FGH30N6S2_01 [FAIRCHILD]

600V, SMPS II Series N-Channel IGBT; 600V ,开关电源II系列N沟道IGBT
FGH30N6S2_01
型号: FGH30N6S2_01
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

600V, SMPS II Series N-Channel IGBT
600V ,开关电源II系列N沟道IGBT

开关 双极性晶体管
文件: 总11页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2001  
FGH30N6S2 / FGP30N6S2 / FGB30N6S2  
600V, SMPS II Series N-Channel IGBT  
General Description  
Features  
The FGH30N6S2, FGP30N6S2, and FGB30N6S2 are Low  
Gate Charge, Low Plateau Voltage SMPS II IGBTs combin-  
ing the fast switching speed of the SMPS IGBTs along with  
lower gate charge and plateau voltage and avalanche capa-  
bility (UIS). These LGC devices shorten delay times, and  
reduce the power requirement of the gate drive. These de-  
vices are ideally suited for high voltage switched mode pow-  
er supply applications where low conduction loss, fast  
switching times and UIS capability are essential. SMPS II  
LGC devices have been specially designed for:  
• 100kHz Operation at 390V, 14A  
• 200kHZ Operation at 390V, 9A  
• 600V Switching SOA Capability  
Typical Fall Time. . . . . . . . . . . 90ns at TJ = 125oC  
• Low Gate Charge . . . . . . . . . 23nC at VGE = 15V  
• Low Plateau Voltage . . . . . . . . . . . . .6.5V Typical  
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . 150mJ  
• Low Conduction Loss  
Power Factor Correction (PFC) circuits  
Full bridge topologies  
Half bridge topologies  
Push-Pull circuits  
Uninterruptible power supplies  
Zero voltage and zero current switching circuits  
Formerly Developmental Type TA49367.  
Symbol  
Package  
JEDEC STYLE TO-247  
JEDEC STYLE TO-220AB  
JEDEC STYLE TO-263AB  
C
E
C
E
C
G
G
C
G
G
E
E
Device Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
BV  
Parameter  
Collector to Emitter Breakdown Voltage  
Collector Current Continuous, T = 25°C  
Ratings  
Units  
600  
45  
V
A
A
A
V
V
CES  
I
C25  
C
I
Collector Current Continuous, T = 110°C  
20  
C110  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
108  
CM  
V
±20  
GES  
GEM  
V
±30  
SSOA  
Switching Safe Operating Area at T = 150°C, Figure 2  
60A at 600V  
150  
J
E
Pulsed Avalanche Energy, I = 20A, L = 1.3mH, V = 50V  
mJ  
W
AS  
CE  
DD  
P
Power Dissipation Total T = 25°C  
167  
D
C
Power Dissipation Derating T > 25°C  
1.33  
W/°C  
°C  
C
T
Operating Junction Temperature Range  
Storage Junction Temperature Range  
-55 to 150  
-55 to 150  
J
T
°C  
STG  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGB30N6S2 Rev. A  
Package Marking and Ordering Information  
Device Marking  
30N6S2  
Device  
Package  
TO-247  
Tape Width  
Quantity  
FGH30N6S2  
FGP30N6S2  
FGB30N6S2  
-
-
-
-
30N6S2  
TO-220AB  
TO-263AB  
30N6S2  
24mm  
800  
Electrical Characteristics T = 25°C unless otherwise noted  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off State Characteristics  
BV  
BV  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
I
I
= 250µA, V = 0  
600  
10  
-
25  
-
-
-
V
V
CES  
ECS  
C
C
GE  
= 10mA, V = 0  
GE  
I
V
= 600V  
= ± 20V  
T = 25°C  
-
-
-
100  
2
µA  
mA  
nA  
CES  
CE  
J
T = 125°C  
-
J
I
Gate to Emitter Leakage Current  
V
-
±250  
GES  
GE  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 12A,  
T = 25°C  
-
-
2.0  
1.7  
2.5  
2.0  
V
V
CE(SAT)  
C
J
= 15V  
GE  
T = 125°C  
J
Dynamic Characteristics  
Q
Gate Charge  
I
V
= 12A,  
V
V
= 15V  
= 20V  
-
-
23  
26  
29  
33  
nC  
nC  
V
G(ON)  
C
GE  
= 300V  
CE  
GE  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
I
I
= 250µA, V = 600V  
3.5  
-
4.3  
6.5  
5.0  
8.0  
GE(TH)  
C
C
CE  
V
= 12A, V = 300V  
V
GEP  
CE  
Switching Characteristics  
SSOA  
Switching SOA  
T = 150°C, R = 10Ω, V =  
GE  
60  
-
-
A
J
G
15V, L = 100µH, V = 600V  
CE  
t
Current Turn-On Delay Time  
Current Rise Time  
IGBT and Diode at T = 25°C,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
d(ON)I  
J
I
= 12A,  
t
CE  
10  
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
GE  
t
Current Turn-Off Delay Time  
Current Fall Time  
40  
-
t
53  
-
-
fI  
R
= 10Ω  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
Current Turn-On Delay Time  
Current Rise Time  
55  
ON1  
ON2  
OFF  
L = 200µH  
Test Circuit - Figure 20  
110  
100  
11  
-
150  
-
t
IGBT and Diode at T = 125°C  
J
d(ON)I  
I
= 12A,  
t
CE  
17  
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
t
Current Turn-Off Delay Time  
Current Fall Time  
73  
100  
100  
-
GE  
t
90  
fI  
R
= 10Ω  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
55  
ON1  
ON2  
OFF  
L = 200µH  
Test Circuit - Figure 20  
160  
250  
200  
350  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
-
-
0.75  
°C/W  
θJC  
NOTE:  
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss  
ON1  
of the IGBT only. E  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T  
J
ON2  
as the IGBT. The diode type is specified in figure 20.  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-  
es the true total Turn-Off Energy Loss.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
Typical Performance Curves  
70  
60  
50  
40  
30  
20  
10  
0
50  
TJ = 150oC, RG = 10  
, VGE = 15V, L = 100mH  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
TC, CASE TEMPERATURE (oC)  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
Figure 1. DC Collector Current vs Case  
Temperature  
Figure 2. Minimum Switching Safe Operating Area  
1000  
12  
10  
8
350  
300  
250  
200  
150  
100  
o
TC  
V
= 390V, R = 10, T = 125 C  
G J  
CE  
75oC  
VGE = 10V  
VGE = 15V  
I
SC  
t
fMAX1 = 0.05 / (td(OFF)I + td(ON)I  
)
SC  
100  
fMAX2 = (PD - PC) / (EON2 + EOFF  
)
6
PC = CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
RØJC = 0.49oC/W, SEE NOTES  
4
TJ = 125oC, RG = 3  
, L = 200mH, VCE = 390V  
2
9
10  
11  
12  
13  
14  
15  
16  
10  
20  
30  
1
10  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
Figure 3. Operating Frequency vs Collector to  
Emitter Current  
Figure 4. Short Circuit Withstand Time  
18  
18  
DUTY CYCLE < 0.5%, VGE = 10V  
PULSE DURATION = 250ms  
DUTY CYCLE < 0.5%, VGE =15V  
PULSE DURATION = 250ms  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
TJ = 150oC  
TJ = 125oC  
TJ = 125oC  
TJ = 150oC  
4
2
0
4
TJ = 25oC  
1.75  
TJ = 25oC  
1.75  
2
0
.5  
.75  
1
1.25  
1.50  
2.0  
2.25  
0.50  
0.75  
1.00  
1.25  
1.50  
2.00  
2.25  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
Typical Performance Curves (Continued)  
600  
500  
400  
300  
200  
100  
0
400  
RG = 10, L = 500mH, VCE = 390V  
RG = 10, L = 500mH, VCE = 390V  
350  
300  
250  
200  
150  
100  
50  
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
16  
40  
RG = 10  
, L = 500  
µH, VCE = 390V  
RG = 10, L = 500mH, VCE = 390V  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
TJ = 25oC, TJ = 125oC, VGE = 10V  
TJ = 125oC, VGE = 15V, VGE = 10V  
6
4
TJ = 25oC, VGE = 10V, VGE =15V  
TJ = 25oC, TJ = 125oC, VGE = 15V  
2
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 9. Turn-On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
