IRGI4064DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGI4064DPBF
型号: IRGI4064DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 栅 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97397A  
IRGI4064DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
C
• Low VCE (ON) Trench IGBT Technology  
• Low switching losses  
• 5 µS short circuit SOA  
• SquareRBSOA  
VCES = 600V  
IC = 8.0A, TC = 100°C  
• 100% of the parts tested for ILM  

G
tSC 5µs, TJ(max) = 150°C  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
E
VCE(on) typ. = 1.51V  
n-channel  
• LeadFreePackage  
C
Benefits  
• High Efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
E
C
G
TO-220  
Full-Pak  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Collector-to-Emitter Voltage  
600  
V
VCES  
Continuous Collector Current  
15  
8.0  
IC @ TC = 25°C  
Continuous Collector Current  
IC @ TC = 100°C  
Pulse Collector Current, VGE = 15V  
Clamped Inductive Load Current, VGE = 20V  
ICM  
ILM  
24  
32  
A
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
15  
IF @ TC = 25°C  
8.0  
IF @ TC = 100°C  
32  
IFM  
±20  
±30  
38  
V
VGE  
W
PD @ TC = 25°C  
Maximum Power Dissipation  
15  
PD @ TC = 100°C  
Operating Junction and  
-55 to +150  
TJ  
Storage Temperature Range  
°C  
TSTG  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
Max.  
3.29  
6.1  
Units  
Rθ (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
°C/W  
JC  
Rθ (Diode)  
JC  
–––  
Rθ  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
0.50  
–––  
–––  
65  
CS  
Rθ  
JA  
1
www.irf.com  
10/01/09  
IRGI4064DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
GE = 0V, IC = 100µA  
V(BR)CES  
V
600  
4.0  
0.52  
1.51  
1.73  
1.80  
V
V(BR)CES/TJ  
VGE = 0V, IC = 100µA (-55°C-150°C)  
IC = 8.0A, VGE = 15V, TJ = 25°C  
IC = 8.0A, VGE = 15V, TJ = 125°C  
IC = 8.0A, VGE = 15V, TJ = 150°C  
VCE = VGE, IC = 275µA  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
5,6,7  
1.80  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
9,10,11  
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
9, 10,  
VGE(th)/ TJ  
V
CE = VGE, IC = 1.0mA (-55°C - 150°C)  
VCE = 50V, IC = 8.0A, PW = 60µs  
VGE = 0V, VCE = 600V  
11, 12  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-12  
6.5  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
20  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
IF = 8.0A  
250  
3.1  
VFM  
IGES  
8
Diode Forward Voltage Drop  
2.23  
1.64  
V
IF = 8.0A, TJ = 150°C  
V
GE = ±20V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 8.0A  
21  
4.8  
8.6  
20  
32  
7.2  
13  
25  
137  
162  
38  
17  
90  
23  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
CT1  
nC  
µJ  
ns  
V
CC = 400V  
IC = 8.0A, VCC = 400V, VGE = 15V  
CT4  
CT4  
RG = 22 , L = 1.0mH, TJ = 25°C  
125  
145  
29  
Energy losses include tail & diode reverse recovery  
IC = 8.0A, VCC = 400V, VGE = 15V  
R
G = 22, L = 1.0mH, TJ = 25°C  
12  
td(off)  
tf  
Turn-Off delay time  
Fall time  
84  
18  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 8.0A, VCC = 400V, VGE=15V  
RG=22, L=1.0mH, TJ = 150°C  
13, 15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
51  
205  
256  
28  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
WF1, WF2  
14, 16  
CT4  
IC = 8.0A, VCC = 400V, VGE = 15V  
RG = 22 , L = 1.0mH  
12  
td(off)  
tf  
TJ = 150°C  
WF1  
Turn-Off delay time  
Fall time  
101  
27  
WF2  
Cies  
Coes  
Cres  
VGE = 0V  
23  
Input Capacitance  
600  
45  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
16  
f = 1.0Mhz  
TJ = 150°C, IC = 32A  
4
V
CC = 480V, Vp =600V  
CT2  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
Rg = 90 , VGE = +20V to 0V  
V
CC = 400V, Vp =600V  
22, CT3  
WF4  
5
µs  
Rg = 90 , VGE = +15V to 0V  
TJ = 150°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
147  
48  
µJ  
ns  
A
17, 18, 19  
20, 21  
WF3  
V
CC = 400V, IF = 8.0A  
VGE = 15V, Rg = 22 , L = 1.0mH  
Irr  
Peak Reverse Recovery Current  
14  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 28µH, RG = 90.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
2
www.irf.com  
IRGI4064DPbF  
16  
14  
12  
10  
8
40  
30  
20  
10  
0
6
4
2
0
0
20 40 60 80 100 120 140 160  
(°C)  
0
20 40 60 80 100 120 140 160  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
100  
10µsec  
100µsec  
10  
10  
1msec  
DC  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
1
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 150°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VGE = 20V  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGI4064DPbF  
60  
70  
60  
50  
40  
30  
20  
10  
