V
V
V
= 18V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 15V  
= 12V  
= 10V  
= 8.0V  
4
4
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp <60μs  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = 25°C; tp < 60μs  
www.irf.com  
3
IRGI4060DPbF  
28  
24  
20  
16  
12  
8
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
-40°C  
25°C  
150°C  
4
0
0
2
4
6
8
10  
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
V
(V)  
V
CE  
F
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = 150°C; tp < 60μs  
Fig. 8 - Typ. Diode Forward Characteristics  
tp < 60μs  
14  
14  
12  
10  
8
12  
10  
8
I
I
I
= 3.8A  
= 7.5A  
= 15A  
CE  
CE  
CE  
I
I
I
= 3.8A  
= 7.5A  
= 15A  
CE  
CE  
CE  
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = -40°C  
TJ = 25°C  
28  
24  
20  
16  
12  
8
14  
12  
10  
8
T = -40°C  
J
T = 25°C  
J
T
= 150°C  
J
I
I
I
= 3.8A  
= 7.5A  
= 15A  
CE  
CE  
CE  
6
4
2
4
0
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
V
(V)  
V
(V)  
GE  
GE  
Fig. 12 - Typ. Transfer Characteristics  
VCE = 50V; tp < 60μs  
Fig. 11 - Typical VCE vs. VGE  
TJ = 150°C  
4
www.irf.com  
IRGI4060DPbF  
1000  
100  
10  
400  
300  
200  
100  
0
E
OFF  
td  
OFF  
t
F
E
ON  
td  
ON  
t
R
1
0
4
8
12  
16  
0
4
8
12  
16  
I
(A)  
C
I
(A)  
C
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L=1mH; VCE= 400V  
RG= 47Ω; VGE= 15V  
Fig. 13 - Typ. Energy Loss vs. IC  
TJ = 150°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V.  
240  
1000  
100  
10  
E
OFF  
200  
160  
120  
80  
E
ON  
td  
OFF  
t
F
td  
t
ON  
40  
R
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
R
( )  
Ω
R
(Ω)  
G
G
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 1mH; VCE = 400V, ICE = 7.5A; VGE = 15V  
Fig. 16- Typ. Switching Time vs. RG  
TJ = 150°C; L=1mH; VCE= 400V  
ICE= 7.5A; VGE= 15V  
20  
16  
12  
8
Ω
R
10  
G =  
16  
12  
8
Ω
Ω
R
R
22  
G =  
47  
G =  
Ω
100  
R
G =  
4
0
4
0
4
8
12  
16  
0
25  
50  
75  
100  
125  
I
(A)  
R
(
Ω)  
F
G
Fig. 17 - Typical Diode IRR vs. IF  
Fig. 18 - Typical Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C; IF = 7.5A  
www.irf.com  
5
IRGI4060DPbF  
16  
700  
600  
500  
400  
300  
200  
10  
Ω
22  
Ω
15A  
47  
Ω
100Ω  
12  
7.5A  
8
3.8A  
4
0
500  
1000  
0
500  
di /dt (A/μs)  
1000  
di /dt (A/μs)  
F
F
Fig. 20 - Typical Diode QRR  
VCC= 400V; VGE= 15V; TJ = 150°C  
Fig. 19- Typical Diode IRR vs. diF/dt  
VCC= 400V; VGE= 15V;  
ICE= 7.5A; TJ = 150°C  
300  
20  
80  
I
sc  
15  
10  
5
T
200  
100  
0
sc  
60  
40  
20  
Ω
10  
22 Ω  
Ω
47  
100Ω  
0
0
4
8
12  
16  
8
9
10  
11  
12  
(V)  
13  
14  
15  
16  
V
GE  
I
(A)  
F
Fig. 22- Typ. VGE vs Short Circuit Time  
Fig. 21 - Typical Diode ERR vs. IF  
VCC=400V, TC =25°C  
TJ = 150°C  
1000  
100  
10  
16  
Cies  
300V  
400V  
14  
12  
10  
8
Coes  
Cres  
6
4
2
0
1
0
4
8
12  
16  
20  
0
100  
200  
300  
(V)  
400  
500  
Q
, Total Gate Charge (nC)  
V
G
CE  
Fig. 23- Typ. Capacitance vs. VCE  
Fig. 24 - Typical Gate Charge vs. VGE  
ICE = 7.5A, L=600μH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGI4060DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
τι  
Ri (°C/W)  
(sec)  
τ
J τJ  
τ
τ
Cτ  
0.1  
0.813883 0.000438  
0.907622 0.044572  
1.679598 2.1542  
0.02  
0.01  
τ
1 τ1  
τ
2 τ2  
3 τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
τι  
Ri (°C/W)  
(sec)  
0.02  
0.01  
τJ  
0.433397 0.000095  
τC  
0.1  
τJ  
τ1  
τ
1.635087 0.001553  
τ
τ
3 τ3  
τ4  
2 τ2  
τ1  
τ4  
1.4856  
2.547074  
0.05426  
2.646  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGI4060DPbF  
L
L
VCC  
80 V  
+
-
DUT  
DUT  
0
V
CC  
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
VCC  
Fig.C.T.3 - S.C.SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
C fo rce  
100K  
D1  
22K  
C sen se  
E sense  
0.0075μ  
G force  
DUT  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - Typical Filter Circuit for  
V(BR)CES Measurement  
8
www.irf.com  
IRGI4060DPbF  
400  
350  
300  
250  
200  
150  
100  
50  
16  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
14  
8
TEST CURRENT  
12  
7
tr  
10  
8
6
5
tf  
4
6
3
90% test current  
90% ICE  
2
4
10% test current  
1
5% VCE  
90% VCE  
5% ICE  
2
0
0
0
0
-1  
-2  
Eon Loss  
-2  
Eoff Loss  
-50  
-50  
-0.2  
0
0.2  
0.4  
0.6  
-0.1  
0
0.1  
time(μs)  
time (μs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
500  
120  
100  
80  
60  
40  
20  
0
50  
0
10  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VCE  
-50  
5
Q
R
R  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
t
RR  
0
ICE  
-5  
Peak  
IRR  
10%  
Peak  
IRR  
-10  
-15  
0
-20  
-10  
-5  
0
5
-0.10 0.00 0.10 0.20 0.30  
Time (µs)  
time (μS)  
WF.3- Typ. Reverse Recovery Waveform  
@ TJ = 150°C using CT.4  
WF.4- Typ. Short Circuit Waveform  
@ TJ = 25°C using CT.3  
www.irf.com  
9
IRGI4060DPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
EXAMPLE: THIS IS AN IRFI840G  
WIT H AS S E MB LY  
PART NUMBER  
LOT CODE 3432  
ASSEMBLED ON WW 24, 2001  
IN THE ASSEMBLY LINE "K"  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFI840G  
124K  
34  
32  
DATE CODE  
YEAR 1 = 2001  
WEE K 24  
AS S E MB LY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-F ree"  
LINE K  
TO-220 Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 4/09  
10  
www.irf.com  

相关型号:

IRGI4060DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA FAST RECOVERY DIODE
INFINEON

IRGI4061DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGI4062DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGI4064DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGI4065PBF

PDP TRENCH IGBT
INFINEON

IRGI4085PBF

PDP TRENCH IGBT
INFINEON

IRGI4086PBF

PDP TRENCH IGBT
INFINEON

IRGI4090PBF

IRGI4090PbF Low VCE(on) and Energy per Pulse (EPULSE
INFINEON

IRGIB10B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON