CXD2403AR [SONY]

Timing Generator for Color Liquid Crystal Panel; 时序发生器彩色液晶板
CXD2403AR
型号: CXD2403AR
厂家: SONY CORPORATION    SONY CORPORATION
描述:

Timing Generator for Color Liquid Crystal Panel
时序发生器彩色液晶板

文件: 总25页 (文件大小:1287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD2403AR  
Timing Generator for Color Liquid Crystal Panel  
Description  
48 pin LQFP (Plastic)  
The CXD2403AR is a timing signal generator for  
color liquid crystal panel drivers.  
Features  
Generates the LCX003, LCX004 and LCX005  
drive pulses  
Supports line inversion and field inversion  
AC drive for liquid crystal panel during no signal  
(NTSC/PAL)  
Absolute Maximum Ratings (5V system)  
(Ta = +25°C, VSS1 = 0V)  
Generates timing signal of external sample-and-  
hold circuit  
Supply voltage  
Input voltage  
Output voltage  
VCC  
VI  
–0.3 to +7.0  
–0.3 to VDD +0.3  
–0.3 to VDD +0.3  
–20 to +75  
V
V
AFC circuit supporting static and dynamic  
fluctuations  
VO  
V
Operating temperature Topr  
Storage temperature Tstg  
°C  
°C  
Pulse driver for liquid crystal panel driver (12.0V)  
–55 to +125  
Applications  
Absolute Maximum Ratings (12V system)  
Color liquid crystal viewfinders  
(Ta = +25°C, VSS3 = 0V)  
Supply voltage  
Output voltage  
VEE  
VO  
–0.3 to +20.0  
–0.3 to VEE +0.3  
–20 to +75  
V
V
Structure  
Silicon gate CMOS IC  
Operating temperature Topr  
Storage temperature Tstg  
°C  
°C  
–55 to +125  
Recommended Operating Conditions (5V system)  
Supply voltage  
VDD  
2.7 to 5.5  
V
Operating temperature Topr  
–20 to +75  
°C  
Recommended Operating Conditions (12V system)  
Supply voltage  
VEE  
11.5 to 12.5  
–20 to +75  
V
Operating temperature Topr  
°C  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication  
or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony  
cannot assume responsibility for any problems arising out of the use of these circuits.  
E94421-TE  
–1–  
CXD2403AR  
Block Diagram  
Master CK  
CKO  
CKI  
TST0  
TST1  
TST2  
39  
40  
7
8
9
RPD  
PLL Phase Comparator  
37  
XCLR  
PLNT  
SLCK  
3
2
6
XCLP  
35  
H-SYNC  
Detector  
H-SKEW  
Detector  
36 HD  
SYNC  
27  
Half-H  
Killer  
PLL  
Counter  
38  
41  
1
VDD1  
VSS1  
VDD2  
N.C.  
5
25 VSS2  
VEE  
13  
24  
10  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS3  
11  
12  
14  
15  
V-SYNC  
Separator  
(Noise Shape)  
HP1  
HP2  
HP3  
HP4  
45  
46  
47  
48  
16 CLR  
26  
28  
N.C.  
FLDI  
H-Timing  
Pulse  
Generator  
HST  
21  
HCK1  
HCK2  
SH1  
23  
22  
31  
42  
43  
N.C.  
N.C.  
N.C.  
SH2  
32  
33  
44  
V-Timing  
Pulse Generator  
SH3  
EN  
VST  
17  
18  
19  
20  
29  
30  
PAL Pulse  
Eliminator  
VCK1  
VCK2  
FLDO  
VD  
SLFR  
4
Field & Line  
Controller  
34 FRP  
–2–  
CXD2403AR  
Pin Description  
(H: Pull Up, L: Pull Down)  
Pin  
Input Pin for  
Open Status  
Symbol  
No.  
I/O  
Description  
1
VDD2  
PLNT  
XCLR  
SLFR  
N.C.  
SLCK  
TST0  
TST1  
TST2  
N.C.  
N.C.  
N.C.  
VEE  
I
I
I
I
5V system power supply  
2
Switches between PAL (High) and NTSC (Low)  
Reset at 0V  
L
3
H
4
Switches between field inversion (High) and line inversion (Low)  
No connected  
L
5
L
6
I
I
Switches between LCX003/004 (Low) and LCX005 (High)  
Test  
7
L
8
I
Test  
L
9
I
Test  
L
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I
No connected  
No connected  
No connected  
12V system power supply  
N.C.  
N.C.  
CLR  
EN  
O
O
O
O
O
O
O
O
I
No connected  
No connected  
CLR pulse output (positive polarity)  
EN pulse output (negative polarity)  
V start pulse output (positive polarity)  
V clock pulse 1 output (positive polarity)  
V clock pulse 2 output (positive polarity)  
H start pulse output (positive polarity)  
H clock pulse 2 output (positive polarity)  
H clock pulse 1 output (positive polarity)  
12V system GND  
VST  
VCK1  
VCK2  
HST  
HCK2  
HCK1  
VSS3  
VSS2  
N.C.  
SYNC  
FLDI  
FLDO  
VD  
I
5V system GND  
I
No connected  
Composite sync input (positive polarity)  
Field identification signal input ODD (High)/EVEN (Low)  
Field identification signal output  
VD pulse output (positive polarity)  
Sample-and-hold pulse output (positive polarity)  
Sample-and-hold pulse output (positive polarity)  
Sample-and-hold pulse output (positive polarity)  
AC drive timing pulse output  
Burst position clamp pulse output (negative polarity)  
HD pulse output (positive polarity)  
Phase comparator output  
I
O
O
O
O
O
O
O
O
O
I
SH1  
SH2  
SH3  
FRP  
XCLP  
HD  
RPD  
VDD1  
CKO  
CKI  
5V system power supply  
O
I
Oscillation cell (output)  
Oscillation cell (input)  
–3–  
CXD2403AR  
Pin  
No.  
Input Pin for  
Open Status  
Symbol  
I/O  
Description  
41  
42  
43  
44  
45  
46  
47  
48  
VSS1  
N.C.  
N.C.  
N.C.  
HP1  
HP2  
HP3  
HP4  
I
I
5V system GND  
No connected  
No connected  
No connected  
H
L
Switches for the horizontal display start position  
Switches for the horizontal display start position  
Switches for the horizontal display start position  
Switches for the horizontal display start position  
I
I
L
I
H
Electrical Characteristics 1  
DC Characteristics (VDD = 5.0V ± 10%)  
Applicable  
Measurement  
Conditions  
Item  
Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Input  
VIH  
VIL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
II  
0.7*VDD  
VSS  
5.5  
0.3*VDD  
–2.0  
SYNC  
voltage  
VOH = VDD–0.8V  
VOL = 0.4V  
Other than CKO and RPD  
Output  
4
VOH = VDD–0.8V  
VOL = 0.4V  
–2  
RPD  
current  
2
–18  
3.0  
–2  
mA  
µA  
VOH = VDD/2  
VOL = VDD/2  
VIN = VSS or VDD  
VIN = VSS  
–3.0  
18  
CKO  
Normal input pins  
2
Input leak  
Pull-up resistor connected  
IIL  
–240  
10  
–10  
240  
40  
current  
Pull-down resistor connected  
IIH  
VIN = VDD  
Output leak  
IO2  
VIN = VSS or VDD  
–40  
RPD (at high imedance state)  
current  
VOH  
VOL  
IOH  
IOUT = –20µA  
IOUT = 20µA  
VOH = 11.5V (VEE=  
12V)  
11.9  
12.0  
0.0  
0.1  
Output  
V
12V system output pins  
voltage  
–1.0  
Output  
mA  
12V system output pins  
current  
Measurement  
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit  
mA  
Conditions  
Note 1)  
IDD  
IEE  
25.0  
2.0  
Current  
5V system  
Note 1)  
consumption  
12V system  
Note:  
1. Master clock frequency FCKI = 12MHz, input conditions VIH = VDD, VIL = VSS, no output load.  
–4–  
CXD2403AR  
AC Characteristics (VDD = 5.0V ± 10%)  
5V System  
Applicable  
Pins  
Measurement  
Conditions  
Item  
Clock input cycle  
Symbol  
Min. Typ. Max. Unit  
tck  
tw (H)  
tw (L)  
tr (ck)  
tf (ck)  
tr  
83  
30  
30  
High level pulse width  
Low level pulse width  
