70-W212NMC600SH01-M700P [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
70-W212NMC600SH01-M700P
型号: 70-W212NMC600SH01-M700P
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总31页 (文件大小:1465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
flow MNPC 4w  
1200 V / 600 A  
Features  
flow SCREW 4w housing  
● Mixed voltage NPC  
● Low inductive  
● High power screw interface  
Target Applications  
● Solar inverter  
● UPS  
Schematic  
● High speed motor drive  
Types  
● 70ꢀW212NMC600SH01ꢀM700P  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
half bridge IGBT ( T1 , T4 )  
Collectorꢀemitter break down voltage  
DC collector current  
V CE  
I C  
1200  
V
A
Th=80°C  
Tc=80°C  
457  
589  
Tj=Tjmax  
I CRM  
P tot  
V GE  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation  
1800  
A
Th=80°C  
Tc=80°C  
1105  
1674  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
Tj≤150°C  
10  
µs  
V
V CC  
VGE=15V  
800  
VCE max = 1200V  
Tvj max= 150°C  
I cmax  
T jmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
1200  
175  
A
°C  
neutral point FWD ( D2 , D3 )  
Peak Repetitive Reverse Voltage  
DC forward current  
V RRM  
I F  
I FRM  
P tot  
Tj=25°C  
Tj=Tjmax  
tP = 1 ms  
Tj=Tjmax  
600  
V
A
Th=80°C  
Tc=80°C  
318  
430  
Tvj < 150°C  
Repetitive peak forward current  
Power dissipation per FWD  
1800  
A
Th=80°C  
Tc=80°C  
389  
589  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
copyright Vincotech  
1
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
neutral point IGBT ( T2 , T3 )  
Collectorꢀemitter break down voltage  
DC collector current  
V CE  
I C  
600  
V
A
Th=80°C  
Tc=80°C  
420  
550  
Tj=Tjmax  
I CRM  
P tot  
V GE  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation  
1800  
A
Th=80°C  
Tc=80°C  
645  
977  
W
V
Gateꢀemitter peak voltage  
±20  
t SC  
Tj≤150°C  
6
µs  
V
Short circuit ratings  
V CC  
VGE=15V  
360  
VCE max = 1200V  
I cmax  
T jmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
1200  
175  
A
T
vj max= 150°C  
°C  
half bridge FWD ( D1 , D4 )  
Peak Repetitive Reverse Voltage  
DC forward current  
V RRM  
I F  
Tj=25°C  
1200  
V
A
A
Th=80°C  
Tc=80°C  
239  
316  
Tj=Tjmax  
I FSM  
Surge forward current  
1800  
8100  
tp=10ms , sin 180°  
Tj=Tjmax  
Tj=150°C  
I 2  
t
A2s  
W
I2tꢀvalue  
Th=80°C  
Tc=80°C  
468  
709  
P tot  
Power dissipation per FWD  
Maximum Junction Temperature  
T jmax  
175  
°C  
copyright Vincotech  
2
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
DC link Capacitor  
V MAX  
Tcmax=100°C  
Max.DC voltage  
630  
V
General Module Properties  
Material of module baseplate  
Material of internal isulation  
Cu  
Al2O3  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
Operation temperature under switching condition  
ꢀ40…+(Tjmax ꢀ 25)  
Insulation Properties  
Insulation voltage  
V is  
t=2s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
mm  
mm  
Clearance  
Comparative tracking index  
CTI  
copyright Vincotech  
3
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] or I C [A] or  
V CE [V] or I F [A] or  
V GE [V] or  
V GS [V]  
T j  
Min  
Max  
V DS [V]  
I D [A]  
half bridge IGBT ( T1 , T4 )  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. FWD  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,4  
V GE(th)  
V CEsat  
I CES  
V
CE=VGE  
0,0208  
600  
V
V
1,4  
2,22  
2,75  
15  
0
0,08  
960  
1200  
0
mA  
nA  
I GES  
R gint  
t d(on)  
t r  
20  
1,25  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
245  
256  
44  
Rise time  
54  
ns  
301  
349  
34  
57  
10  
18  
14  
24  
t d(off)  
t f  
Turnꢀoff delay time  
Rgoff=0,5 ꢁ  
Rgon=0,5 ꢁ  
±15  
350  
600  
Fall time  
E on  
Turnꢀon energy loss  
mWs  
pF  
E off  
Turnꢀoff energy loss  
C ies  
Input capacitance  
35200  
2250  
1880  
2775  
0,09  
C oss  
C rss  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
Q G  
15  
960  
600  
nC  
R th(j-s)  
R th(j-c)  
PhaseꢀChange  
Material  
ʎ=3,4W/mK  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
K/W  
0,06  
neutral point FWD ( D2 , D3 )  
FWD forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1,27  
1,68  
1,60  
350  
415  
168  
289  
24  
1,97  
V F  
I RRM  
600  
600  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
Q rr  
Reverse recovered charge  
Rgon=0,5 ꢁ  
±15  
350  
µC  
45  
5978  
3609  
5
( di rf/dt )max  
E rec  
R th(j-s)  
R th(j-c)  
Peak rate of fall of recovery current  
Reverse recovered energy  
A/µs  
mWs  
10  
PhaseꢀChange  
Material  
ʎ=3,4W/mK  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,24  
K/W  
0,16  
neutral point IGBT ( T2 , T3 )  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl FWD  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,85  
V GE(th) VCE=VGE  
0,0096  
600  
V
V
1,05  
1,54  
1,80  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
15  
0
0,0304  
2400  
600  
0
mA  
nA  
20  
0,5  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
270  
274  
41  
45  
351  
374  
39  
70  
6
Rise time  
ns  
t d(off)  
Turnꢀoff delay time  
Rgoff=1 ꢁ  
±15  
350  
600  
Rgon=1 ꢁ  
t f  
Fall time  
E on  
E off  
C ies  
Turnꢀon energy loss  
8
17  
23  
mWs  
pF  
Turnꢀoff energy loss  
Input capacitance  
36960  
2304  
1096  
3760  
0,15  
C oss  
C rss  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
Q G  
15  
480  
600  
nC  
PhaseꢀChange  
Material  
R th(j-s)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
K/W  
R th(j-c) ʎ=3,4W/mK  
0,10  
copyright Vincotech  
4
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] or I C [A] or  
V CE [V] or I F [A] or  
V GE [V] or  
V GS [V]  
T j  
Min  
Max  
V DS [V]  
I D [A]  
half bridge FWD ( D1 , D4 )  
FWD forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
2,15  
2,15  
2,7  
V F  
I r  
600  
V
ꢂA  
720  
Reverse leakage current  
1200  
350  
477  
599  
67  
I RRM  
t rr  
Peak reverse recovery current  
Reverse recovery time  
A
ns  
91  
19  
Q rr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
Rgon=1 ꢁ  
±15  
600  
µC  
33  
21481  
20331  
4
( di rf/dt )max  
A/µs  
mWs  
E rec  
7
PhaseꢀChange  
Material  
R th(j-c) ʎ=3,4W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,20  
K/W  
0,13  
DC link Capacitor  
C value  
C
2* 0,68  
22000  
µF  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
Bꢀvalue  
R
Tj=25°C  
Tc=100°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
%
Δ R/R  
R100=1486 ꢁ  
ꢀ12  
+14  
P
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B (25/100)  
Bꢀvalue  
K
Vincotech NTC Reference  
B
Module Properties  
Module inductance (from chips to PCB)  
Mounting torque  
LsCE  
M
10  
nH  
Nm  
Nm  
Nm  
g
Screw M4 ꢀ mounting according to valid application note  
FSWB1ꢀ4TYꢀMꢀ*ꢀHI  
Screw M5 ꢀ mounting according to valid application note  
FSWB1ꢀ4TYꢀMꢀ*ꢀHI  
Screw M6 ꢀ mounting according to valid application note  
FSWB1ꢀ4TYꢀMꢀ*ꢀHI  
2
4
2,2  
6
Mounting torque  
M
Terminal connection torque  
Weight  
M
2,5  
5
G
1300  
copyright Vincotech  
5
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
flow SCREW 4w housing  
Figure 1  
IGBT  
Figure 2  
IGBT  
Typical output characteristics Vge=15V  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1200  
1200  
1000  
800  
600  
400  
200  
1000  
800  
600  
400  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25/125/150 °C  
15  
ꢂs  
350  
150  