90  
120  
RG = 10, L = 500µH, VCE = 390V  
RG = 10, L = 500µH, VCE = 390V  
80  
70  
60  
50  
40  
30  
20  
100  
80  
TJ = 125oC, VGE = 10V OR 15V  
60  
TJ = 25oC, VGE = 10V OR 15V  
40  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
Typical Performance Curves (Continued)  
16  
14  
12  
10  
8
175  
o
DUTY CYCLE < 0.5%, VCE = 10V  
I
= 1mA, R = 25, T = 25 C  
L J  
G(REF)  
PULSE DURATION = 250µs  
150  
125  
100  
75  
VCE = 600V  
TJ = 25oC  
6
VCE = 400V  
50  
4
VCE = 200V  
TJ = 125o  
C
7
25  
2
TJ = -55oC  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
5
6
8
9
10  
11  
12  
13  
14  
15  
16  
QG, GATE CHARGE (nC)  
VGE , GATE TO EMITTER VOLTAGE (V)  
Figure 13. Transfer Characteristic  
Figure 14. Gate Charge  
10  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 10  
, L = 500mH, V = 390V, V = 15V  
CE GE  
TJ = 125oC, L = 500  
ETOTAL = EON2 + EOFF  
µ
H, VCE = 390V, VGE = 15V  
G
E
= E  
+ E  
TOTAL  
ON2 OFF  
I
= 24A  
CE  
ICE = 24A  
1
I
= 12A  
= 6A  
CE  
I
= 12A  
CE  
I
CE  
I
= 6A  
CE  
0.1  
1.0  
10  
100  
, GATE RESISTANCE ()  
1000  
150  
25  
50  
75  
100  
125  
o
R
G
T
, CASE TEMPERATURE ( C)  
C
Figure 15. Total Switching Loss vs Case  
Temperature  
Figure 16. Total Switching Loss vs Gate  
Resistance  
3.5  
1.4  
DUTY CYCLE < 0.5%  
PULSE DURATION = 250µ  
s, TJ = 25oC  
FREQUENCY = 1MHz  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
CIES  
ICE = 24A  
ICE = 12A  
ICE = 6A  
COES  
CRES  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
VGE, GATE TO EMITTER VOLTAGE (V)  
Figure 17. Capacitance vs Collector to Emitter  
Voltage  
Figure 18. Collector to Emitter On-State Voltage vs  
Gate to Emitter Voltage  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
Typical Performance Curves (Continued)  
0
10  
0.50  
0.20  
0.10  
t
1
P
D
-1  
10  
t
2
0.05  
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Z  
X R ) + T  
J
D
θ
JC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 19. IGBT Normalized Transient Thermal Impedance, Junction to Case  
Test Circuit and Waveforms  
FGP30N6S2D  
DIODE TA4949390  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 200mH  
V
CE  
RG = 10  
90%  
10%  
+
-
I
CE  
t
t
FGP30N6S2  
d(OFF)I  
VDD = 390V  
rI  
t
fI  
t
d(ON)I  
Figure 20. Inductive Switching Test Circuit  
Figure 21. Switching Test Waveforms  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
Handling Precautions for IGBTs  
Operating Frequency Information  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating  
device performance for a specific application. Other  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic  
discharge of energy through the devices. When  
handling these devices, care should be exercised to  
assure that the static charge built in the handlers  
body capacitance is not discharged through the  
device. With proper handling and application  
procedures, however, IGBTs are currently being  
extensively used in production by numerous  
equipment manufacturers in military, industrial and  
consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions  
are taken:  
typical frequency vs collector current (I ) plots are  
CE  
possible using the information shown for a typical  
unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows  
f
or f  
; whichever is smaller at each point.  
MAX1  
MAX2  
The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
+ t  
).  
MAX1  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held  
to 10% of the on-state time for a 50% duty factor.  
Other definitions are possible. t  
and t  
are  
d(OFF)I  
d(ON)I  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conduc-  
tive material such as ECCOSORBDLD26or  
equivalent.  
defined in Figure 21. Device turn-off delay can  
establish an additional frequency limiting condition  
for an application other than T . t is important  
JM d(OFF)I  
when controlling output ripple under a lightly loaded  
condition.  
2. When devices are removed by hand from their  
carriers, the hand being used should be  
grounded by any suitable means - for example,  
with a metallic wristband.  
f
is defined by f  
= (P - P )/(E  
+ E  
).  
MAX2  
MAX2  
D
C
OFF  
ON2  
The allowable dissipation (P ) is defined by  
D
P
= (T - T )/R . The sum of device switching  
D
JM C θJC  
and conduction losses must not exceed P . A 50%  
duty factor was used (Figure 3) and the conduction  
D
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
losses (P ) are approximated by P = (V x I )/2.  
C
C
CE  
CE  
E
and E  
are defined in the switching  
OFF  
ON2  
5. Gate Voltage Rating - Never exceed the gate-  
waveforms shown in Figure 21. E  
of the instantaneous power loss (I x V ) during  
is the integral  
ON2  
voltage rating of V  
. Exceeding the rated V  
GEM  
GE  
CE  
CE  
can result in permanent damage to the oxide  
layer in the gate region.  
turn-on and E  
is the integral of the instantaneous  
OFF  
power loss (I x V ) during turn-off. All tail losses  
CE  
CE  
6. Gate Termination - The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate open-circuited or floating should be avoided.  
These conditions can result in turn-on of the  
device due to voltage buildup on the input  
are included in the calculation for E  
; i.e., the  
OFF  
collector current equals zero (I = 0)  
CE  
capacitor due to leakage currents or pickup.  
7. Gate Protection - These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
TO-247  
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE  
A
TERM. 4  
INCHES  
MILLIMETERS  
E
ØP  
ØS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
4.82  
NOTES  
A
b
0.180  
0.046  
0.060  
0.095  
0.020  
0.800  
0.605  
0.190  
0.051  
0.070  
0.105  
0.026  
0.820  
0.625  
4.58  
1.17  
-
Q
1.29  
2, 3  
ØR  
b1  
b2  
c
1.53  
1.77  
1, 2  
D
2.42  
2.66  
1, 2  
0.51  
0.66  
1, 2, 3  
D
20.32  
15.37  
20.82  
15.87  
-
-
L
E
1
b1  
b2  
e
0.219 TYP  
0.438 BSC  
0.090  
5.56 TYP  
11.12 BSC  
2.29  
4
4
5
-
L
c
e1  
J1  
L
b
0.105  
0.640  
0.155  
0.144  
0.220  
0.205  
0.270  
2.66  
16.25  
3.93  
3.65  
5.58  
5.20  
6.85  
1
2
3
3
2
1
0.620  
0.145  
0.138  
0.210  
0.195  
0.260  
15.75  
3.69  
3.51  
5.34  
4.96  
6.61  
J
e
1
BACK VIEW  
L1  
ØP  
Q
1
-
e1  
-
ØR  
ØS  
-
-
NOTES:  
1. Lead dimension and finish uncontrolled in L1.  
2. Lead dimension (without solder).  
3. Add typically 0.002 inches (0.05mm) for solder coating.  
4. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimen-  
sion D.  
5. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimen-  
sion D.  
6. Controlling dimension: Inch.  
7. Revision 1 dated 1-93.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
TO-263AB  
SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE  
INCHES  
MIN  
MILLIMETERS  
NOTE  
S
-
4, 5  
4, 5  
4, 5  
2
4, 5  
-
-
7
7
-
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
-
MIN  
4.32  
1.22  
0.77  
1.15  
7.88  
0.46  
MAX  
4.57  
1.32  
0.86  
1.39  
-
0.55  
10.79  
10.28  
E
A
A
0.170  
0.048  
0.030  
0.045  
0.310  
0.018  
0.405  
0.395  
A
1
A
1
H
1
b
TERM. 4  
b
b
1
D
L
2
c
0.022  
0.425 10.29  
0.405 10.04  
D
E
e
L
2
L
1
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
1
3
e
1
H
0.045  
0.095  
0.175  
0.090  
0.050  
0.315  
0.055  
1.15  
1.39  
2.66  
4.95  
2.79  
1.77  
-
1
b
b1  
c
e
J
0.105  
0.195  
0.110  
0.070  
-
2.42  
4.45  
2.29  
1.27  
8.01  
-
-
1
J
1
e1  
L
0.450  
(11.43)  
L
L
L
4, 6  
3
2
TERM. 4  
1
2
3
L
3
NOTES:  
0.350  
(8.89)  
1. These dimensions are within allowable dimensions of  
Rev. C of JEDEC TO-263AB outline dated 2-92.  
b
2
0.700  
(17.78)  
2. L and b dimensions established a minimum mounting  
3
2
surface for terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
0.150  
(3.81)  
3
1
5. Add typically 0.002 inches (0.05mm) for solder plating.  
0.080 TYP (2.03)  
0.062 TYP (1.58)  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.120 inches (3.05mm)  
from bottom of dimension D.  
8. Controlling dimension: Inch.  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
9. Revision 10 dated 5-99.  
4.0mm  
TO-263AB  
24mm TAPE REEL  
1.5mm  
DIA. HOLE  
1.75mm  
USER DIRECTION OF FEED  
2.0mm  
C
L
24mm  
16mm  
COVER TAPE  
40mm MIN.  
ACCESS HOLE  
30.4mm  
13mm  
330mm  
100mm  
GENERAL INFORMATION  
1. 800 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
24.4mm  
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MILLIMETERS  
MIN  
E
ØP  
SYMBOL  
MIN  
MAX  
MAX  
4.57  
1.32  
0.86  
1.39  
0.48  
15.49  
4.06  
10.41  
0.76  
NOTES  
A
1
A
A1  
b
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
-
Q
H
1
-
3, 4  
TERM. 4  
D
b1  
c
2, 3  
o
E
45  
2, 3, 4  
1
D
1
D
-
-
L
1
D1  
E
b1  
b
0.395  
-
10.04  
-
-
L
E1  
e
-
c
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
6.47  
5
5
-
o
60  
e1  
H1  
J1  
L
1
2
e
3
J
1
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
2.54  
13.47  
3.31  
3.79  
2.60  
e1  
0.100  
0.530  
0.130  
0.149  
0.102  
2.79  
13.97  
3.81  
6
-
L1  
ØP  
Q
2
-
3.88  
2.84  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-  
220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L1.  
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimen-  
sion D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimen-  
sion D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
©2001 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
FAST®  
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
OPTOPLANAR™  
PACMAN™  
POP™  
STAR*POWER™  
Stealth™  
SuperSOT-3  
SuperSOT-6  
SuperSOT-8  
SyncFET™  
TinyLogic™  
TruTranslation™  
UHC™  
Power247™  
PowerTrench®  
QFET™  
HiSeC™  
EcoSPARK™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MICROWIRE™  
OPTOLOGIC™  
QS™  
E2CMOS™  
QT Optpelectronics™  
Quiet Series™  
SILENT SWITCHER®  
SMART START™  
Ensigna™  
FACT™  
FACT Quiet Series™  
UltraFET®  
VCX™  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H3  
©2001 Fairchild Semiconductor Corporation  

相关型号:

FGH30S130P

Shorted AnodeTM IGBT
FAIRCHILD

FGH30S130P

IGBT,1300V,30A,短路阳极
ONSEMI

FGH30S150P

IGBT,1500v,30A,阳极短路
ONSEMI

FGH30T65UPDT-F155

650V,30A,场截止沟槽 IGBT
ONSEMI

FGH40N120AN

1200V NPT IGBT
FAIRCHILD

FGH40N120ANTU

暂无描述
FAIRCHILD

FGH40N120ANTU

IGBT,1200V,NPT
ONSEMI

FGH40N60SF

600V, 40A Field Stop IGBT
FAIRCHILD

FGH40N60SFD

600V, 40A Field Stop IGBT
FAIRCHILD

FGH40N60SFDTU

600 V, 40 A Field Stop IGBT
FAIRCHILD

FGH40N60SFDTU

IGBT,600V,40A,场截止
ONSEMI

FGH40N60SFDTU-F085

600 V、40 A、2.3 V、TO-247高速场截止 IGBT
ONSEMI