Clock rise time  
CKI  
Note 4)  
10  
10  
20  
20  
70  
70  
Clock fall time  
ns  
Output rise time  
SH1, SH2  
SH3  
CL = 10pF  
CL = 10pF  
CL = 20pF  
CL = 20pF  
Output fall time  
tf  
Output rise delay time  
Output fall delay time  
5V system  
output pins  
tpr  
tpf  
12V System  
tr  
tf  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 40pF  
(HCK1, HCK2)  
CL = 20pF  
(SH1) Note 5)  
CL = 40pF  
50  
80  
Output rise time  
12V system all  
Output pins  
Note 3)  
50  
Output fall time  
80  
Cross point time difference  
Note 2)  
VCK1, 2  
HCK1, 2  
t  
t  
15  
15  
tpLH  
160  
Output rise delay time  
Output fall delay time  
12V system all  
ouput pins  
Note 3)  
180 ns  
160  
tpHL  
dt1  
180  
HCK1  
SH1  
80  
90  
125  
HCK1, SH1 delay time difference  
HCK2, SH2 delay time difference  
HCK delay time difference  
Notes:  
HCK2  
SH1  
dt2  
130  
40  
HCK1  
HCK2  
tH–tL  
–30  
2. Applicable to the relationships between HCK1 and HCK2, and VCK1 and VCK2.  
3. 12V system output pins : HST, HCK1, HCK2, VST, VCK1, VCK2, EN, CLR.  
4. CKI input voltage conditions : The input signal must have the full swing amplitude.  
5.  
Master clock frequency fCKI=8MHz.  
–5–  
CXD2403AR  
Electrical Characteristics 2  
DC Characteristics (VDD = 2.7V to 3.6V)  
Applicable  
Measurement  
Conditions  
Item  
Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Input volt-  
VIH  
VIL  
IOH  
IOL  
IOH  
IOL  
II  
0.7*VDD  
VSS  
5.5  
0.3*VDD  
–1.1  
V
SYNC  
age Note) 4  
VOH = VDD–0.8V  
VOL = 0.4V  
Other than CKO  
Output  
1.0  
–8.0  
0.75  
–2  
mA  
current  
CKO  
VOH = VDD/2  
VOL = VDD/2  
VIN = VSS or VDD  
VIN = VSS  
–0.7  
8.0  
2
Normal input pins  
Input leak  
Pull-up resistor connected  
IIL  
–240  
5
–3  
current  
Pull-down resistor connected  
IIH  
VIN = VDD  
240  
40  
µA  
Output leak  
IO2  
VIN = VSS or VDD  
–40  
RPD (at high imedance state)  
current  
VOH  
VOL  
IOH  
IOL  
IOUT = –20µA  
11.9  
12.0  
0.0  
0.1  
V
Output  
12V system output pins  
voltage  
IOUT = 20µA  
VOH = 11.5V (VEE=  
VOL = 0.5V 12V)  
–1.0  
mA  
Output  
12V system output pins  
current  
1.0  
Measurement  
Conditions  
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit  
mA  
Current  
5V system  
IDD  
IEE  
Note 1)  
Note 1)  
25.0  
2.0  
consumption  
12V system  
Notes:  
1. Master clock frequency FCKI = 12MHz, input conditions VIH = VDD, VIL = Vss, no output load.  
4. CKI input voltage conditions : The input signal must have the full swing amplitude.  
–6–  
CXD2403AR  
AC Characteristics (VDD = 2.7V to 3.6V)  
5V System  
Applicable  
Pins  
Measurement  
Conditions  
Item  
Symbol  
Min. Typ. Max. Unit  
tck  
tw (H)  
tw (L)  
tr (ck)  
tf (ck)  
tr  
83  
30  
30  
Clock input cycle  
High level pulse width  
Low level pulse width  
Clock rise time  
CKI  
Note 4)  
10  
10  
ns  
Clock fall time  
CL = 10pF  
CL = 10pF  
CL = 20pF  
CL = 20pF  
30  
Output rise time  
SH1, SH2  
SH3  
tf  
30  
Output fall time  
tpr  
200  
200  
Output rise delay time  
Output fall delay time  
5V system  
output pins  
tpf  
12V System  
tr  
tf  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 10pF  
CL = 40pF  
CL = 40pF  
(HCK1, HCK2)  
CL = 20pF  
(SH1) Note 5)  
CL = 40pF  
50  
80  
Output rise time  
12V system all  
Output pins  
Note 3)  
50  
Output fall time  
80  
Cross point time difference  
Note 2)  
VCK1, 2  
HCK1, 2  
t  
t  
15  
15  
tpLH  
200  
Output rise delay time  
12V system all  
ouput pins  
Note 3)  
250 ns  
200  
tpHL  
dt1  
Output fall delay time  
250  
HCK1  
SH1  
80  
90  
145  
HCK1, SH1 delay time difference  
HCK2, SH2 delay time difference  
HCK delay time difference  
HCK2  
SH1  
dt2  
145  
40  
HCK1  
HCK2  
tH–tL  
–30  
Notes:  
2. Applicable to the relationships between HCK1 and HCK2, and VCK1 and VCK2.  
3. 12V system output pins : HST, HCK1, HCK2, VST, VCK1, VCK2, EN, CLR.  
4. CKI input voltage conditions : The input signal must have the full swing amplitude.  
5. Master clock frequency fCKI = 8MHz.  
–7–  
CXD2403AR  
Timing Definition for 5V System Pins  
VDD  
0V  
Data input  
tCK  
tW (H)  
100%  
100%  
100%  
VDD  
0V  
CKI  
0%  
0%  
0%  
tW (L)  
tr (CK)  
tf (CK)  
VDD  
90%  
5V system output  
10%  
0V  
tr  
tpr  
VDD  
90%  
5V system output  
10%  
0V  
tf  
tpf  
–8–  
CXD2403AR  
Timing Definition for 12V System Pins  
VDD  
0V  
CKI  
VEE  
90%  
12V system output  
10%  
0V  
tr  
tPLH  
VEE  
90%  
12V system output  
10%  
0V  
tf  
tPHL  
VEE  
50%  
50%  
VCK1  
(HCK1)  
0V  
VCK2  
(HCK2)  
VEE  
50%  
50%  
0V  
Dt  
Dt  
t
t
CKI  
t tL = 2(t t1)  
tH = t t1 + t2  
tL = t t2 + t1  
tH – tL = 2(t2 – t1)  
50%  
50%  
50%  
HCK1  
(HCK2)  
t1  
t2  
tH  
tL  
SH1  
50%  
50%  
dt1  
dt2  
–9–  
CXD2403AR  
Description of Functions  
The structure of liquid crystal panel driven by this IC is shown below.  
Liquid Crystal Panel Structure  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
B
B
B
B
B
B
R
R
R
R
R
R
B
B
B
B
B
B
R
R
R
R
R
R
B
B
B
B
B
B
R
R
R
R
R
R
B
B
B
B
B
B
R
R
R
R
R
R
B
B
B
B
B
B
B
B
B
B
B
B
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
R
R
R
R
R
R
G
G
G
G
G
G
R
R
R
R
R
R
R
R
R
R
R
R
G
G
G
G
G
G
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
B
B
G
G
G
G
G
G
B
B
G
G
G
G
G
G
B
B
G
G
G
G
G
G
B
B
G
G
G
G
G
G
B
B
G
G
G
G
G
G
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
R
480  
2
473  
5
LCX003  
Basic Specifications  
Total number of horizontal pixels  
Number of horizontal display pixels  
(A line) :  
(B line) :  
(A line) :  
(B line) :  
:
479H  
480H  
473H  
473H  
230H  
218H  
Total number of vertical pixels  
Number of vertical display pixels  
:
Total number of pixels  
:
:
110285  
103114  
Number of display pixels  
–10–  
CXD2403AR  
Liquid Crystal Panel Structure  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
B
B
B
B
B
B
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
G
G
G
G
G
G
B
B
B
B
B
B
R
R
R
R
R
R
R
R
R
R
R
480  
473  
2
5
LCX004  
Basic Specifications  
Total number of horizontal pixels  
Number of horizontal display pixels  
(A line) :  
(B line) :  
(A line) :  
(B line) :  
:
479H  
480H  
473H  
473H  
268H  
260H  
Total number of vertical pixels  
Number of vertical display pixels  
:
Total number of pixels  
:
:
128506  
122980  
Number of display pixels  
–11–  
CXD2403AR  
Liquid Crystal Panel Structure  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
Gate SW  
G
G
G
G
G
B
B
B
B
B
R
R
R
R
G
G
G
B
B
B
B
B
R
R
R
G
G
G
G
G
B
B
B
B
B
R
R
R
G
G
G
G
G
B
B
B
B
B
R
R
R
R
R
G
G
G
G
G
B
R
R
R
R
R
G
G
G
B
B
B
R
R
R
R
B
B
B
B
B
R
R
R
R
R
G
G
B
B
B
B
B
R
R
G
G
G
G
G
B
B
B
B
B
R
R
R
R
R
B
B
B
B
B
R
R
R
R
R
G
G
G
G
G
B
B
B
B
B
R
R
R
R
R
G
G
G
G
G
B
B
B
B
B
G
G
G
G
G
G
R
R
R
R
R
B
B
B
B
G
G
G
G
G
G
G
R
R
R
R
G
G
R
R
G
G
B
B
R
R
R
525  
3
1
521  
LCX005  
Basic Specifications  
Total number of horizontal pixels  
:
525H  
521H  
Number of horizontal display pixels :  
Total number of vertical pixels  
Number of vertical display pixels  
:
:
222H  
218H  
Total number of pixels  
:
:
116550  
113578  
Number of display pixels  
–12–  
CXD2403AR  
Horizontal Direction Output Pulse  
The picture display timing of horizontal direction is as  
follows.  
The horizontal start position is offset by two clocks in  
16 different ways with the HP1 to 4 pins.  
Effective Pixel Display Timing (for the LCX003)  
10.9µs  
(110fH)  
52.6  
(528fH)  
63.5µs  
(638fH)  
4.76µs  
(48fH)  
SYNC  
BLK  
Effective interval  
1.5µs  
(15fH)  
9µs  
(90.5fH)  
HST  
Picture display interval  
47.1µs  
(473fH)  
2.75µs  
(27.5fH)  
2.75µs  
(27.5fH)  
Horizontal Start Position Concept  
Horizontal scan interval  
63.5µs = 638ffH  
Interval from sync signal to picture display  
Picture display starts (528–473)/2 = 27.5fH later  
from the end of BLK. Therefore, picture  
display starts 11 – 15 + 27.5 = 122.5fH later.  
Blanking and SYNC  
47.6µs  
SYNC  
(48fH)  
BLK  
10.9µs  
BLK  
110fH  
473fH  
110fH  
(Picture display interval)  
1.5µs (15fH)  
27.5fH  
27.5fH  
Interval from HST to picture display  
Picture display interval  
First two bits are masked.  
5fH  
47.1µs = 473fH  
2
HST  
HCK1  
HCK2  
473  
2
4
Therefore, the interval between HST and display  
start is 6 clocks.  
Display  
interval  
218  
Black mask  
10  
Interval from the center of sync signal to HST.  
Add time delayed four bits of sync separation circuit.  
110-15-26+27.5-6-4=90.5fH (9.0µs)µs  
–13–  
CXD2403AR  
Variable Range from the Center of Sync Signal to Hst Rise Timing  
HP1 to HP4 pins can be used to vary the  
HP4  
0
0
HP3  
0
0
HP2  
0
0
HP1  
0
1
108CLK (10.7µs)  
106CLK  
104CLK  
interval from the center of sync signal to HST  
rise as shown in the left table.  
0
0
1
0
0
0
1
1
102CLK  
0
1
0
0
100CLK  
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
98CLK  
96CLK  
94CLK (9.4µs)  
92CLK  
90CLK  
Internal preset:  
NTSC (typ.):  
PAL (typ.):  
1001 (90CLK)  
1001 (90CLK)  
1000 (92CLK)  
1
0
0
1
1
0
1
0
88CLK  
1
0
1
1
86CLK  
1
1
0
0
84CLK  
1
1
0
1
82CLK  
1
1
1
0
80CLK  
1
1
1
1
78CLK (7.8µs)  
Liquid Crystal Panel Driving Pulse Generation  
HST, HCK1, HCK2, VST, VCK1, and VCK2 (EN, CLR  
in LCX005 mode only) are generated for the liquid  
crystal panel driver.  
Low. Polarity is not specified for each field. The point is  
changed from VCK1 and VCK2 pulse change points  
after 1 clock.  
HD-Clamp Pulse Generation  
HD pulse is output during horizontal BLK in order to  
drive the backlight (fluorescent tube). Even during no  
signal, raster screen with no screen noise can be  
created synchronizing to the free running frequency.  
XCLP is output for BF timing clamp pulse.  
External Sample-and-Hold Pulse Generation  
Timing pulses of external sample-and-hold circuit  
SH1, SH2, and SH3 are generated.  
AC Driving Pulse Generation  
FRP is output for liquid crystal AC driving. Field  
inverts when F/H input pin is High and line inverts when  
SYNC  
BLK  
4.7µs  
1.5µs  
10.9µs  
2.7µs  
HD  
6.5µs  
XCLP  
2µs  
6.1µs  
1.3µs  
1.4µs  
–14–  
CXD2403AR  
Pulse Timing Chart (for the LCX003)  
Clock  
(638fH)  
Display start  
HST  
HCK1  
HCK2  
VCK1,2  
SH1  
SH2  
SH3  
RESET position  
FRP  
* In accordance with the layout of picture elements on LCD panel, timings between the adjacent lines and  
fields are offset accordingly.  
1.5 bit offset pulse  
1 bit offset pulse  
HST, HCK1, HCK2, SH1, SH2, SH3, CLR  
VCK1,VCK2, FRP, EN  
–15–  
CXD2403AR  
LCX003/004 Horizontal Direction Timing Chart — NTSC, PAL (HPOS-1001)  
–16–  
CXD2403AR  
LCX003 Vertical Direction Timing Chart — NTSC  
Note) The second row of the timing chart 'VD' is a pulse indicated as a reference and is not a pulse output from pins.  
–17–  
CXD2403AR  
LCX004 Vertical Direction Timing Chart — PAL  
Note) The second row of the timing chart 'VD' is a pulse indicated as a reference and is not a pulse output from pins.  
–18–  
CXD2403AR  
CXD2403AR  
LCX005 Holizontal Direction Timing Chart — NTSC, PAL (HP=1001)  
–19–  
CXD2403AR  
LCX005 Vertical Direction Timing Chart — NTSC  
Note) The second row of the timing chart 'VD' is a pulse indicated as a reference and is not a pulse output from pins.  
–20–  
CXD2403AR  
LCX005 Vertical Direction  
Timing Chart — PAL  
–21–  
CXD2403AR  
Driving for No Signal  
The period of the V counter is 269H for NTSC and  
321H for PAL, and if there is no VSYNC during  
269H/321H, it is assumed to be a no signal state.  
The RPD pin is kept at high impedance so that the  
AFC circuit does not cause phase errors by phase  
comparison.  
HST, HCK1, HCK2, FRP, VCK1, VCK2, XCLP, HD,  
VD, and VST are made to run free so that the liquid  
crystal panel is AC driven even when there is no  
composite sync from the SYNC pin.  
The PLL counter is made to run free because the  
HSYNC separation circuit stops. In addition, the  
auxiliary V counter is used to create the reference pulse  
for generating VD and VST because the VSYNC  
separation circuit is also stopped.  
AFC Circuit (638/702 fh clock generation)  
A fully synchronized AFC circuit is built in. PLL error  
detection signal is generated at the following timing.  
SYNC  
4.7µs  
5V  
2.5V  
RPD  
Center of SYNC  
0V  
The phase comparison output of the entire bottom of  
SYNC and the internal H counter becomes RPD. RPD  
output is converted to DC error with the lag-lead filter.  
Then the outputs change the vari-cap capacitance and  
the oscillating frequency is stabilized at 638 fh in  
LCX003/1004 or 702 fh in LCX005.  
Example of PLL Related Peripheral Circuit  
1k  
37 RPD  
3.3µ 10k  
L value  
+
LCX003/004 8.2µ  
LCX005  
6.8µ  
3300pF  
33k  
1000pF  
+12V  
100k  
40  
39  
CKI  
*The parameters of the elements are reference.  
1T369  
0.01µ  
L
10k  
CKO  
100pF  
Parts : Vari-cap  
1T369 (Sony), MA365 (Matsushita)  
Concretely, adjust so that the RPD rise is at the center  
Adjustment Method  
of HSYNC.  
1. Adjust the voltage for vari-cap with the variable  
resistor connected to 12V power supply while checking  
HSYNC and RPD waveforms with an oscilloscope.  
2. When PLL is still not locked, change the L of the LC  
oscillations.  