ꢂs  
°C  
T j =  
T j =  
V GE  
=
V GE from  
V
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
600  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
0
0
0,5  
1
1,5  
2
2,5  
3
2
4
6
8
10  
12  
VF (V)  
VGE (V)  
At  
At  
t p  
=
t p  
=
350  
10  
ꢂs  
V
350  
ꢂs  
V CE  
=
T j=  
25/125/150 °C  
T j=  
25/125/150 °C  
copyright Vincotech  
6
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
50  
40  
30  
20  
10  
0
125  
100  
75  
50  
25  
0
Eon High T  
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
I C (A)  
R
G ( )  
With an inductive load at  
T j =  
With an inductive load at  
T j =  
25/125/150 °C  
25/125/150 °C  
V CE  
=
V CE  
V GE  
=
350  
±15  
0,5  
V
V
350  
±15  
600  
V
V
A
V GE  
R gon  
R goff  
=
=
=
I C =  
=
0,5  
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
12  
10  
8
10  
Erec High T  
8
6
Erec High T  
6
Erec Low T  
4
4
2
2
Erec Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
I
C (A)  
R G ( )  
With an inductive load at  
T j =  
With an inductive load at  
T j =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
350  
±15  
0,5  
V
V
350  
±15  
600  
V
V
A
=
=
=
I C =  
copyright Vincotech  
7
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
10,00  
1,00  
tdoff  
tdon  
tr  
1,00  
tdoff  
0,10  
tf  
tdon  
0,10  
tf  
0,01  
tr  
0,01  
0,00  
0,00  
0
2
4
6
8
10  
0
200  
400  
600  
800  
1000  
1200  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
0,5  
°C  
V
125  
350  
±15  
600  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
0,5  
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,4  
0,3  
0,3  
0,2  
0,2  
0,1  
0,1  
0,0  
0,7  
trr High T  
trr High T  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
0,5  
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
copyright Vincotech  
8
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
60  
50  
40  
30  
20  
10  
0
50  
Qrr High T  
40  
30  
20  
10  
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I C (A)  
R
gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
0,5  
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
500  
400  
300  
200  
100  
0
500  
IRRM High T  
400  
300  
200  
100  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I
C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
0,5  
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
copyright Vincotech  
9
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
15000  
dIrec/dt T  
dI0/dt T  
dIrec/dt T  
dIo/dt T  
12000  
9000  
6000  
3000  
0
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
I
C (A)  
R
gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125 °C  
350  
25/125 °C  
350  
V CE  
V GE  
R gon  
=
V
V
V
=
±15  
600  
A
V
=
V GE =  
0,5  
±15  
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z thJH = f(t p)  
Z thJH = f(t p)  
100  
100  
10-1  
10-1  
10-2  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
10-2  
0,05  
0,02  
0,01  
0,05  
0,02  
0,01  
10-3  
0,005  
0.000  
0,005  
0.000  
10-3  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
D =  
R thJH  
At  
t p / T  
t p / T  
D =  
R thJH  
=
=
0,086  
K/W  
0,244  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,037  
0,019  
0,023  
0,003  
0,005  
1,555  
0,210  
0,031  
0,002  
0,0003  
0,046  
0,048  
0,046  
0,074  
0,018  
5,114  
1,051  
0,196  
0,043  
0,014  
copyright Vincotech  
10  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T h)  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
2500  
700  
600  
500  
2000  
1500  
400  
1000  
500  
0
300  
200  
100  
0
0
50  
100  
150  
200  
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
750  
500  
400  
600  