0
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
50  
40  
30  
20  
10  
0
-40°c  
25°C  
150°C  
0
1
2
3
4
5
6
7
8
9
10  
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
V
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 150°C; tp = 80µs  
tp = 80µs  
18  
16  
14  
12  
18  
16  
14  
12  
I
I
I
= 3.7A  
= 8.0A  
= 15A  
I
I
I
= 3.7A  
= 8.0A  
= 15A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
18  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
T
= -40°C  
= 25°C  
J
T
J
T
= 150°C  
I
I
I
= 3.7A  
J
CE  
CE  
CE  
= 8.0A  
= 15A  
6
4
2
0
5
10  
15  
20  
2
4
6
8
10  
(V)  
12  
14  
16  
V
(V)  
V
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
TJ = 150°C  
V
4
www.irf.com  
IRGI4064DPbF  
400  
350  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
E
OFF  
td  
OFF  
t
F
td  
ON  
E
ON  
t
R
0
1
2
4
6
8
I
10  
(A)  
12  
14  
16  
2
4
6
8
10  
(A)  
12  
14  
16  
I
C
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22; VGE = 15V  
TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22; VGE = 15V  
300  
1000  
250  
200  
150  
100  
50  
E
OFF  
td  
OFF  
100  
td  
ON  
E
ON  
t
F
t
R
0
10  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
()  
80  
100  
R
G
Rg (  
)
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 8.0A; VGE = 15V  
TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 8.0A; VGE = 15V  
20  
16  
R
10Ω  
G =  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
R
22Ω  
G =  
R
47Ω  
G =  
R
100  
G =  
6
4
6
2
4
6
8
10  
(A)  
12  
14  
16  
0
25  
50  
(
75  
100  
I
Ω)  
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C  
www.irf.com  
5
IRGI4064DPbF  
16  
600  
500  
400  
300  
200  
14  
12  
10  
8
15A  
10Ω  
22Ω  
47Ω  
7.8A  
100Ω  
3.8A  
600  
6
0
200  
400  
800 1000 1200  
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
V
CC = 400V; VGE = 15V; TJ = 150°C  
VCC = 400V; VGE = 15V; IF = 8.0A; TJ = 150°C  
100  
80  
60  
40  
20  
0
18  
16  
14  
12  
10  
8
250  
R
= 10  
G
T
200  
150  
100  
50  
sc  
I
sc  
R
= 22  
G
R
= 47  
G
G
R
= 100  
12  
6
4
0
8
10  
12  
14  
(V)  
16  
18  
2
4
6
8
10  
(A)  
14  
16  
I
V
GE  
F
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 150°C  
1000  
100  
10  
16  
14  
12  
10  
8
Cies  
V
V
= 300V  
= 480V  
CES  
CES  
Coes  
Cres  
6
4
2
1
0
0
50 100 150 200 250 300 350 400  
(V)  
0
2
4
6
8
10 12 14 16 18 20 22  
V
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 8.0A; L = 1900µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGI4064DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.02  
0.01  
0.3188  
0.5528  
1.0389  
1.3807  
0.000064  
0.000607  
0.032948  
0.9865  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.1  
0.4072  
1.9745  
1.7918  
1.9280  
0.000069  
0.001087  
0.021611  
1.5076  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGI4064DPbF  
L
L
80 V  
VCC  
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4x  
- 5V  
DC  
400V  
DUT /  
DRIVER  
VCC  
DUT  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
R =  
I
CM  
C fo rce  
100K  
D1  
22K  
C sen se  
E sense  
DUT  
VCC  
0.0075µ  
G force  
Rg  
DUT  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
8
www.irf.com  
IRGI4064DPbF  
500  
400  
300  
200  
100  
0
25  
500  
400  
300  
200  
100  
0
25  
20  
15  
10  
5
tf  
tr  
20  
TEST CURRENT  
15  
90% test current  
10% test current  
10  
90% ICE  
5%  
VCE  
5
5% VCE  
5% ICE  
0
0
Eon Loss  
-5  
Eof f Loss  
-100  
-100  
-5  
-0.1  
0.1  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
time (µs)  
time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
600  
100  
100  
0
20  
15  
10  
5
QRR  
ICE  
500  
400  
300  
200  
100  
0
80  
60  
40  
20  
0
tRR  
VCE  
-100  
-200  
-300  
-400  
-500  
-600  
10%  
Peak IRR  
0
-5  
Peak  
IRR  
-10  
-15  
-20  
-5  
0
5
10  
-0.05  
0.00  
0.05  
0.10  
0.15  
Time (uS)  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 150°C using Fig. CT.4  
www.irf.com  
9
IRGI4064DPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220 Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/09  
10  
www.irf.com  

相关型号:

IRGI4065PBF

PDP TRENCH IGBT
INFINEON

IRGI4085PBF

PDP TRENCH IGBT
INFINEON

IRGI4086PBF

PDP TRENCH IGBT
INFINEON

IRGI4090PBF

IRGI4090PbF Low VCE(on) and Energy per Pulse (EPULSE
INFINEON

IRGIB10B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1PPBF

Insulated Gate Bipolar Transistor, 19A I(C), 600V V(BR)CES, N-Channel, TO-220AB, TO-220, FULL PACK-3
INFINEON

IRGIB6B60KD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB6B60KDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON