IRGI4061DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 超快软恢复DIODEINSULATED栅双极晶体管绝缘栅双极晶体管超快软恢复二极管
IRGI4061DPBF
型号: IRGI4061DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
超快软恢复DIODEINSULATED栅双极晶体管绝缘栅双极晶体管超快软恢复二极管

晶体 二极管 晶体管 功率控制 双极性晶体管 栅 局域网 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97114  
IRGI4061DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
C
ULTRAFAST SOFT RECOVERY DIODE  
VCES = 600V  
Features  
Low VCE (on) Trench IGBT Technology  
Low Switching Losses  
5µs SCSOA  
Square RBSOA  
100% of The Parts Tested for ILM  
Positive VCE (on) Temperature Coefficient.  
Ultra Fast Soft Recovery Co-pak Diode  
Tighter Distribution of Parameters  
Lead-Free Package  
IC = 11A, TC = 100°C  
tsc > 5µs, Tjmax = 150°C  
VCE(on) typ. = 1.35V  
G
E
n-channel  
C
Benefits  
High Efficiency in a Wide Range of Applications  
Suitable for a Wide Range of Switching Frequencies due  
to Low VCE (ON) and Low Switching Losses  
Rugged Transient Performance for Increased Reliability  
Excellent Current Sharing in Parallel Operation  
Low EMI  
E
C
G
TO-220AB  
Full-Pak  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
20  
Units  
V
VCES  
Collector-to-Emitter Breakdown Voltage  
Continuous Collector Current  
Continuous Collector Current  
Pulsed Collector Current  
IC@ TC = 25°C  
IC@ TC = 100°C  
ICM  
11  
40  
Clamped Inductive Load Current c  
ILM  
40  
A
IF@TC=25°C  
IF@TC=100°C  
IFM  
Diode Continuous Forward Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current d  
20  
11  
40  
± 20  
± 30  
43  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
V
VGE  
PD @ TC =25°C  
W
°C  
PD @ TC =100°C  
17  
TJ  
-55 to + 150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Mounting Torque, 6-32 or M3 Screw  
Thermal Resistance  
Parameter  
Junction-to-Case - IGBT e  
Junction-to-Case - Diode e  
Min.  
Typ.  
Max.  
2.90  
4.60  
Units  
°C/W  
g
RθJC  
RθJC  
RθCS  
RθJA  
Wt  
Case-to-Sink, flat, greased surface  
0.5  
Junction-to-Ambient, typical socket mount e  
65  
Weight  
2.0  
1
www.irf.com  
2/14/07  
IRGI4061DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min.  
600  
Typ. Max. Units  
Conditions  
GE = 0V,Ic =100 µA  
GE = 0V, Ic = 250 µA ( -55 -150 oC )  
V
V
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
V
V(BR)CES/TJ  
0.75  
1.35  
1.53  
1.58  
V/°C  
I
I
I
C = 11A, VGE = 15V, TJ = 25°C  
C = 11A, VGE = 15V, TJ = 125°C  
C = 11A, VGE = 15V, TJ = 150°C  
1.59  
VCE(on)  
V
Collector-to-Emitter Saturation Voltage  
VGE(th)  
VCE = VGE, IC = 500 µA  
VCE = VGE, IC = 1.0mA ( 25 -150 oC )  
Gate Threshold Voltage  
4.0  
6.5  
V
mV/°C  
S
-15  
11  
VGE(th)/TJ  
gfe  
Threshold Voltage temp. coefficient  
Forward Transconductance  
VCE = 50V, IC = 11A, PW =80µs  
ICES  
VGE = 0V,VCE = 600V  
2.0  
25  
µA  
Collector-to-Emitter Leakage Current  
VGE = 0v, VCE = 600V, TJ =150°C  
IF = 11A  
550  
1.84  
1.33  
µA  
VFM  
2.05  
V
Diode Forward Voltage Drop  
IF = 11A, TJ = 150°C  
IGES  
VGE = ± 20 V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min.  
Typ. Max. Units  
Conditions  
Qg  
35  
8.0  
13  
53  
12  
23  
95  
340  
435  
46  
26  
129  
41  
IC = 11A  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
nC  
µJ  
ns  
VCC = 400V  
VGE = 15V  
52  
IC = 11A, VCC = 400V, VGE = 15V  
RG = 22, L=1mH, LS= 150nH, TJ = 25°C  
Energy losses include tail and diode reverse recovery  
IC = 11A, VCC = 400V  
231  
283  
37  
18  
RG = 22, L=1mH, LS= 150nH  
TJ = 25°C  
111  
30  
td(off)  
tf  
Turn-Off delay time  
Fall time  
Eon  
Eoff  
Etotal  
td(on)  