300  
450  
200  
100  
0
300  
150  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
11  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Buck operation  
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)  
Figure 25  
IGBT  
Figure 26  
IGBT  
Reverse bias safe operating area  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
1400  
16  
Vcc=240V  
IC MAX  
14  
12  
10  
8
1200  
1000  
800  
Vcc=960V  
600  
6
400  
4
200  
2
0
0
0
200  
400  
600  
800  
1000  
1200  
VCE (V)  
1400  
0
500  
1000  
1500  
2000  
2500  
3000  
Q g (nC)  
At  
T j =  
At  
I C  
150  
ºC  
=
600  
A
Uccminus=Uccplus=Ucc/2  
V GE  
=
=
±15  
0,5  
V
R gon  
3 level  
Switching mode:  
copyright Vincotech  
12  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 1  
IGBT  
Figure 2  
IGBT  
Typical output characteristics Vge=15V  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1600  
1600  
1400  
1200  
1000  
800  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
0
0
1
2
3
4
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25/125/150 °C  
15  
ꢂs  
350  
150  
ꢂs  
°C  
T j =  
T j =  
V GE  
=
V GE from  
V
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
600  
1200  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
5
VGE (V)  
VF (V)  
At  
At  
t p  
V CE  
T j =  
=
t p  
=
350  
10  
ꢂs  
V
350  
ꢂs  
=
T j =  
25/125/150 °C  
25/125/150 °C  
copyright Vincotech  
13  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
Eoff High T  
Eon High T  
Eon Low T  
Eoff Low T  
Eoff High T  
Eoff Low T  
Eon High T  
Eon Low T  
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
R G ( )  
I C (A)  
With an inductive load at  
T j =  
With an inductive load at  
T j =  
25/125/150 °C  
25/125/150 °C  
V CE  
=
V CE  
V GE  
=
350  
±15  
1
V
V
350  
±15  
600  
V
V
A
V GE  
R gon  
R goff  
=
=
=
I C =  
=
1
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
10  
12  
10  
8
Erec High T  
Erec High T  
8
6
Erec Low T  
6
4
4
2
2
Erec Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
R G ( )  
I C (A)  
With an inductive load at  
T j =  
With an inductive load at  
T j =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
350  
±15  
1
V
V
350  
±15  
600  
V
V
A
=
=
=
I C =  
copyright Vincotech  
14  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
10  
tdoff  
tdon  
tdoff  
tdon  
1
0,1  
tf  
tr  
0,1  
tf  
tr  
0,01  
0,01  
0,001  
0,001  
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
1
°C  
V
125  
350  
±15  
600  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
1
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,12  
0,10  
0,08  
0,06  
0,04  
0,02  
0,00  
1,2  
trr High T  
1
0,8  
0,6  
0,4  
0,2  
trr High T  
trr Low T  
trr Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
1
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
copyright Vincotech  
15  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
50  
40  
30  
20  
10  
0
60  
Qrr High T  
Qrr High T  
50  
40  
30  
20  
10  
Qrr Low T  
Qrr Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
1
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
700  
600  
500  
400  
300  
200  
100  
0
800  
IRRM High T  
IRRM Low T  
600  
400  
200  
IRRM High T  
IRRM Low T  
0
0
0
200  
400  
600  
800  
1000  
1200  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
1
V
V
350  
600  
±15  
V
A
V
=
=
V GE =  
copyright Vincotech  
16  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
25000  
20000  
15000  
10000  
5000  
0
30000  
dIrec/dt T  
dI0/dt T  
dIrec/dt T  
dIo/dt T  
25000  
20000  
15000  
10000  
5000  
0
0
200  
400  
600  
800  
1000  
1200  
0
2
4
6
8
10  
I
C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125/150 °C  
25/125/150 °C  
V CE  
V GE  
R gon  
=
350  
±15  
1
V
V
350  
600  
±15  
V
A
V
=
=
V GE  
=
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z thJH = f(t p)  
Z thJH = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
D = 0,5  
0,2  
D = 0,5  
10-2  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-3  
102  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
R thJH  
D =  
R thJH  
=
=
0,15  
K/W  
0,20  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,05  
0,02  
0,03  
0,03  
0,01  
3,58  
0,74  
0,18  
0,04  
0,01  
0,02  
0,03  
0,05  
0,07  
0,03  
4,55  
0,92  
0,19  
0,05  
0,02  
copyright Vincotech  
17  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T h)  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
1400  
1200  
1000  
800  
600  
400  
200  
0
700  
600  
500  
400  
300  
200  
100  
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T h  
(
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Th  
(
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
18  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Boost operation  
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)  
Figure 25  
IGBT  
Figure 26  
IGBT  
Reverse bias safe operating area  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
1400  
16  
IC  
MAX  
14  
1200  
1000  
800  
Vcc=120V  
12  
10  
8
Vcc=480V  
600  
6
400  
4
200  
2
0
0
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
100  
200  
300  
400  
500  
600  
700  
Q g (nC)  
VCE (V)  
At  
At  
T j =  
25,150  
ºC  
I C  
=
600  
A
Uccminus=Uccplus=Ucc/2  
VGE =  
±15  
1
V
Rgon =  
copyright Vincotech  
19  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
20  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Half Bridge  
General conditions  
T j  
=
=
=
125 °C  
0,5 ꢁ  
0,5 ꢁ  
R gon  
R goff  
Figure 1  
Half Bridge IGBT  
Figure 2  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on  
)
150  
200  
VCE  
%
IC  
%
125  
tdoff  
150  
100  
75  
50  
25  
0
VGE 90%  
VCE  
IC  
100  
VGE  
VGE  
tdon  
VCE 90%  
50  
tEoff  
VCE 3%  
VGE10%  
IC10%  
IC 1%  
0
tEon  
-50  
-25  
3,8  
4
4,2  
4,4  
4,6  
4,8  
0
0,2  
0,4  
0,6  
0,8  
1
time (us)  
time(us)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
700  
594  
V
700  
594  
V
A
A
t doff  
=
=
0,349  
0,767  
ꢂs  
ꢂs  
t don  
=
=
0,256  
0,572  
ꢂs  
ꢂs  
t E off  
t E on  
Figure 3  
Half Bridge IGBT  
Figure 4  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
175  
%
Ic  
%
VCE  
150  
125  
fitted  
IC  
125  
100  
75  
50  
25  
0
VCE  
IC 90%  
100  
IC90%  
75  
IC 60%  
IC 40%  
tr  
50  
25  
IC10%  
IC  
10%  
0
tf  
-25  
-25  
4,1  
4,2  
4,3  
4,4  
4,5  
4,6  
0,3  
0,4  
0,5  
0,6  
0,7  
0,8  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
700  
594  
V
V C (100%) =  
I C (100%) =  
t r =  
700  
594  
V
A
A
0,057  
ꢂs  
0,054  
ꢂs  
copyright Vincotech  
21  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Half Bridge  
Figure 5  
Half Bridge IGBT  
Figure 6  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
IC  
%
Eon  
1%  
Poff  
100  
100  
Eoff  
75  
50  
75  
50  
25  
0
25  
VGE90%  
VCE3%  
VGE10%  
Pon  
0
tEoff  
tEon  
-25  
-25  
0
0,2  
0,4  
0,6  
0,8  
1
3,8  
4
4,2  
4,4  
4,6  
4,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
415,88  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
415,88  
17,53  
0,572  
kW  
mJ  
ꢂs  
24,11  
0,767  
t E off  
=
t E on =  
Figure 7  
Neutral Point FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
-50  
I
10%  
RRM  
IRRM 90%  
IRRM 100%  
-100  
4,2  
4,3  
4,4  
4,5  
4,6  
4,7  
4,8  
time(us)  
V d (100%) =  
I d (100%) =  
700  
594  
ꢀ415  
V
A
I RRM (100%) =  
t rr  
A
=
0,289  
ꢂs  
copyright Vincotech  
22  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Half Bridge  
Figure 8  
Neutral Point FWD  
Figure 9  
Neutral Point FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Erec  
Id  
Qrr  
100  
75  
100  
tErec  
tQrr  
50  
50  
0
-50  
25  
Prec  
0
-25  
-100  
4,2  
4,4  
4,6  
4,8  
5
5,2  
4,1  
4,3  
4,5  
4,7  
4,9  
5,1  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
594  
A
P rec (100%) =  
E rec (100%) =  
415,88  
10,16  
0,67  
kW  
mJ  
ꢂs  
45,49  
0,67  
ꢂC  
ꢂs  
t Q rr  
=
t E rec =  
copyright Vincotech  
23  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Half Bridge switching measurement circuit  
Figure 10  
copyright Vincotech  
24  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Neutral Point  
General conditions  
T j  
=
=
=
125 °C  
1 ꢁ  
1 ꢁ  
flow SCREW 4w housing  
R gon  
R goff  
Figure 1  
Neutral Point IGBT  
Figure 2  
Neutral Point IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
200  
IC  
%
125  
tdoff  
150  
100  
VGE 90%  
VCE  
90%  
VCE  
100  
75  
IC  
VGE  
tdon  
50  
50  
tEoff  
VGE  
25  
VCE 3%  
VGE 10%  
IC 10%  
IC 1%  
0
VCE  
tEon  
0
-50  
-25  
3,9  
4
4,1  
4,2  
4,3  
4,4  
4,5  
4,6  
0
0,2  
0,4  
0,6  
0,8  
1
time (us)  
time(us)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
350  
583  
0,23  
0,58  
V
350  
583  
0,274  
0,38  
V
A
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
Figure 3  
Neutral Point IGBT  
Figure 4  
Neutral Point IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
200  
IC  
%
VCE  
%
125  
fitted  
150  
IC  
100  
75  
50  
25  
0
Ic 90%  
VCE  
100  
IC 90%  
Ic 60%  
Ic 40%  
tr  
50  
IC 10%  
Ic10%  
0
tf  
-25  
-50  
0,3  
0,4  
0,5  
0,6  
0,7  
0,8  
4,1  
4,2  
4,3  
4,4  
4,5  
4,6  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
583  
0,07  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
583  
V
A
A
ꢂs  
0,045  
ꢂs  
copyright Vincotech  
25  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Neutral Point  
Figure 5  
Neutral Point IGBT  
Figure 6  
Neutral Point IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
%
125  
%
IC 1%  
Eon  
Poff  
Eoff  
100  
100  
75  
75  
Pon  
50  
50  
25  
25  
Uge90%  
Uce 3%  
Uge  
10%  
0
0
tEoff  
tEon  
-25  
-25  
0
0,2  
0,4  
0,6  
0,8  
1
3,9  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
203,90  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
203,8995 kW  
23,39  
0,58  
13,39  
0,38  
mJ  
ꢂs  
t E off  
=
t E on =  
Figure 7  
Half Bridge FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
fitted  
IRRM 10%  
0
-50  
IRRM 90%  
IRRM 100%  
-100  
4,2  
4,3  
4,4  
4,5  
4,6  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
350  
V
583  
A
ꢀ545  
0,09  
A
t rr  
=
ꢂs  
copyright Vincotech  
26  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Switching Definitions Neutral Point  
Figure 8  
Half Bridge FWD  
Figure 9  
Half Bridge FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
150  
%
%
Erec  
Qrr  
125  
Id  
100  
100  
tQint  
50  
tErec  
75  
50  
0
-50  
25  
Prec  
0
-100  
-25  
4,2  
4,3  
4,4  
4,5  
4,6  
4,7  
4,8  
4,2  
4,3  
4,4  
4,5  
4,6  
4,7  
4,8  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
583  
A
P rec (100%) =  
E rec (100%) =  
203,90  
7,18  
kW  
mJ  
ꢂs  
31,59  
0,33  
ꢂC  
ꢂs  
t Qint  
=
t E rec  
=
0,33  
copyright Vincotech  
27  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Neutral Point switching measurement circuit  
Figure 10  
copyright Vincotech  
28  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Ordering Code and Marking ꢀ Outline ꢀ Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