–22–  
CXD2403AR  
HSYNC Separation  
HSYNC is separated from the composite sync input.  
Noise is eliminated with the counter and equivalent  
pulse is eliminated with the half H killer.  
HSYNC jumping detection and address management  
when jumping occurs frequently (matching the number  
of H in a field) are also performed.  
PLL  
H-DET  
Noise Elimination  
SYNC  
Half H-Kill  
H Control  
Circuit  
AFH  
H Counter  
(Internal pulse)  
(Matching the number of H)  
SKEW DET  
V. SYNC Separation  
V-RESET  
Pulse  
Generate  
Noise  
Shape  
V-Reset pulse  
(internal pulse)  
SYNC  
V-SYNC Separation Circuit  
a V sync having different pulse width from normal one is  
input, it can be separated when the width of serration  
pulse is narrower than 2~3 µsec or less which is  
positioned right after the V sync having 0.5H width  
during A~F period.  
V. sync is separated from the composite sync input  
connected to SYNC connector. The serration pulses  
are removed as noise. When considerable pulse width  
is detected, the V reset pulse is output to notify V sync  
input and to synchronize timing of output signals. When  
V-SYNC Period  
190µs  
A
B
C
D
E
F
SYNC  
NOISE SHAPE START  
NOISE SHAPE END  
NOISE SHAPE MODE  
Recovery period 15µs  
Tolerance ± 0 to 1.0µs  
NOISE  
SHAPED  
PULSE  
V-SYNC  
Decision Period  
When the pulse enters in this  
period, twice the pulse time  
width is added.  
125µs  
V-RESET  
PULSE  
V-SYNC Input Time Axis Specification  
–23–  
CXD2403AR  
Application Circuit  
(for driving the liquid crystal panel LCX003)  
+
3.3µ  
+
10k  
1k  
VSS2  
HCK1  
HCK2  
HST  
RPD  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
3300pF  
0.01µ  
33k  
CKO  
CKI  
LCD panel  
1000pF  
VSS  
VCK2  
VCK1  
VST  
10k  
N.C.  
N.C.  
N.C.  
HP1  
HP2  
HP3  
HP4  
N.C. 42  
8.2µ  
43  
44  
45  
46  
47  
48  
100k  
N.C.  
N.C.  
EN  
N.C.  
N.C.  
N.C.  
N.C.  
100pF  
CLR  
N.C.  
N.C.  
VDD2  
+
+5.0V  
PAL  
NT  
+
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems  
arising out of the use of these circuits or for any infringement of third party and other right due to same.  
–24–  
CXD2403AR  
Package Outline Unit : mm  
48PIN LQFP (PLASTIC)  
9.0 }0.2  
* 7.0 }0.1  
+0.2  
1.5-0.1  
0.1  
36  
25  
24  
37  
48  
A
13  
1
12  
0.5 }0.1  
+0.08  
0.18-0.03  
M
0.08  
0.1 }0.1  
NOTE Dimension g hdoes notinclude mold protrusion.  
0 K-10 K  
DETAIL A  
PACKAGESTRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SONYCODE  
EIAJCODE  
LQFP-48P-L121  
SOLDER PLATING  
LQFP048-P-0707-AX  
42ALLOY  
0.2  
JEDEC CODE  
PACKAGEWEIGHT  
–25–  

相关型号:

CXD2408AR

Timing Generator for Progressive Scan CCD Image Sensor
SONY

CXD2408R

Timing Generator for Progressive Scan CCD Image Sensor
SONY

CXD2409R

Timing Controller for ICX076/077AL
SONY

CXD2411AR

Timing Generator for Color LCD Panels
SONY

CXD2411R

Signal Generator for LCD
ETC

CXD2412AQ

Timing Generator for LCD Panels
SONY

CXD2422R

CCD Camera Timing Generator
SONY

CXD2424R

Timing Generator for Progressive Scan CCD Image Sensor
SONY

CXD2428Q

Video Scan Converter
SONY

CXD2434ATQ

Timing Generator for Progressive Scan CCD Image Sensor
SONY

CXD2434TQ

Timing Generator for Progressive Scan CCD Image Sensor
SONY

CXD2436Q

Timing Generator for LCD Panels
SONY