tr  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
143  
316  
459  
35  
IC = 11A, VCC = 400V, VGE = 15V  
RG = 22, L=1mH, LS= 150nH, TJ = 150°C  
Energy losses include tail and diode reverse recovery  
IC = 11A, VCC = 400V  
µJ  
ns  
19  
RG = 22, L=1mH, LS= 150nH  
TJ = 150°C  
134  
45  
td(off)  
tf  
Turn-Off delay time  
Fall time  
Cies  
Coes  
Cres  
Input Capacitance  
1050  
89  
VGE = 0V  
pF  
Output Capacitance  
Reverse Transfer Capacitance  
VCC = 30V  
30  
f = 1Mhz  
TJ = 150°C, IC = 40A  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
V
CC = 480V, Vp =600V  
Rg = 22, VGE = +15V to 0V  
CC = 400V, Vp =600V  
G = 22, VGE = +15V to 0V  
TJ = 150oC  
CC = 400V, IF = 11A  
VGE = 15V, Rg = 22, L=1mH, LS=150nH  
V
SCSOA  
Short Circuit Safe Operating Area  
5
µs  
R
Erec  
trr  
Reverse recovery energy of the diode  
Diode Reverse recovery time  
211  
60  
µJ  
ns  
A
V
Irr  
Peak Reverse Recovery Current  
18  
Notes:  
VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.  
‚ Pulse width limited by max. junction temperature.  
ƒRθ is measured at TJ approximately 90°C  
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely  
2
www.irf.com  
IRGI4061DPbF  
24  
20  
16  
12  
8
50  
40  
30  
20  
10  
0
4
0
0
20 40 60 80 100 120 140 160  
(°C)  
0
20 40 60 80 100 120 140 160  
(°C)  
T
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
10  
1
100  
10 µs  
100 µs  
10  
1ms  
1
DC  
0.1  
0.01  
0
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
CE  
V
CE  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VCE = 15V  
Fig. 3 - Forward SOA,  
TC = 25°C; TJ 150°C  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
V
V
V
V
V
= 18V  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
0
2
4
6
8
0
2
4
6
8
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp <60µs  
TJ = 25°C; tp < 60µs  
www.irf.com  
3
IRGI4061DPbF  
60  
50  
40  
30  
20  
10  
0
40  
-40°C  
25°C  
150°C  
30  
20  
10  
0
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
0
2
4
6
8
V
V
(V)  
F
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 150°C; tp < 60µs  
tp < 60µs  
14  
14  
12  
10  
8
12  
10  
8
I
I
I
= 5.5A  
= 11A  
= 22A  
I
I
I
= 5.5A  
= 11A  
= 22A  
CE  
CE  
CE  
CE  
CE  
CE  
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = -40°C  
TJ = 25°C  
40  
30  
20  
10  
0
14  
12  
10  
8
I
I
I
= 5.5A  
= 11A  
= 22A  
CE  
CE  
CE  
6
T
= -40°C  
= 25°C  
J
4
T
J
T
= 150°C  
J
2
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
16  
V
(V)  
V
(V)  
GE  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V; tp < 60µs  
TJ = 150°C  
4
www.irf.com  
IRGI4061DPbF  
1000  
100  
10  
700  
600  
500  
400  
300  
200  
100  
0
td  
td  
OFF  
E
OFF  
t
F
ON  
t
R
E
ON  
1
0
4
8
12  
(A)  
16  
20  
24  
0
4
8
12  
(A)  
16  
20  
24  
I
C
I
C
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L=1mH; VCE= 400V  
RG= 22; VGE= 15V  
Fig. 13 - Typ. Energy Loss vs. IC  
TJ = 150°C; L = 1mH; VCE = 400V, RG = 22; VGE = 15V.  
500  
1000  
100  
10  
E
OFF  
400  
td  
OFF  
E
ON  
300  
200  
100  
0
td  
t
ON  
R
t
F
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
R
()  
R
()  
G
G
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 1mH; VCE = 400V, ICE = 11A; VGE = 15V  
Fig. 16- Typ. Switching Time vs. RG  
TJ = 150°C; L=1mH; VCE= 400V  
ICE= 11A; VGE= 15V  
24  
24  
20  
16  
12  
8
R
10 Ω  
G =  
20  
16  
12  
8
R
22 Ω  
G =  
R
47 Ω  
G =  
R
100Ω  
G =  
4
0
4
0
4
8
12  
(A)  
16  
20  
24  
0
25  
50  
75  
100  
125  
I
F
R
(
Ω)  
G
Fig. 17 - Typical Diode IRR vs. IF  
Fig. 18 - Typical Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C; IF = 11A  
www.irf.com  
5
IRGI4061DPbF  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
24  
10Ω  
22Ω  
22A  
20  
16  
12  
8
47 Ω  
11A  
100Ω  
5.5A  
0
600  
di /dt (A/µs)  
1200  
0
500  
1000  
F
di /dt (A/µs)  
Fig. 19- Typical DFiode IRR vs. diF/dt  
VCC= 400V; VGE= 15V;  
Fig. 20 - Typical Diode QRR  
VCC= 400V; VGE= 15V; TJ = 150°C  
ICE= 11A; TJ = 150°C  
400  
18  
160  
16  
14  
12  
10  
8
140  
120  
100  
80  
300  
200  
100  
0
10 Ω  
22 Ω  
47 Ω  
100 Ω  
60  
6
4
40  
0
4
8
12  
(A)  
16  
20  
24  
8
10  
12  
14  
(V)  
16  
18  
V
GE  
I
F
Fig. 22- Typ. VGE vs Short Circuit Time  
Fig. 21 - Typical Diode ERR vs. IF  
VCC=400V, TC =25°C  
TJ = 150°C  
10000  
1000  
100  
10  
16  
14  
300V  
400V  
Cies  
12  
10  
8
6
Coes  
Cres  
4
2
0
1
0
10  
20  
30  
40  
0
100  
200  
300  
(V)  
400  
500  
Q
, Total Gate Charge (nC)  
V
G
CE  
Fig. 23- Typ. Capacitance vs. VCE  
Fig. 24 - Typical Gate Charge vs. VGE  
VGE= 0V; f = 1MHz  
ICE = 11A, L=600µH  
6
www.irf.com  
IRGI4061DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τι (sec)  
0.203729 0.000093  
0.311882 0.000764  
1.09536 0.051077  
0.1  
τJ  
τC  
τJ  
τ1  
0.02  
0.01  
τ
τ
τ
3 τ3  
τ4  
2τ2  
τ1  
τ4  
Ci= τi/Ri  
1.289029  
0.996  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1 1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τι (sec)  
0.265329 0.000056  
1.150721 0.001322  
1.326646 0.031959  
1.857304 1.6697  
0.1  
τJ  
τC  
τJ  
τ1  
τ
τ
τ
3τ3  
τ4  
2τ2  
τ1  
τ4  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGI4061DPbF  
L
L
VCC  
80 V  
+
-
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.3 - S.C.SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - Typical Filter Circuit for  
V(BR)CES Measurement  
8
www.irf.com  
IRGI4061DPbF  
500  
400  
300  
200  
100  
0
50  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
tf  
40  
TEST  
tr  
90% test current  
10% test current  
30  
90% ICE  
20  
5% VCE  
10% ICE  
10  
5% VCE  
0
0
Eon Loss  
Eoff Loss  
-100  
-5  
-100  
-10  
-0.15  
0.05  
0.25  
0.45  
-0.1  
-0.05  
0
0.05  
0.1  
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
100  
0
20  
500  
250  
200  
150  
100  
50  
15  
10  
5
VCE  
QRR  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
tRR  
IC  
0
-5  
Peak  
IRR  
-10  
-15  
-20  
-25  
-30  
10%  
Peak  
IRR  
0
-100  
-50  
-4 -2  
0
2
4
6
8
10  
-0.10  
0.00  
0.10  
0.20  
Time (uS)  
time (µS)  
WF.3- Typ. Reverse Recovery Waveform  
@ TJ = 150°C using CT.4  
WF.4- Typ. Short Circuit Waveform  
@ TJ = 25°C using CT.3  
www.irf.com  
9
IRGI4061DPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
EXAMPLE: THIS IS AN IRFI840G  
WITH ASSEMBLY  
PART NUMBER  
LOT CODE 3432  
ASSEMBLED ON WW 24, 2001  
IN THE ASSEMBLY LINE "K"  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFI840G  
124K  
34  
32  
DATE CODE  
YEAR 1 = 2001  
WEEK 24  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-F ree"  
LINE K  
TO-220 Full-Pak package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 02/07  
10  
www.irf.com  

相关型号:

IRGI4062DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGI4064DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGI4065PBF

PDP TRENCH IGBT
INFINEON

IRGI4085PBF

PDP TRENCH IGBT
INFINEON

IRGI4086PBF

PDP TRENCH IGBT
INFINEON

IRGI4090PBF

IRGI4090PbF Low VCE(on) and Energy per Pulse (EPULSE
INFINEON

IRGIB10B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1PPBF

Insulated Gate Bipolar Transistor, 19A I(C), 600V V(BR)CES, N-Channel, TO-220AB, TO-220, FULL PACK-3
INFINEON