Standard  
70ꢀW212NMC600SH01ꢀM700P  
M700P  
M700P  
Outline  
Driver pins  
Y1 Function Group  
ꢀ0,2 81,6  
2,8 81,6  
Low current connections  
Power connections  
Pin  
1.1  
1.2  
X1  
M4  
screw  
M6  
screw  
2.1  
X3  
Y3 Function  
X2  
Y2  
Function  
G1ꢀ1  
E1ꢀ1  
G1ꢀ2  
E1ꢀ2  
E2ꢀ1  
T1  
T1  
T1  
T1  
T2  
3.1  
3.2  
3.3  
3.4  
ꢀ37 89,8  
ꢀ37 89,8  
TR+  
DC+  
0
22  
44  
0
0
0
Phase  
Phase  
Phase  
DC+  
1.3 44,2 81,6  
1.4 41,2 81,6  
1.5 1,85 68,5  
2.2  
ꢀ37 89,8 Neutral  
81,4 89,8 TR+  
81,4 89,8 Neutral  
2.3  
2.4  
0
110,4  
1.6 4,85 67,5  
1.7 42,2 68,5  
G2ꢀ1  
E2ꢀ2  
T2  
T2  
3.5  
3.6  
2.5  
2.6  
22 110,4  
44 110,4  
Neutral  
DCꢀ  
81,4 89,8  
DC+  
1.8 39,2 67,5  
G2ꢀ2  
G3ꢀ1  
E3ꢀ1  
G3ꢀ2  
E3ꢀ2  
E4ꢀ1  
G4ꢀ1  
E4ꢀ2  
G4ꢀ2  
T2  
T3  
T3  
T3  
T3  
T4  
T4  
T4  
T4  
3.7  
3.8  
3.9  
ꢀ37 65,2  
CE  
1.9  
ꢀ5,4 46,6  
ꢀ37 65,2 Neutral  
81,4 65,2 CE  
1.10 ꢀ5,4 49,6  
1.11 49,4 46,6  
1.12 49,4 49,6  
1.13 ꢀ3,45 30,7  
1.14 ꢀ0,45 30,7  
1.15 47,5 30,7  
1.16 44,5 30,7  
3.10 81,4 65,2 Neutral  
3.11  
ꢀ37 45,2  
ꢀ37 45,2 Neutral  
Phase  
3.14 81,4 45,2 Neutral  
Phase  
3.12  
3.13 81,4 45,2  
3.15  
3.16  
3.17  
ꢀ37 20,6  
ꢀ37 20,6  
DCꢀ  
TRꢀ  
1.17 19,5  
1.18 24,6  
16 DesatꢀDC+  
16 DesatꢀDC+  
ꢀ37 20,6 Neutral  
DCꢀ  
3.19 81,4 20,6 Neutral  
3.20 81,4 20,6 TRꢀ  
1.19 19,5 50,8 DesatꢀGND  
1.20 24,6 50,8 DesatꢀGND  
1.21 67,7 86,7  
1.22 67,7 89,8  
3.18 81,4 20,6  
NTC  
NTC  
copyright Vincotech  
29  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
Ordering Code and Marking ꢀ Outline ꢀ Pinout  
flow SCREW 4w housing  
Pinout  
Identification  
ID  
Component  
Voltage  
Current  
Function  
Comment  
T1,T4  
IGBT  
1200V  
600A  
Half Bridge Switch  
D1,D4  
T2,T3  
D2,D3  
NTC  
FWD  
IGBT  
FWD  
NTC  
1200V  
600V  
600V  
300A  
600A  
600A  
Half Bridge Diode  
Neutral Point Switch  
Neutral Point Diode  
Thermistor  
copyright Vincotech  
30  
31 Jul. 2015 / Revision 2  
70ꢀW212NMC600SH01ꢀM700P  
datasheet  
flow SCREW 4w housing  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are  
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete  
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any  
changes without further notice to any products to improve reliability, function or design. No representation, guarantee  
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application  
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or  
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and  
determine the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the  
express written approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use  
provided in labelling can be reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
31  
31 Jul. 2015 / Revision 2  

相关型号:

70-W224NIA400M703-L400F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W224NIA400SH-M400P

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W424NIA1K2M702-LD07FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800M7-M800F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800SH-M800F

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W612M3A1K8SC02-L300FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W612NMA1K8M702-LC09FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624N3A1K2SC-L400FP

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W624N3A1K2SC01-L400FP1

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W624NIA1K2M702-L400FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624NIA1K8M701-LD00FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70.0000MHZMP2410/50/-10+60/8PF

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